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ABSTRACT In recent years, with the development of the unmanned aerial vehicle (UAV) and battlefield

environments, the UAV swarm has attracted significant research attention. To solve problems regarding

poor state consensus among swarm individuals due to a small number of individuals easily falling into

local minima upon encountering an obstacle, this paper proposes a flocking obstacle avoidance algorithm

with local interaction of obstacle information. To make the UAV swarm follow the desired trajectory with

better state consensus, we improved the flocking control algorithm of agents according to the characteristics

and requirements of the UAV swarm. The obstacle avoidance algorithm for the UAV swarm is based on

Olfati-Saber’s multi-agent obstacle avoidance algorithm. The proposed method has individuals in the swarm

communicate obstacle information with their neighbors, and we present a simple analysis of this method.

The method improves the cooperative obstacle avoidance capability of the flocking control algorithm. The

simulation results showed that the proposed flocking control algorithm provides a better tracking effect and

consensus for the UAV swarm when avoiding obstacles.

INDEX TERMS Fixed-wing UAV swarm, multi-agent system, flocking control, cooperative obstacle

avoidance, consensus, local information communication.

I. INTRODUCTION

Flocking is a common phenomenon in nature that has

gained significant attention in various research fields [1]–[7].

In 1986, Reynolds [8] introduced three heuristic rules of

flocking control: cohesion, separation, and alignment. Ever

since, this classical model has often been applied to flocking

control of multi-agents.

In recent years, the unmanned aerial vehicle (UAV), as the

embodiment of the agent, has attracted much attention due

to increasingly high autonomy levels and the application

value of the UAV in military and civilian fields [9]–[15].

According to Lanchester’s laws, the number of combat units

is a decisive factor for victory or defeat in warfare and is more

important than the unit’s capability. Thus, the application of

UAV swarms in warfare situations may affect battlefield con-

ditions. The cooperative UAV swarm can accomplish highly

difficult and dangerous tasks, which has roused the interest

of many researchers. Towards these advantages, the issue
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of flocking obstacle avoidance is a major focus in flocking

control.

Qiu and Duan [16] presented a UAV distributed flock-

ing control algorithm for obstacle environments based on a

pigeon flocking model, which used pigeon behavior where

flocks switch between hierarchical and egalitarian inter-

action modes at different flight phases. Olfati-Saber [5]

proposed an additional feedback term to track a virtual

leader, which is necessary to avoid fragmentation. The author

also presented a flocking algorithm with obstacle avoid-

ance capability by creating a virtual agent on the bound-

ary of each nearby obstacle. Su et al. [6] considered a

case where only a small fraction of agents has informa-

tion about the virtual leader with a constant velocity and

a varying velocity. Kownacki and Ołdziej [17] presented

a novel approach to swarm control of small fixed-wing

UAVs through cohesion and repulsion behaviors combined

with leadership. Zhang and Duan [18] presented a 3D flock-

ing control algorithm for tracking a desired trajectory with

obstacle avoidance capability using the improved artificial

potential field method. Li et al. [19] studied the multi-agent
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system coordination obstacle avoidance algorithm using a

variable structure method, wherein only some agents have

dynamic information on obstacles and each agent has a local

interaction. Sakai et al. [20] proposed a flocking algorithm

that does not distinguish between a robot and an obstacle,

which was constructed by modifying Olfati-Saber’s con-

trol law [5]. Iovino et al. [21] presented a real quad-rotor

UAV experiment using a distributed flocking algorithm with

obstacle avoidance capability, where the obstacle avoidance

algorithm was derived from [5]. Wang et al. [22] used

the artificial potential function combined with the stream

function to asymptotically reach the ideal stable flocking

motion, which not only keeps the dynamic multi-agent sys-

tem constantly network-connected, but also enables all agents

to avoid obstacles without being caught in local minima.

Luo and Duan [23] presented a distributed control framework

based on homing pigeon hierarchy strategies to solve the

problem of flocking. The algorithms were generally imple-

mented to achieve stable performance by controlling the

local position and velocity of each UAV. Vries and Sub-

barao [24] used a potential function to generate steering

commands to control a swarm of quad-rotors. A flocking

obstacle avoidance algorithm has been proposed using a com-

bination of velocity consensus and local artificial potential

field [25].

