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Abstract. We present an asymptotic flocking estimate for the Cucker-Smale flocking

model under the rooted leadership in a large coupling limit. For this, we reformulate

the Cucker-Smale model into a fast-slow dynamical system involving a small parameter

which corresponds to the inverse of a coupling strength. When the coupling strength

tends to infinity, the spatial configuration will be frozen instantaneously, whereas the

velocity configuration shrinks to the global leader’s velocity immediately. For the rigorous

explanation of this phenomenon, we use Tikhonov’s singular perturbation theory. We

also present several numerical simulations to confirm our analytical theory.

1. Introduction. Collective coherent motions such as the aggregation of bacteria,

flocking of birds, swarming of fish and herding of sheep, etc., are often observed in our

biological complex system [26–28], and have been extensively studied in the engineering
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community [19, 23] due to their diverse applications, e.g., a sensor network, formation

control of robots and unmanned aerial vehicles, and opinion formation of social networks.

In this paper, we are interested in a generalized Cucker-Smale flocking model [10] which is

similar to Newton’s equations in many-body interacting particle systems. Let xi, vi ∈ R
d

be the spatial position and velocity of the i-th agent, respectively. Then our generalized

Cucker-Smale (in short C-S) model reads as follows: For i = 0, 1, . . . , N ,

dxi

dt
= vi, t > 0,

dvi
dt

=
1

ε

N∑
j=0

ψij(x)(vj − vi),
(1.1)

where ψij(x) > 0 is a communication weight which represents the information flow

from the j−th agent to the i−th agent depending on the spatial configuration x =

(x0, x1, . . . , xN ), and ε > 0 denotes the inverse of a coupling strength.

The C-S type system (1.1) has been extensively studied and generalized with extra

effects: for example, the stochastic effects [2,14], noisy environments [9], informed agents

[8], inter-particle bonding forces [22], general couplings [13,15,16,21], collision-avoidance

[1,7], hierarchical and rooted leadership structures [6,20,24], and mean-field limit system

[3, 5, 11, 12, 15, 17], etc. However, so far most of the literature deals with symmetric or

triangular interaction topologies, and analytical flocking analysis heavily relies on these

special structures of network topologies. As far as the authors know, flocking dynamics

for the continuous-time C-S model (1.1) with non-symmetric and non-triangular topol-

ogy has not been studied systematically. Many biological systems exhibiting the flocking

behavior in our biological systems do have such non-symmetric and non-triangular net-

work structures (see discussion in Remark 2.1). Recently, Li and Xue [20] proposed a

discrete-time C-S model with a new network structure called rooted leadership (in short

RL), which partially generalizes the hierarchical leadership (HL) [24], and they estab-

lished the flocking estimates for their proposed model by combining the self-boundedness

argument [10] and matrix analysis technique [30]. In contrast, for the continuous-time

case (1.1), the techniques employed for the discrete-time case do not work. Actually, to

apply the self-boundedness argument requires a prior estimate for the decay of velocity

mismatch. For the RL case in discrete-time setting, this can be done by matrix analysis

techniques [20]. However, for the continuous-time case, we cannot obtain an effective

estimate to serve the self-boundedness argument. Thus it is still an open problem to

establish the flocking estimates for the system (1.1) under RL.

The main result of this paper is to establish the flocking estimates for the continuous-

time C-S model (1.1) in a large coupling limit (ε → 0). In this situation, the system

(1.1) can be recast as a singular perturbation problem, so we can use Tikhonov’s theory

[25] to derive a qualitative description for the flocking dynamics of the C-S type systems

under RL.

The rest of this paper consists of three sections. In Section 2, we review the RL

topology, Hurwitz stability, and present our main result. In Section 3, we present a

proof of our main result by applying Tikhnov’s theorem and provide several numerical
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CUCKER-SMALE FLOCKING UNDER ROOTED LEADERSHIP 691

simulations illustrating the flocking behavior in a large-coupling limit. Finally Section 4

is devoted to a brief summary of our main result.

2. A framework and statement of a main result. In this section, we discuss a

framework and main result on the asymptotic behavior in a large-coupling limit (ε → 0).

