
FlockLab 2: Multi-Modal Testing and Validation for Wireless IoT

Roman Trüb, Reto Da Forno, Lukas Sigrist, Lorin Mühlebach, Andreas Biri, Jan Beutel,
Lothar Thiele

Computer Engineering and Networks Laboratory, ETH Zurich

Switzerland

rtrueb@ethz.ch

ABSTRACT

The development, evaluation, and comparison of wireless IoT and

cyber-physical systems requires testbeds supporting inspection of

logical states and accurate observations of physical performance

metrics. We present FlockLab 2, a second generation testbed sup-

porting multi-modal, high-accuracy and high-dynamic range mea-

surements of power and logic timing and at the same time in-situ

debug and trace infrastructure of modern microcontrollers allowing

for reproducible evaluation and benchmarking. We detail the archi-

tecture, provide a characterization and demonstrate the interface,

the supported services and the tools of the FlockLab 2 testbed.

Data Availability Statement. The hardware design and the software

for server and observer of the presented testbed architecture and

the data for the plots in this paper are openly available at

https://�ocklab.ethz.ch.

1 INTRODUCTION

The ever-increasing complexity and care for detail that must be

mastered in developing state-of-the-art distributed networked em-

bedded applications requires modern and adequate tool support for

experimentation. In scaling to large distributed applications, simu-

lations can help but cannot replace experiments on real hardware.

Simulation always implies simpli�cations, signi�cant especially at

the hardware level. The latest microcontrollers and radios used

in wireless Internet of Things (IoT) applications feature numerous

power modes that need to be accurately �ne-tuned and orchestrated

for e�ciency. The interaction between peripherals and the system

core needs to be well-understood and validated for reliable opera-

tion down to the instruction level. Timing needs to be controlled

at application as well as driver level up to the speed of light, as

recent work on network protocols incorporating the time-of-�ight

of radio signals has shown [10].

The development of embedded software is commonly based on

state-of-the-art debug and trace infrastructure integrated into the

hardware of modern microcontroller architectures [15]. This in-situ

infrastructure is supported by a multitude of development tools that

can be used on the user’s desk and also remotely. Today, such tool-

ing is limited to a single device-under-test (DUT), therefore severely

limiting capabilities to develop and test algorithms and systems for

distributed wireless IoT devices. It is exactly this distributed nature

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CPS-IoTBench’20, Sept. 25, 2020, London, UK

© 2020 Copyright held by the owner/author(s).

Figure 1: FlockLab 2 observer with 4 target slots.

of many devices, coupled over variable wireless channels and di-

rectly in�uenced by the embedding environment, that is known to

be a challenging task in designing, implementing and validating IoT

and cyber-physical systems. Therefore, distributed testbeds with

representative hardware deployed in a real environment are widely

used. Such testbeds allow (1) the reuse of the testing infrastructure,

(2) controlled and reproducible testing and validation, and (3) the

comparison of di�erent implementations on a common platform

(benchmarking). A number of testbeds exist that support a subset

of the aspects mentioned above that are required for contemporary

software development and evaluation for wireless IoT devices. An

overview of existing testbeds and their capabilities as well as our

remarks on 8+ years of testbed development and operation is pro-

vided in Sec. 2. However, none of the existing testbeds supports

combined native in-situ debug and trace infrastructure, accurate

timing measurements as well as the detailed assessment of power

consumption over a large dynamic range.

