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Technical Notes and Correspondence

Flocking in Fixed and Switching Networks

Herbert G. Tanner, Ali Jadbabaie, and George J. Pappas

Abstract—This note analyzes the stability properties of a group of mobile
agents that align their velocity vectors, and stabilize their inter-agent dis-
tances, using decentralized, nearest-neighbor interaction rules, exchanging
information over networks that change arbitrarily (no dwell time between
consecutive switches). These changes introduce discontinuities in the agent
control laws. To accommodate for arbitrary switching in the topology of the
network of agent interactions we employ nonsmooth analysis. The main re-
sult is that regardless of switching, convergence to a common velocity vector
and stabilization of inter-agent distances is still guaranteed as long as the
network remains connected at all times.

Index Terms—Algebraic graph theory, cooperative control, multiagent
systems, nonsmooth systems.

I. INTRODUCTION

In this note, we interpret Reynolds’ flocking model [3] as a mecha-
nism for achieving velocity synchronization and regulation of relative
distances within a group of agents, and derive decentralized controllers
which provably give rise to such a phenomenon, even when information
exchange between the agents can change arbitrarily fast. Since flocking
is defined in many different ways in literature [4]–[7], the emphasis in
this note is not on reproducing flocking, but rather on providing a de-
centralized coordination method in the case where the rate of change
of the network, over which agent information is disseminated, affords
no bounds.

We make a distinction between the sensing and the communica-
tion network. These two networks need not necessarily coincide, a fact
that further motivates a nonsmooth approach to cooperative control de-
sign and analysis. Under the assumption of connected (but arbitrarily
switching) communication network topology, we construct local con-
trol laws, composed of artificial potential field [8], [9], and neighbor ve-
locity difference terms, that allow a group of mobile agents with double
integrator dynamics to align their velocities, move with a common
speed and achieve desired interagent distances while avoiding colli-
sions with each other. We establish the stability properties of the in-
terconnected closed loop system using nonsmooth control analysis and
algebraic graph theory.

A. Related Work

The mechanism triggering formation clustering without centralized
coordination in groups of autonomous moving creatures such as flocks
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of birds, schools of fish, crowds of people [10], [11] has also been
investigated in ecology and theoretical biology, in the context of an-
imal aggregation and social cohesion in animal groups (see for ex-
ample [12], [13]). A computer model mimicking animal aggregation
was proposed by [3]. At the same time, several researchers in the area
of statistical physics and complexity theory have addressed flocking
and schooling behavior in the context of non-equilibrium phenomena
in many-degrees-of-freedom dynamical systems and self organization
in systems of self-propelled particles [4], [14], [15]. Similar problems
have become a major thrust in systems and control theory, in the con-
text of cooperative control, distributed control of multiple vehicles and
formation control. Within the space limitations of a technical note, no
literature review can be anywhere close to being complete, but the in-
terested reader is referred to [7] and [16]–[27]. The main goal in the
work cited above is to develop a decentralized control strategy so that
a global objective, such as a tight formation with desired inter-vehicle
distances, is achieved.

In related work on time-varying interconnections [28], a node has to
be connected to all other nodes over all time. If, on the other hand, dwell
time is assumed between switching instances, as in [17], the stability
analysis can be based on recent results for switched nonlinear systems
[29] as sketched in Remark IV-B. (The analysis in [22] involves only
velocity synchronisation and is performed in discrete time.) The main
contribution of this note is in providing a stability result for the case
where the topology of agent interconnections changes in a completely
arbitrary manner, and without dwell time between switching instants.

II. PROBLEM FORMULATION

Consider a group of N mobile agents moving on the plane, with
dynamics expressed by double integrators

_ri = vi (1a)

_vi =ui = ui = �i + ai; i = 1; . . . ; N (1b)

where ri = (xi; yi)
T is the position of agent i, vi = ( _xi; _yi)

T its
velocity, and ui = (ux; uy)

T its acceleration inputs. Let the relative
position vector between agents i and j be denoted rij = ri�rj . Agent
i is steered via its acceleration input ui which consists of two compo-
nents, �i and ai. Component �i in (1) aims at aligning the velocity
vectors of all the agents. Component ai is a vector in the direction of
the negated gradient of an artificial potential function, Vi, and is used
for collision avoidance and cohesion in the group. Let R be the sensing
radius of agent i. Agents beyond this range are assumed not to affect
ai.