The flocking obstacle avoidance algorithms used in the

above papers did not consider the interaction of obstacle

information within the swarm and thus could not use that

information to avoid obstacles to the maximum extent. This

results in a poor consensus within the swarm when avoiding

obstacles. Therefore, to solve this problem, we propose a

shared obstacle information algorithm. The UAV flocking

control algorithm with obstacle avoidance capability pro-

posed in this paper is based on Saber’s agent flocking control

algorithm and considers some of the dynamic characteristics

of the UAV and altitude consistency for UAVs. Some of

the disadvantages of the agent flocking obstacle avoidance

algorithm described in Saber’s paper have been discussed

in [21]. The method tends to result in oscillations and indi-

viduals falling into local minima when UAVs move near

obstacles. In this paper, we propose an algorithm for the

interaction and sharing of obstacle information between indi-

viduals in the UAV swarm so that the swarm can pass through

obstacles steadily. A simple analysis of the algorithm is also

presented.

The rest of this paper is organized as follows. Section II

presents a flocking control algorithm of agents with obstacle

avoidance capability and describes a simplified UAV model

with a constraint condition and the UAV flocking control

algorithm based on flocking control of agents. The proposed

obstacle avoidance algorithm with local communication of

obstacle information and algorithm analyses are detailed

in Section III. A comparison of simulations is conducted

in Section IV, and our concluding remarks are drawn in

Section V.

II. FLOCKING CONTROL ALGORITHM

The dynamics of agents are modeled as second-order integra-

tors in a three-dimensional Euclidean space as follows:
{

q̇i = pi

ṗi = ui,
i = 1, 2, ...N , (1)

where qi, pi, and ui ∈ Rn denote the position, velocity, and

control input vectors of the i-th agent, respectively. Each

agent can only communicate with its neighbors within its

communications region, and the neighboring set at time t is

denoted as follows:

Nαi (t) = {j : ||qi − qj||r, j = 1, 2, ...,N , j 6= i, (2)

where ‖·‖ is the Euclidean distance and r is the maximum

interaction radius or maximum critical distance. The desired

geometric model of the swarm requires that each agent be

equally distanced from all of its neighbors and satisfy the

following constraints:
∥

∥qi − qj
∥

∥ = d, ∀i, j ∈ Ni (t), (3)

where d is a positive constant indicating the minimum allow-

able distance or minimum critical distance between every pair

of neighboring agents, and d ≤ r .

In a multi-obstacle environment, the input of each agent

in the multi-agent control algorithm consists of the following

three components [5]:

ui = uαi + u
β

i + u
γ

i , (4)

where α, β, and γ denote three kinds of agents used directly

from the Olfati-Saber thesis. The α-agent denotes an arbitrary

agent in the swarm, and the β-agent is generated from the pro-

jection of neighboring α-agents on the surface of the obstacle

to represent the physical obstacle avoided. The γ -agent is

used to construct the navigational feedback and represents the

target to be tracked. uαi denotes the (α, α) interaction terms,

u
β
i denotes the (α, β) interaction terms, and u

γ

i is a distributed

navigational feedback. The definitions of uαi , u
β
i , and u

γ

i are

as follows:

uαi = −cαq

∑

j∈Nαi

ρH (qi) φα (qi)− cαp

∑

j∈Nαi

aij (qi)
(

pi − pj
)

,

(5)

u
β
i = −cβq

∑

k∈N
β
i

bi,k (qi) φβ (qi)−c
β
p

∑

k∈N
β
i

bi,k (qi)
(

pi−p̂i,k
)

,

(6)

u
γ

i = −cγq σ1
(

qi − qγ
)

− cγp
(

pi − pγ
)

− c
γ

hQh, (7)

uαi causes the agents to gather together and consists of two

components. The first component sets the distance between

agents to the desired distance. The second component sets

the velocity to be consistent with its neighbors. The specific

expression for the first component is as follows:

φα (qi) =
Dij

√

1 + ǫα
∥

∥Dij
∥

∥

2
, (8)
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Dij =
(

qi − qj
)

−
qi − qj
∥

∥qi − qj
∥

∥

∗ d, (9)

ρH (qi) =
(
∥

∥qi − qj
∥

∥− d)
2

H
+ 1, (10)

whereH , ǫα, c
α
q , and c

α
p are normal constants. The value ofH

is typically greater than d . It is important to note that fragmen-

tation is a pitfall of flocking by the Olfati-Saber algorithm.