2.1. Review on RL topology. In most of the literature on C-S type models, the commu-

nication weight ψji is assumed to be dependent on the metric distance, say, the relative

position between agents:

ψij(x) = ψ(‖xj − xi‖) > 0, i, j = 0, 1, . . . , N, i �= j;

for example, the following choices for ψ were used in the literature [10, 28]:

ψcs(s) :=
1

(1 + s2)β
, β ≥ 0; ψv(s) :=

{
1, if ‖xi − xj‖ ≤ R,

0, if ‖xi − xj‖ > R,

where R is the range of communication. However, as can be seen in a recent experiment

[4], the communication weight ψji can be dependent on the topological distance rather

than on metric distance, say, some fixed finite-number of closest neighboring agents. For

example, let L(i) be the set of neighbors of the i-th agent, i.e., field agents communicating

with the i-th agent. In this case, the topological distance ψ can be defined as follows:

ψij(x) =

{
1, if j ∈ L(i),

0, otherwise.

We now recall the concept of rooted leadership topology introduced in [20].

Definition 2.1 (Rooted leadership [20]). An (N + 1)-flock {u0, u1, . . . , uN} is said

to be under rooted leadership if there exists a root agent, say u0, which has no incoming

directed paths from other agents, whereas every other agent has a directed path from u0;

i.e., the root agent u0 has no information inflow and has information outflow (directly

or indirectly) reaching to any other agent (see Figure 1 for a simple example).

Remark 2.1. 1. We note that the above definition of RL appears different from the

original one presented in [20]: every other agent has a path “from” u0, whereas in [20]

every other agent has a path leading “to” u0 . This is because in this paper we try to

interpret the associated graph as an information flow chart. Precisely, the arc from uj

to ui means that uj sends some information to ui; i.e., the i-th agent is influenced by

the state of the j-th agent. Throughout this paper, we will adopt this point of view to

interpret ψij .

2. Note that the hierarchy inside the group {u1, u2, . . . , uN} is dropped. As a natural

example for an RL flock, consider a large flock of flying birds or a herd of moving cattle

following a leader, where some individuals may be so close to others that they can see and

influence each other. Obviously, the hierarchy structure may fail to work in this situation.

However, this flock is indeed under RL. It is also easy to see that the HL flock is a special

case of the RL flock. Actually, the RL structure is the most general case among flocks

with a single “leadership”. The adjacency matrix of an HL flock is triangular, but the

adjacency matrix of an RL flock is not necessarily triangular or symmetric. Thus the

previous methods based on self-bounding arguments, the Lyapunov functional approach

and the �2-energy method do not work for this RL case.
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Fig. 1. An example of RL topology with seven agents.

From Definition 2.1, the (N + 1) × (N + 1) adjacency matrix Ψ takes the form

Ψ =

⎛
⎜⎜⎜⎜⎜⎝

ψ00(x) 0 0 · · · 0

ψ10(x) ψ11(x) ψ12(x) · · · ψ1N (x)

ψ20(x) ψ21(x) ψ22(x) · · · ψ2N (x)

· · · · · · · · · . . . · · ·
ψN0(x) ψN1(x) ψN2(x) · · · ψNN (x)

⎞
⎟⎟⎟⎟⎟⎠ .

The first row has all entries ψ0j (j ≥ 1) equal to zero, because the global leader u0 cannot

be influenced by any other agents. For a given solution {(x(t), v(t))}, we write

ψij(t) := ψij(x(t)), di(t) :=

N∑
j=0,j �=i

ψij(t). (2.1)

Since every agent, except u0, is influenced by at least one agent, it is easy to see that

d0 = 0, di > 0, i = 1, . . . , N.

Note that the velocity of the global leader u0 is constant along the dynamics (1.1), i.e.,

v0(t) = v00, t > 0.