A collision is assumed to have occurred when the coordinates of
two agents coincide. The problem is to design the control input (1)
so that if connectivity is maintained in the group, agent velocities are
synchronized, collisions are avoided, and pair-wise distances between
agents that sense each other are stabilized to steady state values within
a given range.

III. PRELIMINARY DEFINITIONS AND THE CASE OF FIXED

COMMUNICATION TOPOLOGY

For the sake of completeness, let us first consider the case where the
communication network is time-invariant. We represent the communi-
cation network by means of a graph, which determines how velocity
information propagates in the group.
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Fig. 1. Convergence of agent speeds. The agents communicate their velocities over a network that changes randomly at every simulation step, with a given
probability. Network topology switches introduce discontinuities.

Definition 1 (Velocity Graph): The velocity graph, Gc = fV; Ecg,
is an undirected graph consisting of

• a set of vertices (nodes), V = f1; . . . ; Ng � , indexed by the
agents in the group;

• a set of edges, Ec = f(i; j) 2 V � V j i � jg, (� denotes ad-
jacency) containing unordered pairs of nodes that represent com-
munication links.

The velocity graph neighbors of agent i are assumed to belong to a
set Nc(i) fj j (i; j) 2 Ecg � V n fig:

Agents within distances smaller than R are interacting through arti-
ficial potential “forces.” Each such interaction is associated with a link
in the sensing network of the group, which, being position dependent,
is represented by the position graph defined as follows.

Definition 2 (Position Graph): The position graph, Gs = fV; Esg,
is an undirected graph consisting of

• a set of vertices (nodes), V = f1; . . . ; Ng � , indexed by the
agents in the group.

• a set of edges, Es = f(i; j) 2 V � V j kri � rjk � Rg,
containing unordered pairs of nodes that represent sensing links.

Similarly, position graph neighbors of agent i define a set Ns(i)
fj j (i; j) 2 Esg � Vnfig. Contrary to the velocity graph, the position
graph is time-varying, depending on the agents’ relative positions.

Consider a function Vij that depends on the distance between posi-
tion neighbors:

Definition 3 (Potential Function): Potential Vij is a differentiable,
nonnegative, function of the distance krijk between agents i and j,
such that

1) Vij(krijk) ! +1 as krijk ! 0.
2) Vij attains its unique minimum when agents i and j are located at

a desired distance.
3) (d=dkrijk)Vij = 0, if krijk > R.
Definition 3 ensures that minimization of the inter-agent potential

functions implies cohesion and separation in the group. By defining

Vij according to Definition 3 we attempt to regulate distances between
agents in Gs within the range (0; R).

The total potential of agent i is:

Vi =
j2N

Vij(krijk) (2)

and the control input for agent i is defined as

ui = �
j2N (i)

(vi � vj)

�

�
N

i

rr Vi

a

: (3)

Let us define the dynamical system derived from (1) by stacking the
position and velocity vectors. This system has (�r; v) as its state, where
�r = (BK 
 I)r is the stack vector of all relative positions between
agents, r is the stack vector of agent positions, v is the stack vector of all
agent velocities, 
 denotes the Kronecker matrix product, BK is the
oriented incidence matrix of the complete graph with N vertices, KN

(for an arbitrary orientation), and I is the identity matrix of appropriate
dimension. This dynamics is expressed as

_�r =(BK 
 I2)v (4a)

_v =u (4b)

where u is the stack vector of all agent inputs, defined in (1). The con-
vergence properties of (4) can be analyzed using standard invariance
arguments [1], [17], [21]. Due to space limitations, in this note we focus
on the case of switching communication topology, which is discussed
in Section IV.
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Fig. 2. Successive simulation time snapshots of flocking with dynamic interconnection topology. (Top left) Initial condition. (Bottom right) Position after 100
simulation seconds. The time stamp of each snapshot is shown on top of the corresponding figure.
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IV. COORDINATION WITH SWITCHING COMMUNICATION TOPOLOGY

A. Switching Without Dwell Time

In this section, we assume that the topology of the communication
network can switch arbitrarily fast. In this case, the velocity graph
of Definition 1 is time-varying. Since �i in (3) now depends on the
time-varyingNc(i), topology switches will introduce discontinuities to
the right hand side of (3). The stability of the discontinuous dynamics
is analyzed using differential inclusions [30] and nonsmooth analysis
[31]. Since the control signal u is switching, (4) is expressed in terms
of differential inclusions

_�r =(BK 
 I2)v (5a)

_v 2 a:eK[u] (5b)

where BK is the incidence matrix of the complete graph with N ver-
tices, KN , K[�] is a differential inclusion [32], and a:e stands for “al-
most everywhere.” We do not make any assumption on the uniqueness
of the solutions of (5).