In this work, we present a versatile testbed with capabilities

addressing the aforementioned requirements. In jointly addressing

challenges in power measurement, timing, functional correctness

based on native, in-hardware debug and trace functionality inte-

grated at testbed scale, this work takes the methodological aspect of

developing IoT and cyber-physical systems to the next level. The in-

tegration of native hardware-based debug and real-time tracing into

every observer node allows full testbed-wide access to the ARM real-

time debug and trace collection infrastructure (CoreSight [12, 15]) at

the program execution level. Access is provided remotely in exactly

the same manner as on a single developer’s desk to all devices-

under-test. This alleviates the need for in�exible instrumentation

of the software code run on a DUT as well as invasive run-stop

debugging. In addition, this testbed integrates high �delity power

https://flocklab.ethz.ch


CPS-IoTBench’20, Sept. 25, 2020, London, UK Trüb et al.

pro�ling at nA resolution, dynamic control of the power supply

and highest precision tracing and actuation of a set of DUTs based

on Global Navigation Satellite System (GNSS) time synchroniza-

tion. The testbed features a well-de�ned and open interface for test

creation and test result fetching. A Python-based library and com-

mand line tool provides support for automated test management

and visualization. This paper contains the following contributions:

• It proposes a testbed architecture that combines state-of-the-

art debug and trace capabilities with accurate high-dynamic

range measurements and actuation.

• Characterization of the system implementation.

• Demonstration of capabilities of FlockLab 2 in a case study.

• Open-source hardware design and software source code.

Sec. 2 gives an overview of the testbed landscape. In Sec. 3, we

discuss the design of FlockLab 2 and characterize its implementation.

In Sec. 4 we demonstrate the capabilities of FlockLab 2.

2 PAST EXPERIENCE AND RELATED WORK

The design of FlockLab 2 is heavily in�uenced by 8+ years of ex-

perience in developing and operating the FlockLab 1 testbed [8].

This testbed was based on the very successful target-observer

model [8, 11] with multi-modal capabilities to monitor and in�u-

ence devices-under-test at very high precision and �ne-grained

resolution. The FlockLab 1 testbed has been operated publicly since

2012. It ran over 70’000 tests by more than 370 users frommore than

130 institutions in 30 countries. In addition, the testbed has been

used by students in hands-on courses and many student projects.

Over time, a number of extensions based on the original concept

of FlockLab 1 have been implemented [9, 10] calling for a revisit of

the original concept with improved performance �gures. Existing

competitor testbeds each provide interesting features. However,

none of them combine all three capabilities: (1) in-situ debug and

trace, (2) high-dynamic range power pro�ling, and (3) accurate

timing. In the following, we give an overview of the current testbed

landscape.

TWIST [6] and Indriya2 [2] are both based on USB interconnects.

Therefore they do not provide elaborate debug and trace features or

accurate observations of hardware behavior like precise timing or

power. On TWIST the power supply can be controlled by turning

the USB interface to the targets on or o�. Furthermore, a hierarchical

back-channel using USB and Ethernet allows scalability.

The D-Cube [14] testbed focuses on benchmarking wireless pro-

tocols in pre-de�ned scenarios with a technique to embed test

parameters directly in the software for the DUT, control RF interfer-

ence and the automated publication of test metrics. In addition to

serial logging, it supports setting and tracing GPIO pins and allows

power consumption measurements. However, it does not support

the use of debug and trace capabilities of modern MCUs.

FIT IoT-Lab [1] supports a wide range of sensor nodes (MSP430

to ARM Cortex-M8) at many di�erent locations. Basic debug and

trace based on JTAG and monitoring of power consumption is

supported. Furthermore, the testbed supports injecting and sni�ng

radio packets and monitoring on a single frequency RF channel. To

the best of our knowledge, it does not support accurate timing for

control and measurements.

Observer

Data

BeagleBone
Green

 

 

PPS

UART

USB USB
Hub

GNSS

Segger J-Link
Debug Probe

USB SWD/
SWO

USB

GPIO Tracing

Control

Serial ID

Target
Power
Supply

Voltage and
Current

Measurement
PRU0

Control

UART

MUX

Level Shifter

Slot 3

Slot 4

Target 4

Slot 2

Slot 1

Target 3

Target 2

Target 1

Power
MUX

MUX

Timer

PPS

AM3358
ARM 

Cortex-A8

Ethernet

PHC PRU1

PPS

GPIO Actuation & Reset

Figure 2: FlockLab 2 observer architecture.