The purpose of using ρH (qi) is to prevent fragmentation. The

value of ρH (qi) increases rapidly when the distance between

agents grows larger.

The second component of uαi is aij (qi) = ρh

(

‖qi−qj‖
r

,

hα

)

∈ [0, 1] , j 6= i.ρh (z) is a bump function defined as

follows [1]:

ρh (z) =















1, z ∈ [0, h)

1

2

[

1 + cos

(

π
(z-h)

(1 − h)

)]

, z ∈ [h, 1]

0, otherwise

(11)

The purpose of u
γ

i is to allow the agents to track the

virtual leader or the desired trajectory. It consists of three

components. c
γ
q , c

γ
p , and c

γ

h are normal constants. qγ and

pγ denote the position and velocity of the virtual leader,

respectively. The first and third components are denoted as

follows [5], [16]:

σ1
(

qi − qγ
)

=
qi − qγ

√

1 + ǫγ
∥

∥qi − qγ
∥

∥

2
, (12)

Qh =





0

0

qhi



−





0

0

qhγ



. (13)

The purpose of Qh is to minimize the altitude differences

between agents and to set the altitude as close as possible to

that of the virtual leader. qhi and qhγ denote the altitudes of

agents and virtual leader, respectively.

The purpose of u
β
i is to avoid obstacles. Its principle is

as follows: we construct a virtual agent with position and

velocity on the surface of the obstacle within the detectable

range of the agent in the swarm, and denote the virtual agent

as the β-agent. The method of construction is as follows [5]:

i) For an obstacle with a hyper-plane boundary that has a

unit normal ak and passes through the point yk , the position

and velocity of the β-agent are determined by

q̂i,k = Pqi + (I-P) yk , p̂i,k = Ppi, (14)

where P = I − aka
T
k is a projection matrix.

ii) For a spherical obstacle with radius Rk centered at yk ,

the position and velocity of the β-agent are given by

q̂i,k = µqi + (I − µ) yk , p̂i,k = µPpi, (15)

where µ = Rk/ ‖qi − yk‖ , ak = (qi − yk )/ ‖qi − yk‖, and

P = I − aka
T
k .

According to the above method, a virtual β-agent with

corresponding velocity and position is constructed, as shown

FIGURE 1. Position and velocity of the β-agent.

in Figure 1. The ultimate goal is to keep individuals in the

swarm consistent with the virtual β-agent while maintaining

a certain distance.

The role of u
β
i is to make agents pass around obstacles.

c
β
q and c

β
p are positive constants, and u

β
i is defined as follows:

φβ (qi) =
qi − q̂i,k

√

1 + ǫβ
∥

∥qi − q̂i,k
∥

∥

2
− 1, (16)

bi,k (qi) = ρh

(
∥

∥qi − q̂i,k
∥

∥

rO
, hβ

)

, (17)

where ǫβ is a positive constant and rO is the UAV’s maximum

detection distance to the obstacle.

A. UAV FLOCKING CONTROL BASED ON FLOCKING

ALGORITHM OF AGENTS

Usually, we consider the multi-UAV system to be a multi-

agent system. However, we must acknowledge that the

motion of the UAV ismuchmore complicated. The simplified

kinematic model of a fixed-wing UAV is as follows [27]:

ẋi = Vicos (ψi),

ẏi = Visin (ψi),

V̇i =
1

τν

(

V c
i − Vi

)

,

ψ̈i = −
1

τψ̇
ψ̇i +

1

τψ

(

ψc
i − ψi

)

,

ḧi = −
1

τḣ
ḣi +

1

τh

(

hCi − hi

)

, (18)

where [xi, yi, hi],Vi, ψi, and ḣi denote the inertial position,

forward velocity, heading angle, and speed of altitude of the

i-th UAV, respectively. V c
i , ψ

c
i , and hCi are the command

inputs for velocity, heading angle, and altitude to the cor-

responding autopilots, respectively. τψ , τν, and (τ ḣ, τh) are

the positive time constants for the heading angle, velocity,

and altitude response with respect to the corresponding com-

mand inputs, respectively. These four parameters are positive

constants that depend on the implementation of the autopilot

and the status prediction configuration. Referring to [27],

the specific values will be introduced later.

