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Abstract. We present an asymptotic flocking estimate for the Cucker-Smale flocking
model under the rooted leadership in a large coupling limit. For this, we reformulate
the Cucker-Smale model into a fast-slow dynamical system involving a small parameter
which corresponds to the inverse of a coupling strength. When the coupling strength
tends to infinity, the spatial configuration will be frozen instantaneously, whereas the
velocity configuration shrinks to the global leader’s velocity immediately. For the rigorous
explanation of this phenomenon, we use Tikhonov’s singular perturbation theory. We
also present several numerical simulations to confirm our analytical theory.

1. Introduction. Collective coherent motions such as the aggregation of bacteria,
flocking of birds, swarming of fish and herding of sheep, etc., are often observed in our
biological complex system [26H28], and have been extensively studied in the engineering
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community [19,23] due to their diverse applications, e.g., a sensor network, formation
control of robots and unmanned aerial vehicles, and opinion formation of social networks.
In this paper, we are interested in a generalized Cucker-Smale flocking model [10] which is
similar to Newton’s equations in many-body interacting particle systems. Let x;,v; € R?
be the spatial position and velocity of the i-th agent, respectively. Then our generalized
Cucker-Smale (in short C-S) model reads as follows: For i =0,1,..., N,

dx i
dt

d’Ui 1 N
FTE > i (@) (v — i),
=0

=wv;, t>0,

(1.1)

where ;;(z) > 0 is a communication weight which represents the information flow
from the j—th agent to the i—th agent depending on the spatial configuration =z =
(zo,21,...,2N), and € > 0 denotes the inverse of a coupling strength.

The C-S type system ([LI)) has been extensively studied and generalized with extra
effects: for example, the stochastic effects [2L[14], noisy environments [9], informed agents
[8], inter-particle bonding forces [22], general couplings [I3I[I5LI6L2T], collision-avoidance
[1L[7], hierarchical and rooted leadership structures [6L20124], and mean-field limit system
[BLELTTL T2, A5, 07], etc. However, so far most of the literature deals with symmetric or
triangular interaction topologies, and analytical flocking analysis heavily relies on these
special structures of network topologies. As far as the authors know, flocking dynamics
for the continuous-time C-S model (1)) with non-symmetric and non-triangular topol-
ogy has not been studied systematically. Many biological systems exhibiting the flocking
behavior in our biological systems do have such non-symmetric and non-triangular net-
work structures (see discussion in Remark [2]). Recently, Li and Xue [20] proposed a
discrete-time C-S model with a new network structure called rooted leadership (in short
RL), which partially generalizes the hierarchical leadership (HL) [24], and they estab-
lished the flocking estimates for their proposed model by combining the self-boundedness
argument [I0] and matrix analysis technique [30]. In contrast, for the continuous-time
case ([LI)), the techniques employed for the discrete-time case do not work. Actually, to
apply the self-boundedness argument requires a prior estimate for the decay of velocity
mismatch. For the RL case in discrete-time setting, this can be done by matrix analysis
techniques [20]. However, for the continuous-time case, we cannot obtain an effective
estimate to serve the self-boundedness argument. Thus it is still an open problem to
establish the flocking estimates for the system (1) under RL.

The main result of this paper is to establish the flocking estimates for the continuous-
time C-S model (I in a large coupling limit (¢ — 0). In this situation, the system
([TI) can be recast as a singular perturbation problem, so we can use Tikhonov’s theory
[25] to derive a qualitative description for the flocking dynamics of the C-S type systems
under RL.

The rest of this paper consists of three sections. In Section 2, we review the RL
topology, Hurwitz stability, and present our main result. In Section 3, we present a
proof of our main result by applying Tikhnov’s theorem and provide several numerical

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



CUCKER-SMALE FLOCKING UNDER ROOTED LEADERSHIP 691

simulations illustrating the flocking behavior in a large-coupling limit. Finally Section 4
is devoted to a brief summary of our main result.

2. A framework and statement of a main result. In this section, we discuss a
framework and main result on the asymptotic behavior in a large-coupling limit (¢ — 0).