Shepherd [5] focuses on recording and replaying energy har-

vesting power traces for research in batteryless IoT devices. The

architecture supports basic debugging and GPIO tracing. Power

measurements are supported up to 50mA which is limiting for

modern long-range radios with high transmit power. Currently,

there is no publicly available instance of the Shepherd testbed.

3 A REAL-TIME TRACING ARCHITECTURE

An IoT testbed needs to support multi-modal distributed interaction

and tracing. We identify the following key requirements for a state-

of-the-art testbed for wireless IoT devices:

• Support for native debug and trace infrastructure.

• Accurate and high-dynamic range powermeasurements (sub-

µA sleep current up to radio TX current of 170mA).

• High-precision timing (sub-µs accuracy) across the distributed

testbed.

The FlockLab 2 testbed architecture consists of a testbed server

hosting data services and the web interface, a set of distributed

observers carrying the instrumentation and providing connectivity

and the devices-under-test (DUTs) also termed the target devices.

In FlockLab 2, multiple targets, typically manifested by di�erent

sensor node architectures, are supported on each observer system.

Each target device is connected to the observer hardware using

a multiplexer crossbar allowing a user to select a distinct target

hardware architecture without physical intervention (see Fig. 2).

Using this multiplexing allows to run tests on di�erent target de-

vice architectures physically collocated, e.g. to compare di�erent

radio architectures side-by-side. The independent and stateful ob-

server, which stores tracing data locally, allows for a strong coupling

between observer and target (see Fig. 3). This enables highest accu-

racy and throughput of the DUT instrumentation especially when

comparing to direct out-of band back-channels of early testbed

architectures [17].

The basic services of FlockLab 1 are continued: actuation and

tracing of serial port and GPIO pins, target programming, power

tracing and adjustable target supply voltage. The new system sup-

ports a native in-situ debug and trace service and generally a higher

�delity of the aforementioned basic services as well as an extended



FlockLab 2 CPS-IoTBench’20, Sept. 25, 2020, London, UK

testbed layout covering also wide-area distances [16]. The instru-

mentation for measuring the power consumption has been sig-

ni�cantly improved: nA current measurements resolution, peak

power up to 500mA, a sampling rate of 64 kHz, electrical isolation

of target devices to not perturb low-power measurements.

3.1 Observer Instrumentation Platform

Each observer consists of a Linux host system, a main board and

several target adapter boards hosting up to four di�erent target

devices. The four target slots are connected using a multiplexing

unit that routes all signals on the observer main board.

3.1.1 Linux Single-Board Computer as Observer Host Platform. A

standard Linux single-board computer (SBC), a BeagleBone Green,

is used as host platform for the decentralized stateful observers. All

tracing data is recorded on the observer in order to alleviate the in-

herent bottleneck to the testbed server. The BeagleBone Green SBC

includes a single core ARM Cortex-A8 processor and two single-

cycle Programmable Real-Time Unit (PRU) co-processors for low

latency tracing. It further features an Ethernet interface with inte-

grated hardware support for network-based time synchronization

(NTP/PTP), generic IO extensions and local Flash memory.

3.1.2 Embedded Debug and Trace Integration. The key feature on

the FlockLab 2 observer is an integrated Segger J-Link OB debug

probe. This gives native access to state-of-the-art ARM Cortex-M

CoreSight debug and trace facilities which are built into modern

systems-on-chip (SoC) [12]. This allows to utilize simple halting

debug mode (where architectural state can be observed), single step

execution, breakpoint units and Performance Monitoring Units

(PMUs). CoreSight further provides an Embedded Cross Trigger

mechanism to synchronize or distribute debug requests and pro�l-

ing information across the SoC. Embedded Trace Macrocells (ETM

trace unit) or Program Trace Macrocells (PTM trace unit) allow to

trace program execution at runtime and without instrumentation

in the code that (i) alters program behavior and (ii) needs to be

adapted for every single analysis step. The trace macrocells can

either be captured using an on-chip trace bu�er or accessed via the

generic Serial Wire Debug (SWD) connection implemented on the

J-Link debug probe acting as o�-chip trace port analyzer (see Fig. 3).