Considering the constraints of a real UAV model, based on

the above model, velocity limits, acceleration limits, heading

17800 VOLUME 7, 2019
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angle limits, climbing velocity limits, and climbing accel-

eration limits were introduced. The limiting model is as

follows [26]:

vmin ≤ Vi ≤ vmax ,

amin ≤ V̇i = a ≤ amax ,

ωmin ≤ ψ̇i = ω ≤ ωmax ,

αmin ≤ ψ̈i ≤ αmax ,

λglide ≤ ḣi ≤ λclimb,

ahmin ≤ ḧi ≤ ahmax . (19)

It should be noted that, if the heading angle equation in

the simplified kinematics model of the UAV is regarded as a

first-order equation, the roll angle cannot be initialized. This

is because, according to the coordinated turning condition,

the roll angle is calculated from the velocity and heading

angular velocity. The pitch angle is calculated with the climb-

ing rate and velocity, as shown below [27].

φi = atan

(

Vi ∗
ψ̇i

g

)

, (20)

θi = asin(ḣi/Vi). (21)

To apply the agent swarm algorithm to the UAV swarm,

we must establish the relationship between the UAV motion

model and the agentmotionmodel, referring to previouswork

by Zhang and Duan [18]. Regarding the UAV swarm system

movement in three-dimensional space, the position, velocity,

and control vectors are given by qi = [xi, yi, hi]
T , pi =

[Vicosψi,Visinψi, ḣi]
T
, and ui = [ux,i, uy,i, uh,i]

T , respec-

tively. Using ṗi = ui, we obtain:

V̇i = ux,icosψi + uy,isinψi, (22)

ψ̇i =
uy,icosψi − ux,isinψi

Vi
. (23)

Substituting equations (22) and (23) into the UAV simpli-

fied model (19) yields:

V c
i = τv

(

ux,icosψi + uy,isinψi
)

+ Vi, (24)

ψc
i =

τψ

τψ̇V i

(

uy,icosψi − ux,isinψi
)

+ τψ ψ̈i + ψi, (25)

hci = hi +
τh

τḣ
ḣi + τhuh,i. (26)

III. FLOCKING OBSTACLE AVOIDANCE CONTROL

ALGORITHM WITH SHARED OBSTACLE

INFORMATION CAPABILITY

The obstacle avoidance algorithm was introduced in

Section II, but note that, as stated in the paper by

Iovino et al. [21], multiple UAVs may fall into local optima

or decision-making dilemmaswhen using this obstacle avoid-

ance algorithm, as described below.

As depicted in Figure 2, three UAVs with the same velocity

encounter an obstacle. The projective value of velocity of

UAV i on the obstacle surface is 0, and the projection of the

velocity of UAV j and m on the surface of the obstacle have

FIGURE 2. Multiple UAVs encountering an obstacle.

the same value with different directions. According to the

algorithm in Section II for calculating ui, especiallyµ
β
i , it can

be found that the velocity value of UAV i is affected by obsta-

cles, which gradually decreases, but the direction of UAV i’s

velocity is not affected due to p̂i,k = 0. The velocity direction

and values of UAV j and p are affected to the same degree.

This ultimately leads to UAV i potentially colliding with the

obstacle and UAV j and p bypassing the obstacle separately.

Of course, in practice, the projection of the speed of UAV i

on the obstacle will not always be 0 during approach due to

various disturbances, which means that UAV i can bypass the

obstacle. However, due to the limitations of the algorithm,

in the initial stage of the obstacle entering the UAV i detection

range, the speed will decrease rapidly, while the direction

cannot be changed rapidly, which may eventually cause the

distance between UAV i and the obstacle to exceed the mini-

mum allowable distance. To summarize, UAV i cannot jump

out of the local optimum quickly, which causes the swarm

to have poor consensus. Therefore, to solve this problem,

we propose a shared obstacle information algorithm.