2.1. Review on RL topology. In most of the literature on C-S type models, the commu-
nication weight 1);; is assumed to be dependent on the metric distance, say, the relative
position between agents:

Vij(x) = (|l —zill) >0, 4,5 =0,1,...,N, i#j;
for example, the following choices for 1) were used in the literature [10L28]:

1, if |jz; —z;|| <R,
0, if |z —z;| > R,

$E3(s) = B>0;  ¥(s) = {

1
(14 s2)8°
where R is the range of communication. However, as can be seen in a recent experiment
[], the communication weight 1;; can be dependent on the topological distance rather
than on metric distance, say, some fixed finite-number of closest neighboring agents. For
example, let £(7) be the set of neighbors of the i-th agent, i.e., field agents communicating
with the i-th agent. In this case, the topological distance i can be defined as follows:

1, if j € L),
Vis(@) = { 0, otherwise.

We now recall the concept of rooted leadership topology introduced in [20].
DEFINITION 2.1 (Rooted leadership [20]). An (N + 1)-flock {ug,u1,...,un} is said
to be under rooted leadership if there exists a root agent, say ug, which has no incoming
directed paths from other agents, whereas every other agent has a directed path from wug;
i.e., the root agent up has no information inflow and has information outflow (directly
or indirectly) reaching to any other agent (see Figure [Tl for a simple example).
REMARK 2.1. 1. We note that the above definition of RL appears different from the
original one presented in [20]: every other agent has a path “from” wg, whereas in [20]
every other agent has a path leading “to” ug . This is because in this paper we try to
interpret the associated graph as an information flow chart. Precisely, the arc from u;
to u; means that u; sends some information to u;; i.e., the i-th agent is influenced by
the state of the j-th agent. Throughout this paper, we will adopt this point of view to
interpret 1;;.
2. Note that the hierarchy inside the group {uj,us,...,un} is dropped. As a natural
example for an RL flock, consider a large flock of flying birds or a herd of moving cattle
following a leader, where some individuals may be so close to others that they can see and
influence each other. Obviously, the hierarchy structure may fail to work in this situation.
However, this flock is indeed under RL. It is also easy to see that the HL flock is a special
case of the RL flock. Actually, the RL structure is the most general case among flocks
with a single “leadership”. The adjacency matrix of an HL flock is triangular, but the
adjacency matrix of an RL flock is not necessarily triangular or symmetric. Thus the
previous methods based on self-bounding arguments, the Lyapunov functional approach
and the £2-energy method do not work for this RL case.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



692 SEUNG-YEAL HA, ZHUCHUN LI, MARSHALL SLEMROD, anp XIAOPING XUE

.
/N
O —— @

/NN

OR OB JOLdO

Fic. 1. An example of RL topology with seven agents.

From Definition 2] the (N + 1) x (N + 1) adjacency matrix ¥ takes the form

’@/Joo(l‘) 0 0 0
Yio(z)  Yui(z)  ra(x) - Pin(2)

U= Yoo(x)  ar(z)  thoa(x) -+ than(w)

Uno(z) Yni(z) Yn2(z) - Ynn(2)
The first row has all entries ¢o; (j > 1) equal to zero, because the global leader v cannot
be influenced by any other agents. For a given solution {(z(t),v(t))}, we write

N
Yij(t) == Py (x(t),  di(t):= Y is(t). (2.1)
J=0,j#i
Since every agent, except ug, is influenced by at least one agent, it is easy to see that
dy=0, d;>0,i=1,...,N.
Note that the velocity of the global leader wg is constant along the dynamics (L)), i.e.,
vo(t) = voo, t>0.

Thus, it is natural to consider deviations (fluctuations) from the state of the global leader
ug: For a given phase configuration {(x;,v;)}Y,, we set

jiSZIi—l‘(), ’[}iI:’Uz‘—Uo, 1=1,...

Li'Z:(:fﬁl,...,if}N), @::(7)1,...
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Then by (1) we have

dil diL'Z dLL'() N
= — — = Ui — Vo = Uj,

dt — dt dt
N

d@l d’Ui d?)o 1

i DU
j=0

1N 1 N N
O RCICEINE (D DTS B}
j=0 J=Lj#i J=0,j#1

We now set

di(t) —Y12(t) - —thin(D)
—a1(t) do(t) o —than(t)
—Yni(t) —no(t) -+ dn(t)
then the system (I]) can be rewritten as
dz . dv 1 .
E =, % = —gLi(t)’U, t> 0. (23)

The matrix Lj ) is called the reduced Laplacian.
From now on, we will focus on the reduced system (23]). In this case, to show the
asymptotic flocking of the agent system is equivalent to proving that:
z;(t li 0 (t)| = 0.
Sup max. [2:(8)] <oo,  lim max [0:(£)] =0
To study the behavior of the system (2.3)), the time-dependent matrix L) will play a
key role as in the discrete-time system.
2.2. Hurwitz stability. In this part, we study the Hurwitz stability of a linear au-
tonomous system in RV:

d
d—‘g =Ay, t>0, y(0) = vo, (2.4)

where A is the constant matrix. We now recall the definition of Hurwitz stability for the
system (2.4) as follows.