Thus, it is natural to consider deviations (fluctuations) from the state of the global leader

u0: For a given phase configuration {(xi, vi)}Ni=0, we set

x̂i := xi − x0, v̂i := vi − v0, i = 1, . . . , N,

x̂ := (x̂1, . . . , x̂N ), v̂ := (v̂1, . . . , v̂N ).
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Then by (1.1) we have

dx̂i

dt
=

dxi

dt
− dx0

dt
= vi − v0 = v̂i,

dv̂i
dt

=
dvi
dt

− dv0
dt

=
1

ε

N∑
j=0

ψij(vj − vi)

=
1

ε

N∑
j=0

ψij(v̂j − v̂i) =
1

ε

( N∑
j=1,j �=i

ψij v̂j −
N∑

j=0,j �=i

ψij v̂i

)
.

We now set

Lx̂(t) =

⎛
⎜⎜⎜⎝

d1(t) −ψ12(t) · · · −ψ1N (t)

−ψ21(t) d2(t) · · · −ψ2N (t)

· · · · · · . . . · · ·
−ψN1(t) −ψN2(t) · · · dN (t)

⎞
⎟⎟⎟⎠ ; (2.2)

then the system (1.1) can be rewritten as

dx̂

dt
= v̂,

dv̂

dt
= −1

ε
Lx̂(t)v̂, t > 0. (2.3)

The matrix Lx̂(t) is called the reduced Laplacian.

From now on, we will focus on the reduced system (2.3). In this case, to show the

asymptotic flocking of the agent system is equivalent to proving that:

sup
t>0

max
1≤i≤N

|x̂i(t)| < ∞, lim
t→∞

max
1≤i≤N

|v̂i(t)| = 0.

To study the behavior of the system (2.3), the time-dependent matrix Lx̂(t) will play a

key role as in the discrete-time system.

2.2. Hurwitz stability. In this part, we study the Hurwitz stability of a linear au-

tonomous system in R
N :

dy

dt
= Ay, t > 0, y(0) = y0, (2.4)

where A is the constant matrix. We now recall the definition of Hurwitz stability for the

system (2.4) as follows.

Definition 2.2. The coefficient matrix A ∈ MN×N (R) in (2.4) is Hurwitz stable if

and only if all eigenvalues of the matrix A have strictly negative real part.

Remark 2.2. It is clear that Hurwitz stability implies the global exponential stability

of the trivial equilibrium ye = 0.

In general, when the size of the matrix is sufficiently large, i.e., N 	 1, the calculation

of eigenvalues can be very demanding. Thus it is interesting to look for simpler criteria in

terms of elements in the coefficient matrix A. For some class of square non-negative ma-

trices, we provide a handy criterion for the Hurwitz stability. For this, we first introduce

a set of square matrices:

Σ0 := {A = (aij) ∈ MN×N (R) : aij ≥ 0 (i �= j) and
N∑
j=1

aij = aii + di ≤ 0}.
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Note that for A ∈ Σ0, aii < 0. On the other hand, for a given matrix A = (aij) ∈ Σ0,

we can define its associated directed graph G = (V , E) without self-loops:

V := {u1, u2, . . . , uN} and (uj , ui) ∈ E , (i �= j) ⇐⇒ aij �= 0.

We next partition the vertex set V into two subsets depending on the sign of row sums.

Definition 2.3. Let G = (V , E) be a directed graph associated with the matrix

A ∈ Σ0.

(1) the vertex ui is a negative-sum vertex ⇐⇒
N∑
j=1

aij < 0,

(2) the vertex ui is a zero-sum vertex ⇐⇒
N∑
j=1

aij = 0.

In [29] the authors studied non-negative matrices; i.e., all elements are non-negative

and characterize a class of matrices for which its associated discrete-time linear system

is asymptotically stable by describing the distribution of non-zero elements. Later, an

alternative characterization in the terminologies of graph theory, which seems to be much

simpler, was proposed in [30]. This idea plays a key role in the study of Cucker-Smale

flocking under RL in a discrete-time setting [20]. For the reader’s convenience, we briefly

review the definition of (sp) matrix, coined from “simple matrix” in [29, 30]. We set

S :=
{
A = (aij) ∈ MN×N (R) : aij ≥ 0,

N∑
j=1

aij ≤ 1
}
.

We associate a matrix A ∈ S with a weighted digraph with vertices u1, u2, . . . , uN such

that (uj , ui) ∈ E is a directed arc with the weight aij .