When the distance between UAV i and the obstacle is less

than the maximum detection distance rO, UAV i not only

needs to share its own position and speed information with

the surrounding UAVs, but it also needs to share the obstacle

information, (q̂i,k , p̂i,k ), that it has detected. Of course, when

UAV i receives the location and speed information of the

surrounding UAVs, it also receives the obstacle information

shared by other UAVs. When UAV i receives the obstacle

information shared by multi-UAVs, only one pair of obstacle

information (q̂τ,k , p̂τ,k ) is selected. The pair is selected based

on the maximum speed value, max(
∥

∥p̂τ,k
∥

∥). When the speed

values of multiple pairs of obstacle information are equal,

the pair for which q̂τ,k and qi have the minimum distance,

min(
∥

∥qi − q̂τ,k
∥

∥), is selected. When the velocity and distance

values of multiple pairs of obstacle information are equal,

a pair is selected randomly. How does UAV i use the selected

obstacles information? There is an intuitive awareness that

UAV i is farther away from q̂τ,k in position and closer to p̂τ,k
in speed. Thus, we obtain the following equation:

u
β,τ
i = −cβ,τq





qi − q̂τ,k
√

1 + ǫβ,τ
∥

∥qi − q̂τ,k
∥

∥

2
− 1





− cβ,τp
(

pi − p̂τ,k
)

. (27)
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FIGURE 3. Multiple UAVs encountering an obstacle.

When the swarm encounters an obstacle, the input of the

UAVs can be one of four cases:

ui = cαu
α
i + cγ u

γ

i , (28)

ui = cαu
α
i + cβu

β
i + cγ u

γ

i , (29)

ui = cαu
α
i + cγ u

γ

i + cτu
β,τ
i , (30)

ui = cαu
α
i + cβu

β
i + cγ u

γ

i + cτu
β,τ
i . (31)

We use Figure 3 to illustrate equations (28)–(31).

The distance relationship between UAVs in Figure 3 is as

follows:

d1O< rO, d4O<rO, d5O<rO, d2O > rO, d3O > rO

d45< r, d14 > r, d12<r, d23<r, d13 > r,

where d1O denotes the distance betweenUAV 1 and the obsta-

cle, d45 denotes the distance between UAV 4 and UAV 5, and

so on. Thus, the input for UAV 4 and UAV 5 is equation (31),

the input for UAV 1 is equation (29), the input for UAV 2 is

equation (30), and the input for UAV 3 is equation (28).

A. ALGORITHMS ANALYSIS

In the process of UAV swarm flight, the normal algorithm

also requires interactive data, whereas the proposed algorithm

only adds obstacle information to the data for obstacles that

require interaction. The proposed algorithm also needs to

filter the received obstacle information and compute u
β,τ
i .

Therefore, the complexity of the proposed algorithm is not

greatly increased compared to the normal algorithm.

We use some visualized expressions to illustrate the supe-

riority of the proposed algorithm. Figure 4-a(1) is the case of

the normal algorithm and 4-a(2) is the case of the proposed

algorithm. In Figure 4-a(1), the distance between UAVs and

obstacles is less than rO, the distance between UAV i and

j is d , and their speed is the same. Thus, uαi = 0 and

uαj = 0. The velocity direction of UAV i is perpendicular to

the obstacle, so p̂i,k = 0. From the above assumptions, the

input of UAV i and j are obtained as follows:

ui = cβu
β
i + cγ u

γ

i , (32)

uj = cβu
β
j + cγ u

γ

j . (33)

In Figure 4-a(2), UAVs and obstacles have the same

assumptions as in Figure 4-a(1), but because UAVs share

obstacle information with each other, the input of UAVm and

UAV n are obtained as follows:

um = cβu
β
m + cγ u

γ
m + cτu

β,τ
m , (34)

un = cβu
β
n + cγ u

γ
n + cτu

β,τ
n . (35)

The obstacle avoidance terms in equations (32)–(35) are

composed of two parts, which can be expressed as u
β
i = u

β
i,q+

u
β
i,p. u

β
i,q keeps the UAV away from q̂.,k , and u

β
i,p causes the

UAV to approach p̂.,k . Therefore, equations (32)–(35) can be

expressed as follows:

ui = cβ

(

u
β
i,q + u

β
i,p

)

+ cγ u
γ

i , (36)

uj = cβ

(

u
β
j,q + u

β
j,p

)

+ cγ u
γ

j , (37)

um = cβ

(

uβm,q+u
β
m,p

)

+cτ

(

uβ,τm,q+u
β,τ
m,p

)

+ cγ u
γ
m, (38)

FIGURE 4. Multiple UAVs encountering an obstacle using a(1) the normal algorithm and a(2) the proposed algorithm.
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TABLE 1. Parameters of the simplified kinematic model of the UAV.

un = cβ

(

uβn,q + uβn,p

)

+ cτ

(

uβ,τn,q + uβ,τn,p

)

+ cγ u
γ
n . (39)

These obstacle avoidance terms are shown as solid red

arrows in Figure 4, but u
γ

i is not shown because the effect

of u
γ

i for the UAV is the same in both cases. Obstacles have

a greater impact on UAVs m and n than on UAVs i and j.