DEFINITION 2.2. The coefficient matrix A € My« n(R) in (Z4) is Hurwitz stable if
and only if all eigenvalues of the matrix A have strictly negative real part.

REMARK 2.2. It is clear that Hurwitz stability implies the global exponential stability
of the trivial equilibrium gy, = 0.

In general, when the size of the matrix is sufficiently large, i.e., N > 1, the calculation
of eigenvalues can be very demanding. Thus it is interesting to look for simpler criteria in
terms of elements in the coefficient matrix A. For some class of square non-negative ma-
trices, we provide a handy criterion for the Hurwitz stability. For this, we first introduce
a set of square matrices:

N
EO = {A == (aij) S MNXN(R) L Qg Z 0 (Z #]) and Zaij = Qj; +d2 S 0}

Jj=1
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Note that for A € ¥y, a;; < 0. On the other hand, for a given matrix A = (a;;) € o,
we can define its associated directed graph G = (V, £) without self-loops:

Vi=A{ui,ug,...,un} and (uj,u;) €&, (1#j) <= ai #0.

We next partition the vertex set V into two subsets depending on the sign of row sums.
DEFINITION 2.3. Let G = (V,€) be a directed graph associated with the matrix
A€ Xy.

N
(1) the vertex u; is a negative-sum vertex <= Z ai; <0,
i=1
N
(2) the vertex u; is a zero-sum vertex <= Z ai; = 0.
Jj=1

In [29] the authors studied non-negative matrices; i.e., all elements are non-negative
and characterize a class of matrices for which its associated discrete-time linear system
is asymptotically stable by describing the distribution of non-zero elements. Later, an
alternative characterization in the terminologies of graph theory, which seems to be much
simpler, was proposed in [30]. This idea plays a key role in the study of Cucker-Smale
flocking under RL in a discrete-time setting [20]. For the reader’s convenience, we briefly
review the definition of (sp) matrix, coined from “simple matrix” in [29,30]. We set

N
Si= {A = (aij) € MnxN(R) @ ag; >0, Zaij < 1}.
Jj=1

We associate a matrix A € S with a weighted digraph with vertices uy, us,...,uy such
that (uj,u;) € € is a directed arc with the weight a;;.

DEFINITION 2.4 ([30]). Let A = (ai;) € S and (V, £) be the associated directed graph
with the matrix A.

(1) The vertex u; is called non-saturated (saturated) if and only if the i-row sum is
strictly less than 1 (exactly 1).

(2) The matrix A is an (sp) matrix if and only if every saturated vertex has a directed
path from a non-saturated vertex.

We may expect some analogue for the continuous-time systems (Z3]) to work for
our analysis. For the continuous-time case ([24), we have a criterion (Proposition [21])
to determine whether a matrix A € Xy is Hurwitz stable or not. We would like to
acknowledge that the matrix of this kind has been shown to be non-singular, which
implies asymptotic stability, in different terminologies [I8]. However, we prefer to give a
simple and different proof in terms of our jargons to make this paper self-contained and
more readable. We first give a lemma which characterizes the relationship between the
graph representation of A and its discretization.

LEMMA 2.1. Let A = (a;;) € Xo. Then there exists an & > 0 such that
(1) Id+hA €S,
(2) the non-saturated vertices of Id 4+ hA are the negative-sum vertices of A and vice
versa.
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Proof. Suppose that

N
A= (a‘ij) € 207 i'e'7 7] >0, 1 7é ja Zaz] <0.
j=1

Choose a small A > 0 such that
< ! ;
max;{|a;| + 1}’

then the matrix Id + hA is a non-negative matrix and its row sums are dominated by 1,

ie.,
Id+ hA € S.
Note that
N N
Zaij < OC>1+hZa2J <1,
j=1 j=1

which immediately implies that the non-saturated vertices of Id + hA are exactly the
negative-sum vertices of A. O

PROPOSITION 2.1. Let A = (a;;) € ¥p. Then A is Hurwitz stable if and only if each
zero-sum vertex has a directed path from a negative-sum vertex.