Definition 2.4 ([30]). Let A = (aij) ∈ S and (V , E) be the associated directed graph

with the matrix A.

(1) The vertex ui is called non-saturated (saturated) if and only if the i-row sum is

strictly less than 1 (exactly 1).

(2) The matrix A is an (sp) matrix if and only if every saturated vertex has a directed

path from a non-saturated vertex.

We may expect some analogue for the continuous-time systems (2.3) to work for

our analysis. For the continuous-time case (2.4), we have a criterion (Proposition 2.1)

to determine whether a matrix A ∈ Σ0 is Hurwitz stable or not. We would like to

acknowledge that the matrix of this kind has been shown to be non-singular, which

implies asymptotic stability, in different terminologies [18]. However, we prefer to give a

simple and different proof in terms of our jargons to make this paper self-contained and

more readable. We first give a lemma which characterizes the relationship between the

graph representation of A and its discretization.

Lemma 2.1. Let A = (aij) ∈ Σ0. Then there exists an h > 0 such that

(1) Id + hA ∈ S,

(2) the non-saturated vertices of Id+hA are the negative-sum vertices of A and vice

versa.
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Proof. Suppose that

A = (aij) ∈ Σ0, i.e., aij ≥ 0, i �= j,

N∑
j=1

aij ≤ 0.

Choose a small h > 0 such that

h <
1

maxi{|aii| + 1} ;

then the matrix Id + hA is a non-negative matrix and its row sums are dominated by 1,

i.e.,

Id + hA ∈ S.
Note that

N∑
j=1

aij < 0 ⇐⇒ 1 + h

N∑
j=1

aij < 1,

which immediately implies that the non-saturated vertices of Id + hA are exactly the

negative-sum vertices of A. �

Proposition 2.1. Let A = (aij) ∈ Σ0. Then A is Hurwitz stable if and only if each

zero-sum vertex has a directed path from a negative-sum vertex.

Proof. • (⇐=) Suppose that each zero-sum vertex has a directed path from a negative-

sum vertex. By Lemma 2.1, there exists h > 0 such that the matrix Id + hA is a

non-negative matrix. Observe the following implication:

Id + hA is an (sp) matrix,

⇐⇒ |1 + hλi(A)| < 1, i = 1, 2, . . . N,

=⇒ �(λi(A)) < 0, i = 1, 2, . . . N,

⇐⇒ A is Hurwitz stable,

where λi(A) denotes an eigenvalue of A. Therefore, to prove the Hurwitz stability of

A, it suffices to show that Id + hA is an (sp) matrix. On the other hand, it follows

from Lemma 2.1 that the non-saturated vertices of Id+hA are exactly the negative-sum

vertices of A. By Definition 2.4, we see that Id + hA is an (sp) matrix.

• (=⇒) Suppose A ∈ Σ0 has a zero-sum vertex which cannot be linked to any negative-

sum vertex. We use V∞ to denote the set of such vertices. Let us relabel the nodes set

{1, 2, . . . , N} such that V∞ = {N − (m− 1), . . . , N − 1, N︸ ︷︷ ︸
m

}. Then the matrix A can be

expressed in partitioned form as

A =

[
DN−m ∗

0 Dm

]
,

where Dk represents a square matrix of order k, 0 is an m × (N − m) matrix with

all elements being 0. Since the row sums of Dm are all 0, (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
m

)� is an

eigenvector associated to the eigenvalue 0. This means that A is not Hurwitz stable. �
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2.3. Description of main results. Recall that (x̂, v̂) satisfies

dx̂

dt
= v̂,

dv̂

dt
= −1

ε
Lx̂(t)v̂, (2.5)

subject to initial data:

(x̂i, v̂i)(0) = (x̂i0, v̂i0) ∈ R
2d, i = 1, . . . , N. (2.6)

Note that the matrix Lx̂(t) in (2.5) is defined by (2.2), and Lx̂(t) is applied to R
Nd

(instead of RN ) via the d-dimensions individually. The main result of this paper can be

summarized as follows.