Dedicated synchronization points and global 64-bit timestamps

across the whole SoC architecture can be enabled in the tracing

architecture to gain accurate temporal context of an application

and its interaction with the underlying hardware at runtime. The

debug and tracing architecture is implementation speci�c and can

be found in the respective microprocessor documentation.

The use of SWD on FlockLab 2 with the SWDCLK and SWDIO

signals as well as a dedicated Serial Wire Output (SWO) trace port

is a tradeo� between bandwidth and pin count. By using data bu�er

exchange capabilities of the debug probe, e.g. with Segger Real Time

Transfer (RTT) software technology that can be easily integrated

with user code, high-speed and little impact data transfer from the

target to the observer is supported. For example, this allows more

e�cient printf()-style logging on the target.

Besides the native hardware support for debug and trace, the

main advantage lies in the ability to connect to all standard de-

veloper tools allowing interactive debug sessions on the testbed

Observer fl-01Microcontroller on Target

SWD Segger J-Link
Debug Probe

UART

GPIO
Memory ARM Cortex-M

Core

Power

Local Trace
Storage

Trace
Buffer

Debug Session
from IDE

Server/
Database

Debug & Trace
Unit

Trace
Unit

Break-
point
Unit

fl-01:2331

FlockLab Tools
Interactive trace analysis

Voltage and
Current

Measurement

Figure 3: Tracing instrumentation based on the in-situ de-

bug and trace unit and external capabilities.

directly from a developer’s IDE or use ready made tooling for au-

tomating tasks. A lot of time in sensor networks and IoT research

has been spent in developing custom tooling and a host of scripts

incompatible with industry standard debugging and pro�ling tools.

3.1.3 Power Tracing. Highly accurate and high-dynamic range

power pro�ling is based on the RocketLogger embedded measure-

ment device [13]. It combines two measurement principles using

seamless autoranging: a shunt ammeter (high current range), as

well as a feedback ammeter (low current range) provide the nec-

essary precision and range to measure sleep currents (sub-µA and

peak power consumption (100’s ofmA) of modern radios. The mea-

surement circuit allows to measure the current through as well as

the voltage at the target. A careful electrical isolation of all target

IO lines allows to accurately measure on the order of nAs for the

lowest power modes. Measurements are performed by precision

analog-to-digital converters (ADCs) and periodically transferred to

the single-board computer’s storage via PRU0. To compensate for

hardware and manufacturing variations, the voltage and current

measurement circuit on each observer is calibrated before �rst use.

3.1.4 Serial Logging and Forwarding. Serial port communication

via UART or USB is supported on each observer. This allows logging

of simple printf() based console output and supports interactive

communication with the target during tests by forwarding the serial

port via TCP to the testbed user. To achieve high performance

and accurate timing, logging is implemented in C and events are

timestamped using the GNSS or PTP disciplined system clock.

3.1.5 Logic Actuation and Tracing. On each observer, 5 target GPIO

pins can be captured and 2 target GPIO pins can be actuated. In

FlockLab 2, logic tracing is implemented on the programmable real-

time unit PRU1, which allows to acquire highly accurate timing

trace data. Logic actuation is implemented by a Linux kernel module

and the actuation events are logged by the PRU based logic tracing

as well.

3.1.6 Testbed-wide Time Synchronization. Accurate timing across

all signals for tracing and actuation on a single observer platform

as well as across the whole testbed is one of the most important

success factors of a distributed IoT testbed. With recent advances

in higher system clock rates and ever more timing critical behavior

in advanced communication schemes [10] the requirements for

accurate timing is in the sub-microsecond scale. Since this testbed is

designated to support long-range communication where observers



CPS-IoTBench’20, Sept. 25, 2020, London, UK Trüb et al.