Proof. e (<) Suppose that each zero-sum vertex has a directed path from a negative-
sum vertex. By Lemma ] there exists h > 0 such that the matrix Id + hA is a
non-negative matrix. Observe the following implication:

Id + hA is an (sp) matrix,

= [1+hNA)| <1, ¢=12,...N,
= R(N(A4)) <0, i=1,2,...N,
<= A is Hurwitz stable,

where \;(A) denotes an eigenvalue of A. Therefore, to prove the Hurwitz stability of
A, it suffices to show that Id 4+ hA is an (sp) matrix. On the other hand, it follows
from Lemma [2.]] that the non-saturated vertices of Id + hA are exactly the negative-sum
vertices of A. By Definition [24] we see that Id + hA is an (sp) matrix.

e (=) Suppose A € ¥ has a zero-sum vertex which cannot be linked to any negative-
sum vertex. We use V., to denote the set of such vertices. Let us relabel the nodes set
{1,2,...,N} such that Voo = {N — (m —1),...,N —1,N}. Then the matrix A can be

m
expressed in partitioned form as

. DN—m *
A‘[ 0 Dy, ]

where Dy, represents a square matrix of order k, 0 is an m x (N — m) matrix with
all elements being 0. Since the row sums of D,, are all 0, (0,...,0,1,.. .,1)T is an
——

m
eigenvector associated to the eigenvalue 0. This means that A is not Hurwitz stable. O
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2.3. Description of main results. Recall that (Z,9) satisfies
dz  db 1 N
E =, E = —gLfo(t)U, (2'5)
subject to initial data:
('ilv’[)’t)(o) = (i‘iOaf}iO) € RZdv i = 17"'7N' (26)

Note that the matrix L) in [35) is defined by ([2.2)), and L;) is applied to RV
(instead of RY) via the d-dimensions individually. The main result of this paper can be
summarized as follows.

THEOREM 2.1. The limiting dynamics as ¢ — 0 for the reduced Cucker-Smale system
E3)-(Z8) under rooted leadership on 0 < ¢ < 1 is given by

T; =Ty, 0;,=0, 7=1,...,N.

REMARK 2.3. 1. Since (Z,0) represents the relative phase of particles 1,2,..., N
relative to the global leader 0, Theorem 21l implies that the limiting dynamics as ¢ — 0
for system (2.5 is given by the constant translational motion:

ﬂi(t)z’voo, l‘i(t):l'i()—f—’l)oot, i=0,1,...,N.

2. Theorem 2] asserts that in the limiting dynamics all particles attain a velocity
alignment; i.e., they form a flock and move with the leader’s velocity. Note that the
perturbation parameter € going to zero means that the coupling strength which is inverse
of € goes to infinity. Thus, the singular limit € — 0 corresponds to the infinite coupling
strength limit.

3. In the proof of Theorem 2.I] we only require

1/)1'1'(17) > 07 VZ‘,

if the information flow from u; to u; exists. In Cucker-Smale and many other works, it

is assumed to be
1

(14 [lg = a52)P

Under this particular choice, it is non-increasing about ||z; — z;|| and it has a positive

Yij(z) =

lower bound in the evolution. Therefore, in some sense, our assumption is less restrictive.

3. A large coupling limit. In this section, we study the continuous-time Cucker-
Smale type flocking model under RL by applying Tikhonov’s theory.

3.1. Review of Tikhonov’s theorem. For the reader’s convenience, we recall the classic
theorem on the singular perturbation limit due to Tikhonov [25]. Consider the slow-fast
dynamical system:

dy;

Y= filyet), i=12...n,

dt

o (3.1)
wim = Fily 20, j=12....m,
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where y = (y1,...,Yn), 2 = (21,..., Zm), and u; are small positive parameters depending
on a parameter p in such a way that
. _ _ - M1
}}L%MJ(M) =0, ;ltlg%) —Mj =0or 1.
In the language of a singular perturbation theory, y;’s are slow variables and z;’s are fast
variables.

THEOREM 3.1 (Tikhonov [25]). Suppose the following conditions hold.
(1) The degenerate system obtained by setting all p; = 0,
dyi
dt = fl(y? Z)t)’ F](y’ Z7t) = 0’ (3'2)
has continuous solutions.
(2) The roots z; = ¢;(y,t) of F;(y,z,t) = 0 have continuous first partial derivatives
and are exponentially asymptotically stable for the fast system

de

dt

where we treat y as a constant.

Then as p — 0, the solutions of [B.I]) tend to the corresponding solutions of the degen-

erate system (B.2) with the initial data (y?, z?, t%), and this convergence is uniform in a
closed interval [t1,T,] for any t; > t° and T, > t;.