Theorem 1 (Flocking in Networks With Arbitrary Switching):
Consider a system of N mobile agents with dynamics (5), each
steered by control law (3). Let both the position and velocity graphs
be time-varying, but always connected. Then all pairwise velocity
differences converge asymptotically to zero, collisions between the
agents are avoided, and the system approaches a local extremum of
agent potentials (2).

Proof: Consider the Lyapunov-like function

W (�r; v) =
1

2

N

i=1

Vi + vTi vi : (6)

The position graph is time-varying, but the associated topology
changes do not introduce discontinuities, since the potential function
is differentiable at the transition point. Since the position graph
is assumed to be always connected, by definition there is a path
(in the position graph) from every vertex to every other vertex.
The graph’s diameter, therefore, cannot be larger than N � 1.
This implies that the largest distance between any two agents in
the graph, (by the triangle inequality) is smaller than (N � 1)R.
As a result, (i;j)2V�V krijk � (N(N � 1)2R)=2. Thus, �r
always evolves in a closed and bounded set. Similarly, the level
sets of W define compact sets in the space of agent velocities:
W � c )

i
v2i � c ) kvik2 � c. Consequently, the set f�r; vg

such that W � c, for c > 0 is closed by continuity. Boundedness
follows from connectivity: From W � c we have that Vij � c.
Connectivity ensures that a path connecting nodes i and j has length
at most N � 1. Thus krijk � V �1

ij c(N � 1) . Similarly, vTi vi � c

yielding kvik � p
c. Therefore, the set


 = (�r; v) j k�rk2 + kvk2 � p
c+

N(N � 1)2R

2
(7)

is compact. The invariant properties of 
 will be established in the se-
quel once W is shown to be non-increasing. Function W is differen-
tiable, but its derivative along the system’s trajectories is not a quantity
that can be evaluated at the switching instants, for we do not know the
value of _v. We can only ensure that _v 2a:e: K[u]. The right-hand side
of (5) can be expanded as follows:

_�r =(BK 
 I2)v

_v 2 a:eK[�(Lc 
 I2)v]�
rr1V1

...
rrNVn

:

Let �v be an arbitrary element of K[�(Lc 
 I2)v]. The generalized
derivative of W , along a vector � belonging in the set given by the
right-hand side of (5), is expressed as

W �(�r; v;�) =
1

2

N

i=1

_Vi + vT�v �
N

i=1

vTi rr Vi:

Based on the fact that rr Vij = rr Vij = �rr Vij , we have

1

2

N

i=1

_Vi =
1

2
2

N

i=1

_rTi
(i;j)2E

rr Vij =

N

i=1

_rTi rr Vi: (8)

Thus W �(�r; v;�), using (8), becomes

W �(�r; v;�) =

N

i=1

vTi rr Vi + vT�v �
N

i=1

vTi rr Vi = vT�v: (9)

The invariance principle in [33] examines the worst case
for the rate of change of W , which evaluates to m(r; v) =
max� 2K[�(L 
I )v] vT�v . Theorem 1 of [32] enables us
to write:vTK[�(Lc 
 I2)v] = K �vT (Lc 
 I2)v From the
definition of the differential inclusion, it follows that m(r; v) =
max co �vT (Lc 
 I2)v : For a connected velocity graph Gc, Lc

is positive semi-definite and therefore all quadratic forms of the type
�vT (Lc 
 I2)v are nonpositive, regardless of the topology of the
graph. Convex hulls of nonpositive numbers are nonpositive intervals,
and thus m(r; v) cannot be positive. The largest value it can have is
zero. Rewriting vT as:vT = (v1x; v1y; v2x; v2y; . . . ; vNx; vNy); we
have that �vT (L 
 I2)v = vTx Lcvx + vTy Lcvy; which implies that
m(r; v) = 0 iff vx = cx1N and vy = cy1N ; where cx; cy 2 .
Applying the invariance principle of [33] to the system described by
the (set valued) vector field (_�r; _v), it follows that for initial conditions
in 
, the Filippov solutions of the system converge to a subset of
fv j vx; vy 2 spanf1gg. If vx and vy are aligned with 1, then, for any
two agents i and j, _rij = vi � vj = 0. In fv j vx; vy 2 spanf1gg,
the acceleration dynamics reduces to