Start Signal
from Linux

Stop Signal
from Linux

Requested Time for FlockLab Test

GPIO Sampling ON

PPS
 

Busy wait
for PPS

PPS
(not logged)

Delay Delay

PPS
(not logged)

Busy wait
for PPS

PPS
 

PPS
 

...
Time

Cortex-A8

PRU

i=0

1 s 1 s

Event
 

PPS
 

i=1 i=2

Figure 4: Logging of PPS signal alongside the target signals

for accurate time synchronization.

might be distributed over kilometers, synchronization needs to

work independent of other observers and their location.

The local Linux system time referenced to UTC and disciplined

by GNSS serves as time reference for all testbed services. The inte-

grated GNSS receiver (u-blox M8) generates an accurate pulse-per-

second (PPS) signal which is tracked in dedicated hardware timers

on the single-board computer. For accurate timing of the logic trac-

ing, the PPS pulse is logged alongside the target signals (see Fig. 4).

A linear correction factor is calculated for each epoch 8 and applied

to timestamp of the logic tracing event (numbered by :) once a test

has completed.

Cevent
Global

[8, :] = CeventPRU [8, :] ·
C
pps

Global
[8 + 1] − C

pps

Global
[8]

C
pps
PRU

[8 + 1] − C
pps
PRU

[8]

Observers at locations with limited GNSS signal reception can

use the Precision Time Protocol (PTP) as a fallback solution to dis-

cipline the Linux system clock. A prerequisite for this is a network

infrastructure which ful�lls the requirements of the PTP protocol.

The PPS signal required for accurate logic tracing is based on Linux

system time generated by a kernel module. Using hardware as-

sisted timestamping at the PHY and MAC layer of the single-board

computer’s Ethernet interface allows to achieve synchronization

accuracy in the order of ∼1 µs for PTP [7] compared to ∼50 ns for

GNSS [10].

For the debug probe, incoming messages from the SWO trace

port are timestamped using system time. The debug unit can be

con�gured to export local timestamps via SWO. These can be con-

verted to system time by applying a piece-wise linear regression

similar to the correction factor for logic tracing described earlier.

3.1.7 Target Adapter. The target adapter is mainly a hardware

adapter bridging form-factor and pinout. It may contain con�gu-

ration options (e.g. jumpers) and extra debug pins depending on

the target platform. Additionally, it contains a serial ID chip for

automated identi�cation of every target connected to an observer.

3.1.8 Power Generation and Reset. The target supply voltage is

generated using an low-dropout (LDO) regulator controlled by a

digital-to-analog converter (DAC) based reference voltage. This

allows to dynamically control the target supply voltage. The target

can be reset either by controlling the reset pin or by a full power-o�-

reset (POR). These power and reset capabilities enable to test under

di�erent operating conditions and under most realistic conditions.

3.1.9 Target Programming. Programming of the microcontroller

of the target devices is performed either using a bootloader (BSL)

or native single wire debug (SWD) for ARM based devices.

Target MCU Arch. Radio

Tmote Sky / TelosB MSP430F1611 MSP430 CC2420, 802.15.4, 2.4 GHz

DPP2 CC430 [3] CC430F5147 MSP430 CC430 SoC, CC1101-based, 868MHz

DPP2 LoRa [3] STM32L4 ARM M4 SX1262, LoRa/FSK, 868MHz

nRF52840 Dongle nRF52840 ARM M4 nRF52 SoC, 802.15.4/BLE, 2.4 GHz

Table 1: Target devices supported on FlockLab 2.

3.2 Testbed Management and User Interface

3.2.1 Testbed Infrastructure. The testbed is orchestrated by a server

which executes the scheduled tests, provides a MySQL database,

provides storage space for test results, hosts the web interface and

exposes an API for automated test scheduling and fetching. The

database stores test scheduling information and con�guration as

well as the current state of the hardware infrastructure (e.g. which

target is connected to which observer).