= Fj(y, 2, 1), (3.3)

3.2. Large coupling limit. We recall the reduced C-S system (2.5]) as follows:

dz db .
E =, 5& = _Li(t)va (34)
and consider its fast system:
db
d—z = —Lyi. (3.5)

Next we use Proposition 2] to study the asymptotic behavior of the fast system (B3]
where % is frozen at some fixed point Z;.

LEMMA 3.1. The trivial equilibrium 9. = 0 to fast system (3.0)) is globally exponentially
asymptotically stable.

Proof. We recall that L; ) is given by ([2.I)-(2.2)), which implies —Lz, € ¥o. To prove
the desired result it suffices to show that —L;z, is Hurwitz stable. First, by 2.1)-(22)
we see that u; is a negative-sum vertex in the directed graph of —L;, if and only if the
agent u; is directly led by ug. Actually, if u; is directly led by ug, then ;o(Zf) > 0 and
thus

N N

D (—Lag)ig = —di(ig) + D (@) = —thio(dy) <O,

Jj=1 J=1,j#i
and vice versa. Second, we recall the definition of an RL flock, which declares that
every other agent has a directed path from ug. This certainly means that every other
agent either has a path from some agent directly led by ug or it is directly led by wuqg.
Combining the two observations above, we see that in the directed graph of —L; ,, every
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zero-sum vertex has a directed path from a negative-sum vertex. By Proposition 2.7], it

immediately follows that —L;, is Hurwitz stable. O
Proof of Theorem [21]. Note that the solutions for the degenerate system
dz | "
E =", _La?(t)v = 07

are exactly

Ti = Ti0, ’UiZO, izl,...,N.

We observe that the conditions of Theorem Bl are true for (34). By applying Theo-

rem [3.1] we immediately obtain the desired result in Theorem 2.1 a
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Fic. 2. Spatial and velocity configurations at ¢ = 0,2 for ¢ = 0.05
and 127 agents. The spatial position and velocity of the root agent
are denoted by a red cross. (Color available online.)

3.3. Numerical simulations. In this part, we present several numerical simulations
based on the 4th-order Runge Kutta method to illustrate the contents of Theorem 2]
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In Figure 2] (a)-(d), we see that for ¢ = 0.05, the initial spatial configuration at time
t = 2 is pretty much the same as spatial configuration at ¢ = 0. In contrast, the velocity
configuration at time ¢ = 2 almost shrinks to zero.

——
0.9 0.9
0.6 0.6
9o 1Blloo
0.3 0.3
0 : : : 0 . . .
0 0.5 1 1.5 2 0 0.5 1 1.5 2
time time
(a) Decay of ||0]|~ at € = 10 (b) Decay of |9~ at e = 1
0.9
0.9}, "
06}
0.6 * \
190 18]loo Y
0.3 0.3 *****
% 05 1 15 2 % 05 1 15 2
time time
(c) Decay of |9~ at e = 0.1 (d) Decay of ||0]|~ at ¢ = 0.05

Fic. 3. Evolution of ||9||e at € = 10,1,0.1,0.05.

For numerical simulations, we take 127 agents and use the following parameters and
ansatz for the communication weight:

1, if j € L(3),
0, otherwise,

Xij
d=2, () = 7 g
'(/)U( ) (1 + |5Ej . xi|2)% Xij {
where the connectivity yx;; follows the RL topology given by Figure [[l which can obvi-
ously be extended for 127 agents instead of 7 agents. The initial spatial and velocity
configurations are randomly chosen from the uniform box [0, 10} and [0, 1]? respectively
as in Figure [ (a) and (b). With these sets of initial data, we perform four numerical
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simulations with different e:
e=10,1,10"%5x 1072

during the time-interval [0, 2].

In Figure [ (a)-(d), we see that the ¢..-norms of the velocity configurations at time
t = 2 show the relaxation to zero as € — 0. This perfectly coincides with the analytical
result in Theorem 211

4. Conclusion. In this paper, we presented the flocking behavior of the Cucker-
Smale type model under rooted leadership in a large coupling limit. Since the symmetry
and hierarchy are absent in our situation, we could not get an effective estimate for the
decay of the velocity mismatch from that of the global leader in finite coupling. However,
in the large coupling limit as € — 0, we can invoke Tikhonov’s theory for the slow-fast
dynamical systems. The advantage of introducing the fast-slow subsystems is that the
fast equation itself becomes a time-invariant linear system which can be shown to be
asymptotically stable. By the direct application of Tikhonov’s theory, we obtain the
limiting flocking behavior for the perturbed systems.
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