Theorem 2.1. The limiting dynamics as ε → 0 for the reduced Cucker-Smale system

(2.5)-(2.6) under rooted leadership on 0 ≤ t ≤ 1 is given by

x̂i = x̂i0, v̂i = 0, i = 1, . . . , N.

Remark 2.3. 1. Since (x̂, v̂) represents the relative phase of particles 1, 2, . . . , N

relative to the global leader 0, Theorem 2.1 implies that the limiting dynamics as ε → 0

for system (2.5) is given by the constant translational motion:

vi(t) = v00, xi(t) = xi0 + v00t, i = 0, 1, . . . , N.

2. Theorem 2.1 asserts that in the limiting dynamics all particles attain a velocity

alignment; i.e., they form a flock and move with the leader’s velocity. Note that the

perturbation parameter ε going to zero means that the coupling strength which is inverse

of ε goes to infinity. Thus, the singular limit ε → 0 corresponds to the infinite coupling

strength limit.

3. In the proof of Theorem 2.1 we only require

ψij(x) > 0, ∀x,

if the information flow from uj to ui exists. In Cucker-Smale and many other works, it

is assumed to be

ψij(x) =
1

(1 + ‖xi − xj‖2)β
.

Under this particular choice, it is non-increasing about ‖xi − xj‖ and it has a positive

lower bound in the evolution. Therefore, in some sense, our assumption is less restrictive.

3. A large coupling limit. In this section, we study the continuous-time Cucker-

Smale type flocking model under RL by applying Tikhonov’s theory.

3.1. Review of Tikhonov’s theorem. For the reader’s convenience, we recall the classic

theorem on the singular perturbation limit due to Tikhonov [25]. Consider the slow-fast

dynamical system:

dyi
dt

= fi(y, z, t), i = 1, 2, . . . , n,

μj
dzj
dt

= Fj(y, z, t), j = 1, 2, . . . ,m,

(3.1)
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where y = (y1, . . . , yn), z = (z1, . . . , zm), and μj are small positive parameters depending

on a parameter μ in such a way that

lim
μ→0

μj(μ) = 0, lim
μ→0

μj+1

μj
= 0 or 1.

In the language of a singular perturbation theory, yi’s are slow variables and zi’s are fast

variables.

Theorem 3.1 (Tikhonov [25]). Suppose the following conditions hold.

(1) The degenerate system obtained by setting all μj = 0,

dyi
dt

= fi(y, z, t), Fj(y, z, t) = 0, (3.2)

has continuous solutions.

(2) The roots zj = φj(y, t) of Fj(y, z, t) = 0 have continuous first partial derivatives

and are exponentially asymptotically stable for the fast system

dzj
dt

= Fj(y, z, t), (3.3)

where we treat y as a constant.

Then as μ → 0, the solutions of (3.1) tend to the corresponding solutions of the degen-

erate system (3.2) with the initial data (y0i , z
0
j , t

0), and this convergence is uniform in a

closed interval [t1, T∗] for any t1 > t0 and T∗ > t1.

3.2. Large coupling limit. We recall the reduced C-S system (2.5) as follows:

dx̂

dt
= v̂, ε

dv̂

dt
= −Lx̂(t)v̂, (3.4)

and consider its fast system:
dv̂

dt
= −Lx̂v̂. (3.5)

Next we use Proposition 2.1 to study the asymptotic behavior of the fast system (3.5)

where x̂ is frozen at some fixed point x̂f .

Lemma 3.1. The trivial equilibrium v̂e = 0 to fast system (3.5) is globally exponentially

asymptotically stable.

Proof. We recall that Lx̂(t) is given by (2.1)-(2.2), which implies −Lx̂f
∈ Σ0. To prove

the desired result it suffices to show that −Lx̂f
is Hurwitz stable. First, by (2.1)-(2.2)

we see that ui is a negative-sum vertex in the directed graph of −Lx̂f
if and only if the

agent ui is directly led by u0. Actually, if ui is directly led by u0, then ψi0(x̂f ) > 0 and

thus
N∑
j=1

(−Lx̂f
)ij = −di(x̂f ) +

N∑
j=1,j �=i

ψij(x̂f ) = −ψi0(x̂f ) < 0,

and vice versa. Second, we recall the definition of an RL flock, which declares that

every other agent has a directed path from u0. This certainly means that every other

agent either has a path from some agent directly led by u0 or it is directly led by u0.