UAVs m and n obtain more information about obstacles. The

special case where the velocity directions of UAVs i and n are

perpendicular to the surface of obstacles provides a clearer

understanding. At this special moment, obstacles cause the

velocity value of UAV i to decrease, but the direction of

UAV i is not affected. However, for UAV n, the obstacle

affects both its value and direction. As demonstrated by the

above analysis and explanation, the proposed algorithm has a

better obstacles avoidance effect than the normal algorithm.

The obstacle information detected by each UAV will not

only act on itself but also help the adjacent UAVs acquire

more comprehensive information about obstacles and avoid

obstacles more effectively.

IV. NUMERICAL SIMULATIONS

In this section, we detail the simulations that were performed

to verify the validity of the algorithm. All algorithms were

implemented using a 3.2 GHz CPU and 8 GB memory per-

sonal computer running Windows 10 and Matlab R2016b.

A UAV swarm of 7 UAVs (N = 7) was considered, assuming

the same UAV model for all units, which adheres to the same

UAV kinematic simplification model as shown in Table 1.

According to the UAV model in [27], we used the following

parameter values in our UAV model: τν = 0.2, τψ̇ = 0.6250,

τψ = 0.0156, τḣ = 0.7072, and τh = 1 [27]. In addition,

according to the actual flight characteristics of the UAV,

velocity, acceleration, etc. need to be restricted. The specific

data are given in Table 1.

We provided seven initial parameter values for each of the

7 UAVs. The seven parameter values are position, velocity,

heading angle, heading angular velocity and speed of altitude,

namely [xi, yi, hi,Vi, ψi, ψ̇i, ḣi], where the initial roll angle is

determined according to the velocity and the heading angular

velocity, and the velocity and initial velocity determine the

initial pitch angle. Therefore, the seven initial parameters

TABLE 2. Parameters of the flocking algorithms.

determine the state of the UAV in space described by position,

velocity, angle, and angular velocity. The seven initial states,

once selected, are applied to all the simulations. The values

are selected such that the horizontal position is uniformly

distributed in the interval [−50, 50] × [−70, 70], the altitude

is uniformly distributed in the interval [80, 120], the velocity

is uniformly distributed in the interval [15, 30], the initial

value of the heading angle is 0, the heading angular velocity

is uniformly distributed in the interval [−π /2, π /2], and the

climbing velocity is in the interval [−3, 3]. The step size in

all simulations is 1t = 0.1 s.

The above parameters and initial state values are for a sin-

gle UAV. We must also set parameters and states for the UAV

swarm, as shown in Table 2. Some of the data in Table 1 and

Table 2 are from [5], [18], [26], and [27], and some are from

repetitive simulation experiments.

A. FLOCKING AVOIDING OBSTACLES ALGORITHM

SIMULATION

In this section, we mainly simulate comparisons of the obsta-

cle avoidance algorithms described in Sections II and III, i.e.,

the normal method and the proposed method. The obstacle

avoidance algorithm in Section II is based on Saber’s thesis,

and Section III is an improvement on Saber’s obstacle avoid-

ance algorithm. The simulation environment has the UAV

swarm follow a desired path from [0, 0, 100] to [0, 1500, 100].

The velocity of the swarm is 25 m/s, and the position of the

spherical obstacle is [0, 600, 100], whose radius is 50 m.

Figure 5 shows the simulation results for the two

algorithms. Series b corresponds to the obstacle avoid-

ance flocking algorithm, in which UAVs do not share

obstacle information, with set parameters c
β
q = 17.5 and

c
β
p = 17.5. Series c corresponds to the obstacle avoid-

ance algorithm with shared obstacle information, which was

described in Section III, with set parameters c
β
q = 13 and

c
β
p = 13. These parameters were obtained through repetitive

simulation experiments. The main purpose is to make the
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FIGURE 5. Comparison of two kinds of flocking algorithms with obstacle avoidance capability. These figures show the simulation
curves of trajectory, velocity, altitude, speed of altitude, heading angle, and distance between each UAV and the obstacle from
t = 15 s. b(1-6) are the results using the normal flocking algorithm with obstacle avoidance. c(1-6) are the results using the
proposed flocking algorithm with shared obstacle information.
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FIGURE 5. (Continued.) Comparison of two kinds of flocking algorithms with obstacle avoidance capability. These figures show the
simulation curves of trajectory, velocity, altitude, speed of altitude, heading angle, and distance between each UAV and the obstacle from
t = 15 s. b(1-6) are the results using the normal flocking algorithm with obstacle avoidance. c(1-6) are the results using the proposed
flocking algorithm with shared obstacle information.