_v = (Bs 
 I2) [ . . . (rrijvij) . . . ]T (10)

which implies that both _vx and _vy belong to the range of the oriented
incidence matrix Bs of the position graph Gs (for an arbitrary orienta-
tion). For a connected velocity graph, range(Bc) = spanf1g? and,
therefore

_vx; _vy 2 spanf1g \ spanf1g? � f0g: (11)

Thus, the right-hand side of (10) is zero at steady state, implying that
Vi is locally minimized. Configurations corresponding to such local
minima may not be isolated; however, (11) ensures that the system is
stable there, so d=(dtkrijk) = 0, 8i; j 2 E . However, if Vij happens
to be locally convex in the (0; R) range, then Vi will have a unique
extremum and inter-agent distances between agents connected in Gs
are stabilized to their desired points. Collision avoidance is ensured by
the definition of Vij and the fact that W is decreasing.

Maintaining connectivity in the group while the network topology
is switching based on the distance between the agents is a major issue.
In the present analysis, this assumption is instrumental in showing the
stability of the flocking motion of the group. The nonsmooth invariance
theorem of Ryan [33], does not require 
 to be compact, however the
compactness and invariance of 
 implies the necessary precompact-
ness of the solutions. If connectivity is lost, one cannot guarantee that
rij 2 
 and thus stability may not be guaranteed.
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B. Switching With Dwell Time

Although, a detailed stability analysis of this case is beyond the
scope of this note, we wish to highlight an alternative methodology
should the stronger condition that requires a dwell time between
switches of the velocity graph is made, in addition to network con-
nectivity. The approach described here is different from the one
followed in [34], where all control signals are continuous, and in [17],
where single integrator dynamics with no potential agent interaction is
considered.

Here, the stability analysis can be based on recent results for
switched nonlinear systems [29]. System (5)–(3) can be thought of
as a switched nonlinear system _x = f�(x), � : [0;1) ! P , where
P is a finite index set. The dwell time assumption implies that there
are always intervals of some length � > 0 between the consecutive
discontinuities of the switching signal �. For each p 2 P , i) the
right-hand side of (5)–(3) (denoted here fp) is locally Lipschitz, ii)
Wp (the Lyapunov function (6) when dynamics p is activated) is
positive definite and radially unbounded, and iii) Wp is continuous
(thus Wp(ti) � Wp(tj) whenever tj < ti and �(ti) = �(tj) = p),
and (iv) �r(�r;v)Wpfp is positive semi-definite. These conditions are
sufficient to ensure that the “auxiliary output” (BQ 
 I2)vQ ! 0
[29], where Q is the union of time intervals when � = p, and BQ,
vQ denote the incidence matrix and velocity vector during t 2 Q, re-
spectively. Note in [29] that the dwell time assumption is instrumental
in constructing Q, on which �r(�r;v)Wpfp is integrable. Since the
auxiliary output convergences for an arbitrary p among the finite set
P , we will eventually have (B 
 I2)v ! 0.

V. NUMERICAL SIMULATIONS

A group of ten mobile agents with dynamics (1) is initialized with
random initial (x; y) positions in a rectangular area of 6.25 m2 cen-
tered at the origin. Velocities were also randomly selected with magni-
tudes in the (0,1) m/s range, and with arbitrary directions. Randomly
generated adjacency matrices defined connected position and velocity
graphs. Each call to the dynamic equation matlab function that imple-
ments(1)–(3), by the numerical integration function (ode45) can ini-
tiate a random switch to a completely different connected communi-
cation graph. Such switching happens with a given probability, but it
is not otherwise restricted (for instance, in terms of dwell time). Fig. 2
describes the evolution of a group of ten agents, where the velocity
graph topology is switching in the aforementioned manner. We depict
the velocity graph edges in solid (green) line segments and the position
graph edges in dotted (blue) segments. Each snapshot shows a different
velocity graph, although the topology could have undergone several
changes between these two time instants. Fig. 1 gives the time history
of agent velocities. Convergence is fast, probably because with the net-
work neighbors changing, an agent can have access to the velocities
of a large set of its groupmates, rather than a restricted set of constant
neighbors. Frequent topology switchings produce transients, but sta-
bility and overall convergence trend is evident.