3.2.2 API and Visualization. FlockLab 2 focuses on fully autonomous

test execution but also supports live interactions. Tests are con�g-

ured and scheduled using a single XML �le. This test con�guration

�le allows to (1) select the target platform and the testbed nodes, (2)

enable and con�gure actuation and tracing services, and (3) include

one or more program images which will then be �ashed to the

targets. Real-time interaction during test execution is supported via

the serial communication service (read/write) and via a remote de-

bug session using the integrated Segger J-Link debug probe which

allows to set breakpoints, halt the execution, read processor state

and to retrieve data via SWO.

The results are stored on a server and can be downloaded as

an archive �le. Test management (creating and stopping tests, re-

trieving status information, downloading results) as well as an

intuitive visualization of results is supported via web interface or

the flocklab-tools command-line tool executed on the user’s

computer.

3.3 Publicly Available Testbed

The FlockLab 2 testbed is implemented as a public service with

currently 15 active observers (Fig. 1). 12 observers are distributed on

the �oor of an o�ce building and 3 observers are installed at remote

long-distance rooftop locations [16]. Additional observer hardware

will extend the testbed to 30+ nodes. The testbed can be publicly

accessed via the website1. where we also publish documentation,

examples, the hardware design and software source code.

Currently, the four target platforms listed in Tab. 1 are avail-

able. Additional target platforms can easily be added thanks to the

generic target interface.

3.4 FlockLab 2 Observer Key Characteristics

We provide a characterization of the FlockLab 2 observer in Tab. 2.

4 USING FLOCKLAB 2 IN PRACTICE

In order to demonstrate the capabilities of FlockLab 2 regarding fea-

tures and performance, we discuss an example of network �ooding

based on synchronous transmissions [4] on a FSK/LoRa radio [3].

Building and scaling-up a communication protocol based on syn-

chronous transmissions requires a very careful arbitration of all

1https://www.�ocklab.ethz.ch

https://www.flocklab.ethz.ch


FlockLab 2 CPS-IoTBench’20, Sept. 25, 2020, London, UK

Target Power Supply

Voltage range 1.1 - 3.6V

Voltage resolution 13.5mV

Max. current 500mA

Logic Actuation

Timing accuracy <100 µs (typ.)

Power Tracing (see [13] for details)

Max resolution / sampling rate 15.625 µs / 64 kHz

Voltage accuracy 0.37% + 4mV

Current accuracy (low range 0 - 2mA) 0.01% + 60 nA

Current accuracy (high range 2 - 500mA) 0.02% + 48 µA

Logic Tracing

Max resolution / sampling rate 0.1 µs / 10MHz

Max burst event rate (≤ 2000 edges) 10MHz

Max continuous event rate (typ.) 900 kHz

Timing Accuracy (GNSS) <0.25 µs (typ.)

Serial Tracing

Max continuous throughput 460 kbaud

Timing accuracy <10ms (typ.)

Table 2: Characterization of the FlockLab 2 observer.

radio activities and extensive debugging as transmissions and cor-

responding interrupts need to be correctly aligned. It is therefore

a suitable example to showcase the capabilities of FlockLab 2. In

this example, we use the DPP2 LoRa target which consists of an

STM32L433 Cortex-M4 microcontroller and a Semtech SX1262 ra-

dio [3] with a 0.28 µA standby current and 7 µs wake-up latency.

4.1 Simple Synchronous Transmission Protocol

Gloria is an optimized multi-hop network �ooding protocol based

on Glossy [4]. As depicted in Fig. 5, all nodes synchronously re-

transmit a received message a pre-de�ned number of times (3 times

in our example) in subsequent transmission slots. Contrary to

Glossy, Gloria nodes listen to a message only once. For the set-

ting used in this example, the relevant values are InitOverhead =

1.783ms and SlotTime = 4.548ms (see Fig. 5). Both values are �xed

for each speci�c radio con�guration (in this case FSK 250 kbit/s)

and have been determined using the datasheet and measurements.