results of the two algorithms roughly the same, especially

the nearest distance between the UAV and the obstacle,

as shown in Figures 5-b(6) and 5-c(6). Comparing curves in

Figure 5 intuitively, the proposed algorithm has better con-

sistency, especially in speed, speed of altitude, and heading

angle. This shows that the proposed algorithm enables UAVs

in the swarm to rapidly escape from local minima after

encountering obstacles and to maintain consensus with the

surrounding UAVs.

Comparing Figures 5-b(1) and 5-c(1), it is clear that the

proposed algorithm has a smoother flight path when avoiding

the obstacle, especially when flying away from the obstacle.

A comparison of velocity curves in Figures 5-b(2) and 5-

c(2) shows the difference in UAV velocities for the normal

algorithm and the proposed algorithm. For a clearer compar-

ison of the speed differences between UAVs in the swarm,

we plotted the maximum and minimum difference curves of

UAVs in the two algorithms, as shown in Figures 6-d(1) and

6-e(1), which show the differences between the maximum

and the minimum velocities of UAVs from t = 15 s to

t = 50 s. From Figure 6, we see that the peak value of the

velocity difference in the normal algorithm reaches approx-

imately 6 m/s after encountering the obstacle, whereas the

peak value of velocity difference in the proposed algorithm

is approximately 1 m/s, and thus the effect of improvement

is obvious. In Figures 6-d(1) and 6-e(1), the speed difference

curves have a minimum value of 0 after approximately

t = 20 s because the UAVs fly around the obstacles at a

minimum speed, as shown in Figures 5-b(2) and 5-c(2).

Figures 5-b(4) vs. 5-c(4) and 5-b(5) vs. 5c(5) show that

the proposed algorithm has a better consensus on the speed

of altitude and heading angle, especially when flying away

from the obstacle. To specifically evaluate the performance

of the speed of altitude and heading angle, we calculate the

first-order absolute center moment and its sum separately as

follows.

For ḣ:

eḣ(t) =
1

N

∑N

i=1

∣

∣

∣
ḣi(t) − ḣ(t)

∣

∣

∣
,

ḣ(t) =
1

N

∑N

i=1
ḣi (t),

Eḣ =
∑T

t=0
eḣ (t) . (40)

For ψ :

eψ (t) =
1

N

∑N

i=1

∣

∣ψi(t) − ψ(t)
∣

∣ ,

ψ(t) =
1

N

∑N

i=1
ψi (t),

Eψ =
∑T

t=0
eψ (t). (41)
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FIGURE 6. Comparison of differences between maximum and minimum velocities of UAVs in the swarm based on two algorithms
controlling the UAV swarm while meeting the obstacle. d(1) is the results using the normal flocking algorithm with obstacle
avoidance. e(1) is the results using the proposed flocking algorithm with obstacle avoidance.

FIGURE 7. Comparison of the first-order absolute center moment of speed of altitude (d(2)) and heading angle (e(2)) of the UAV
swarms controlled by two algorithms. Red curves are the results using the proposed flocking algorithm, and blue curves are the
results using the normal flocking algorithm.

Figure 7 and Table 3 show the values of e and E

acquired using the two algorithms. The proposed algorithm

has smaller values of eḣ(t) and eψ (t). Eḣ of the proposed

algorithm improved by 28.60% ((178.16–127.21)/178.16 •

100%) compared with the normal algorithm. Eψ of the pro-

posed algorithm improved by 26.89% compared with the

normal algorithm. This shows that the proposed algorithm

allows the swarm a more gentle speed of altitude and heading

angle.

The speed of altitude has a direct effect on altitude.

The proposed algorithm, with a more stable altitude speed

performance, grants a better tracking performance for the

swarm’s altitude when avoiding the obstacle, as shown in

Figures 5-b(3) and 5-c(3).