VI. CONCLUDING REMARKS

We show that the multiagent behavior induced by our control law
is robust to arbitrary changes in the sensing and communication net-
works, as long as these remain connected during the motion. We prove
that agent potential functions are locally minimized and velocity vec-
tors converge asymptotically to a common vector, by exploiting the
algebraic connectivity of the underlying sensing and communication
graphs.
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Uniformly Stabilizing Sets of Switching Sequences for
Switched Linear Systems

Ji-Woong Lee and Geir E. Dullerud

Abstract—A set of switching sequences of a discrete-time switched linear
system is said to be uniformly stabilizing if the system is uniformly exponen-
tially stable over all switching sequences that belong to the set. Based on the
recent result that a switched linear system is uniformly stable if and only if
an increasing countable union of linear matrix inequality conditions is sat-
isfied, we characterize all uniformly stabilizing sets of switching sequences.
A discrete-time hybrid automaton of the automobile engine is considered
to illustrate the result.

Index Terms—Discrete linear inclusions, hybrid automata, linear matrix
inequalities (LMIs), uniform exponential stability.

I. INTRODUCTION

The switched system is an abstraction of complex hybrid automata
where continuous state variables and discrete states coexist and depend
on each other [1]–[3]. The analysis and synthesis of a switched system
is often relatively a lot easier than that of the original hybrid dynam-
ical system that the switched system abstracts, since the continuous
state does not affect the transitions among discrete state values in the
switched system abstraction. The vector of continuous state variables is
called the state, and the discrete state values are called the modes; tran-
sition sequences between modes are called switching sequences. There
are three benchmark problems for switched systems [4]: stabilization
under arbitrary switching sequences, stabilization under a switching
path constraint, and construction of stabilizing switching sequences.
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For discrete-time switched linear systems, control-oriented complete
solutions to the first two problems concerning (uniform) stabilization
were presented and also extended to disturbance attenuation in [5], [6].

In this note, we solve the third benchmark problem and characterize
all uniformly stabilizing sets of switching sequences for the discrete-
time switched linear system. Recent results in [5], [6] include that the
switched linear system, possibly with a switching path constraint, is
uniformly stable (and contractive) if and only if the union of an in-
creasing family of linear matrix inequality conditions holds. They draw
on the operator-theoretic analysis of linear time-varying systems [7],
[8], but exploit the fact that each switching sequence gives rise to a
linear time-varying system whose coefficients vary within a finite set.
Based on these results, this note extends the existing results on the ex-
istence and construction of stabilizing switching sequences [9], [10],
and presents a complete characterization of uniformly stabilizing sets
of switching sequences for the first time. The result is then applied to
the automobile engine control problem described in [10].

Notation: If X;Y 2 n�n are symmetric and Y �X is positive
definite, we write X < Y. The identity matrix is denoted by I with n

understood. For x 2 n, denoted by kxk is the Euclidean vector norm
kxk =

p
xTx of x.

II. ANALYSIS

Given positive integers n and N , let

AAA = fA1; . . . ;ANg (1)

with each Ai 2 n�n. Let 


 be the set of every infinite sequence in
f1; . . . ; Ng; each element of 


 shall be called a switching sequence.
A discrete-time linear time-varying system whose coefficient jumps
within the finite set AAA has the state-space representation

x(t+ 1) = A�(t)x(t) (2)

for some ��� = (�(0); �(1); . . .) 2 


, and for all t = 0; 1; . . .. If �(t) =
i, then the system (2) is said to be in mode i at time t. In general, if
��� is a nonempty subset of 


, then the pair (AAA;���) is identified with
the family of systems (2) over all ��� 2 ���, and called a discrete-time
switched linear system. In particular, the pair (AAA;


) is called a discrete
linear inclusion.

Definition 1: Let AAA be as in (1); let ��� be a nonempty subset of 


.
The switched linear system (AAA;���) is said to be asymptotically stable
if

lim
t!1

kx(t)k = 0

for all x(0) 2 n and for all ��� 2 ���. If, for each ��� 2 ���, there exist
c��� � 1 and ���� 2 (0; 1) such that

kx(t)k � c����
t�t

���
kx(t0)k

whenever t � t0 � 0 and for all x(t0) 2 n, then the system (AAA;���) is
said to be pointwise uniformly stable. If there exist c � 1 and� 2 (0; 1)
such that

kx(t)k � c�
t�t kx(t0)k
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