Slot 0 Slot 1

Initiator Tx

Rx

Slot 2 Slot 3 Slot 4 Slot 5

Relay

Relay

Relay

Listen

Tx Tx

Tx Tx Tx

Rx Tx Tx Tx

Rx Tx Tx Tx

Time

RefTime

Flood
Overhead

SlotTime SlotTime

TxMarker

SyncWordValid Interrupt
RxDone Interrupt

TxDone
Interrupt

Figure 5: Gloria �oods use concurrent re-transmission.

4.2 Testing Work�ow

4.2.1 Creating a Test. First, the software for the target platform is

compiled using the standard toolchain/IDE. Then, an XML test con-

�guration �le is created containing the nodes, images and platform

to be used, test duration, actuation, tracing and debugging services

<testConf xmlns="http://www.flocklab.ethz.ch">

<generalConf>

<name>FlockLab XML template</name>

<schedule><duration>60</duration></schedule>

</generalConf>

<targetConf>

<obsIds>2 4 6 7 9</obsIds>

<voltage>3.3</voltage>

<embeddedImageId>Image_1</embeddedImageId>

</targetConf>

<serialConf>

<obsIds>2 4 6 7 9</obsIds>

<baudrate>115200</baudrate>

</serialConf>

<powerProfilingConf>

<obsIds>2 4</obsIds>

<samplingRate>1000</samplingRate>

</powerProfilingConf>

</testConf>

Listing 1: FlockLab 2 test con�guration example.

con�guration. A minimalist example is shown in Listing 1. This is

then uploaded to the FlockLab 2 server using the web interface or

the flocklab-tools. On the server, the test is then scheduled. The

server initiates the start of the test at the time speci�ed, distributes

the target images and con�gures all testbed services.

4.2.2 Interaction During Test Execution. Progress is monitored on

the web interface where information on con�guration and status

is available. If the serial forwarding service is used it is possible to

connect to an individual observer for the duration of the test using

a TCP connection, e.g. by using netcat. Likewise an interactive

debug session can be opened from the IDE on the user’s computer

to a GDB debug server running on the observer.

4.2.3 Analyzing Test Results. After the test completes, the server

fetches all results from the observers and combines them into a

single test result archive �le that can be used for custom post-

processing or can be visualized using the flocklab-tools (an

example is depicted in Fig. 7).

4.3 Debugging and Analysis of the Protocol

4.3.1 Embedded Debugging at Testbed Scale. In this example, 8

nodes are performing a Gloria network �ood. To validate the cor-

rect protocol implementation, we use the debugger functionality

which allows to extract internal variables. Concretely, we want

to verify the correct calculation of the time of the next trans-

mission (TxMarker in Fig. 5). In Figure 6, for each node, radio

activity is shown in the �rst row (orange bars), the radio inter-

rupts are shown in the second row (black bars). For node 4, the

power trace (black line) is shown as well. A breakpoint has been

set on the �rst TxDone interrupt of node 9 that can be inspected

using a remote debug session to the target (see Sec. 3.1.2). Since

the breakpoint halts this speci�c microprocessor, the captured

traces show no more GPIO events after the node reached the

breakpoint. The variables inspected at the breakpoint show e.g.

slot_index = 2; message_size = 30 as expected. The variables

reconstructed_marker and current_tx_marker correspond to

RefTime and TxMarker in Fig. 5, respectively. The extracted time

di�erence value of 10.879ms conforms with the expected value for



CPS-IoTBench’20, Sept. 25, 2020, London, UK Trüb et al.

Figure 6: With the debug service, a breakpoint is set on the

�rst TxDone interrupt on node 9. This allows to extract the

values of the internal variables at that point in time.

Figure 7: The transmissions (TxDone interrupts; green bars)

of di�erent nodes are not aligned because an o�set tim-

ing parameter is not set correctly. The logic tracing ser-

vice allows to detect and correct this erroneous behavior at

interrupt-level granularity.