Combining the two observations above, we see that in the directed graph of −Lx̂f
, every
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zero-sum vertex has a directed path from a negative-sum vertex. By Proposition 2.1, it

immediately follows that −Lx̂f
is Hurwitz stable. �

Proof of Theorem 2.1. Note that the solutions for the degenerate system

dx̂

dt
= v̂, −Lx̂(t)v̂ = 0,

are exactly

x̂i = x̂i0, v̂i = 0, i = 1, . . . , N.

We observe that the conditions of Theorem 3.1 are true for (3.4). By applying Theo-

rem 3.1 we immediately obtain the desired result in Theorem 2.1. �
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(a) Spatial configuration x
i
(0) at t = 0 (b) Velocity configuration v

i
(0) at t = 0

(c) Spatial configuration x
i
(2) at t = 2 for ε = 0.05 (d) Velocity configuration v

i
(2) at t = 2 for ε = 0.05

Fig. 2. Spatial and velocity configurations at t = 0, 2 for ε = 0.05
and 127 agents. The spatial position and velocity of the root agent
are denoted by a red cross. (Color available online.)

3.3. Numerical simulations. In this part, we present several numerical simulations

based on the 4th-order Runge Kutta method to illustrate the contents of Theorem 2.1
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In Figure 2 (a)-(d), we see that for ε = 0.05, the initial spatial configuration at time

t = 2 is pretty much the same as spatial configuration at t = 0. In contrast, the velocity

configuration at time t = 2 almost shrinks to zero.

(a) Decay of ‖v‖∞ at ε = 10ˆ (b) Decay of ‖v‖∞ at ε = 1ˆ

(c) Decay of ‖v‖∞ at ε = 0.1ˆ (d) Decay of ‖v‖∞ at ε = 0.05ˆ

0 0.5 1 1.5 2
0
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0.9

time
0 0.5 1 1.5 2

0

0.3

0.6

0.9

time

‖v̂‖∞‖v̂‖∞

‖v̂‖∞ ‖v̂‖∞

0 0.5 1 1.5 2
0

0.3

0.6

0.9

time
0 0.5 1 1.5 2

0

0.3

0.6

0.9

time

Fig. 3. Evolution of ‖v̂‖∞ at ε = 10, 1, 0.1, 0.05.

For numerical simulations, we take 127 agents and use the following parameters and

ansatz for the communication weight:

d = 2, ψij(x) =
χij

(1 + |xj − xi|2)
1
4

, χij =

{
1, if j ∈ L(i),

0, otherwise,

where the connectivity χij follows the RL topology given by Figure 1, which can obvi-

ously be extended for 127 agents instead of 7 agents. The initial spatial and velocity

configurations are randomly chosen from the uniform box [0, 10]2 and [0, 1]2 respectively

as in Figure 2 (a) and (b). With these sets of initial data, we perform four numerical
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simulations with different ε:

ε = 10, 1, 10−1, 5 × 10−2

during the time-interval [0, 2].

In Figure 3 (a)-(d), we see that the �∞-norms of the velocity configurations at time

t = 2 show the relaxation to zero as ε → 0. This perfectly coincides with the analytical

result in Theorem 2.1.

4. Conclusion. In this paper, we presented the flocking behavior of the Cucker-

Smale type model under rooted leadership in a large coupling limit. Since the symmetry

and hierarchy are absent in our situation, we could not get an effective estimate for the

decay of the velocity mismatch from that of the global leader in finite coupling. However,

in the large coupling limit as ε → 0, we can invoke Tikhonov’s theory for the slow-fast

dynamical systems. The advantage of introducing the fast-slow subsystems is that the

fast equation itself becomes a time-invariant linear system which can be shown to be

asymptotically stable. By the direct application of Tikhonov’s theory, we obtain the

limiting flocking behavior for the perturbed systems.
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