The speed, speed of altitude, and heading angle were also

analyzed. A comparison of Figure 6 and Figure 7 shows that,

when the UAV swarm enters the obstacle range and leaves

the obstacle range, the UAV swarm controlled by the normal

algorithm makes large maneuvering changes, resulting in

TABLE 3. The sum of the first-order absolute center moment.

large speed differences, eḣ(t) and eψ (t). In the UAV swarm

controlled by the proposed algorithm, UAVs enter and leave

the obstacle range with smoother changes in speed, speed

of altitude, and heading angle. The reasons for this differ-

ence were explained in Section III. When the UAV swarm

controlled by the proposed algorithm has just entered the

obstacle range, some UAVs can detect obstacles and some

cannot. UAVs that can detect obstacles begin tomake obstacle

avoidance maneuvers, and the UAVs that cannot detect obsta-

cles are prepared for obstacle avoidance under the function

of u
β,τ
i , such as deceleration and attitude change, so that
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FIGURE 8. Comparison of distances between UAV 5 and other UAVs. f(1) is the results using the normal flocking algorithm with
obstacle avoidance. g(1) is the results using the proposed flocking algorithm with obstacle avoidance.

the swarm has better consistency. When the UAV swarm

controlled by the normal algorithm enters the obstacle range,

UAVs that can detect the obstacle make obstacle avoidance

maneuvers quickly, and UAVs that cannot detect the obstacle

do not prepare for obstacle avoidance, and thus the swarm

does not have good consistency.When the UAV swarm leaves

the obstacle, they show the same behaviors. UAVs that have

left the obstacle range in the UAV swarm controlled by the

proposed algorithm cannot accelerate rapidly under the func-

tion of u
β,τ
i , thus maintaining a good consistency with UAVs

within the obstacle range. Therefore, the proposed algorithm

allows the UAV swarm to complete the cooperative obstacle

avoidance with good consistency.

We compared the distance between UAVs in the two algo-

rithms during the obstacle avoidance process. In Figure 8,

we plotted the distance curves between UAV 5 and other

UAVs for the two algorithms. The proposed algorithm’s

distance curves are smoother. To illustrate this point more

clearly, we performed simple statistics on the rate of change

of distance using equation (42).

dist =
1

N − 1

∑N−1

i=1

∑end

t=τ

∣

∣

∣

∣

(dist i (t+1t)−dist i (t))

1t

∣

∣

∣

∣

.

(42)

From Figures 5-b(6) and 5-c(6), it can be seen that the UAV

swarm begins to detect the obstacle around t = 15 s. Prior to

this, the obstacle avoidance algorithm did not start its role.

Therefore, we start from t = 15 s to calculate the average

changes in the distance between UAV 5 and other UAVs. The

statistical results are shown in Table 4.

From Table 4, it can be seen that, after the swarm encoun-

ters an obstacle, the swarm controlled by the proposed algo-

rithm has a smaller rate of change for distance during obsta-

cle avoidance. dist of the proposed algorithm improves by

40.06% compared with the normal algorithm.

Through the above analysis, it can be found that the pro-

posed algorithm has better stability and consistency when

avoiding obstacles.

TABLE 4. The average change in distance between UAV 5 and other UAVs.

V. CONCLUSION

In this paper, we studied UAV swarm obstacle avoidance-

related issues. The proposed multi-agent flocking control

algorithm was applied to a UAV swarm, for which the UAV

kinematics model and UAV dynamic constraints were consid-

ered. We considered the following problems caused by obsta-

cle avoidance for UAV swarms: (1) when the UAV swarm

encounters an obstacle, the individual states of the UAVs

cannot be stable due to fluctuations in the distance between

UAVs and between UAVs and the obstacle; (2) individuals

in the swarm become trapped in local minima, resulting in

the swarm failing to pass obstacles or having poor consensus.

To solve these problems, we proposed a flocking obstacle

avoidance algorithm with shared obstacle information. The

overarching goal of the algorithm is to improve the normal

isolated and local obstacle avoidance algorithm to a global

obstacle avoidance algorithm.We improved the shortcomings

of the normal algorithm, in which it is easy to fall into local

minima and results in poor consensus, and our algorithm

ultimately improves the consensus of the UAV swarm while

avoiding obstacles. Two simulation scenarios were tested,

and the simulation results showed that our algorithm can

achieve better consensus when bypassing the obstacle.
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