FloodOverhead+2·SlotTime. This con�rms the correct calculation

of TxMarker in the synchronous Gloria �ood.

4.3.2 Timing Validation using Logic Tracing. In synchronous pro-

tocols, transmissions and corresponding interrupts need to be cor-

rectly aligned. This is traditionally done by instrumenting code

and tracing GPIO pins with the logic tracing service (see Sec. 3.1.5).

In Fig. 6, radio activity with two interrupts (SyncWordValid and

RxDone) corresponds to a message reception and radio activity

with a single interrupt (TxDone) corresponds to a transmission.

Re-transmissions are scheduled based on the timing of received

messages. For this, the SyncWordValid timestamp is used to cal-

culate individual start times on each node. For this, the exact time

o�set between the start of the transmission and the SyncWordValid

interrupt needs to be calibrated. In the example in Fig. 7, this o�set is

not set correctly and consequently synchronous transmissions are

not aligned. Using logic tracing, this malfunction can be detected

(green lower bars) and the correct value can be determined.

Figure 8: High-dynamic range power tracing is used to vali-

date and optimize low-power behavior.

4.3.3 Optimizing for Low Power Consumption. To maximize the

lifetime of a battery-powered cyber-physical system, careful op-

timization and orchestration of the low-power modes is required.

In this example, we validate the low-power behavior of the Gloria

�ood implementation by using the power tracing service (Sec. 3.1.3)

together with the logic tracing capabilities (Sec. 3.1.5). In a simple

implementation communication is executed in a �xed-length active

window (see Fig. 8). In the optimized case a node will transit to

low-power sleep mode immediately after completing a required

action, e.g. sending and receiving data. The di�erence between

�xed-length and dynamic active window sizes can be seen in Fig. 8

together with the respective radio interrupts.

5 CONCLUSIONS

In this paper, we present the second-generation testbed FlockLab 2

which combines industry standard debug and trace support with

accurate high-dynamic range power and timing measurements.

Relevant design aspects including the distributed testbed-wide time

synchronization and the in-situ debug and logging capabilities have

been demonstrated with real-world applications. These aspects

make the testbed a valuable tool for developing and benchmarking

distributed IoT systems.

REFERENCES
[1] Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton,

Thomas Noel, Roger Pissard-Gibollet, Frederic Saint-Marcel, Guillaume Schreiner,
et al. 2015. FIT IoT-LAB: A large scale open experimental IoT testbed. In 2015
IEEE 2nd World Forum on Internet of Things (WF-IoT). IEEE, 459–464.

[2] Paramasiven Appavoo, Ebram Kamal William, Mun Choon Chan, and Mobashir
Mohammad. 2018. Indriya2: A heterogeneous wireless sensor network (wsn)
testbed. In Int’l Conf. Testbeds and Research Infrastructures. Springer, 3–19.

[3] Jan Beutel, Roman Trüb, Reto Da Forno, Markus Wegmann, Tonio Gsell, Romain
Jacob, Michael Keller, Felix Sutton, and Lothar Thiele. 2019. The Dual Processor
Platform Architecture. In Proc. 18th Int’l Conf. Information Processing in Sensor
Networks (IPSN ’19). ACM, New York, NY, 335–336.

[4] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. 2011. Ef-
�cient Network Flooding and Time Synchronization with Glossy. In Proc. 10th
ACM/IEEE Int’l Conf. Information Processing in Sensor Networks. IEEE, 73–84.

[5] Kai Geissdoerfer, Mikołaj Chwalisz, and Marco Zimmerling. 2019. Shepherd: a
portable testbed for the batteryless IoT. In Proc. 17th Conf. Embedded Networked
Sensor Systems. 83–95.

[6] Vlado Handziski, Andreas Köpke, Andreas Willig, and AdamWolisz. 2006. Twist:
a scalable and recon�gurable testbed for wireless indoor experiments with sensor
networks. In Proc. 2nd Int’l Workshop on Multi-hop Ad-hoc Networks. 63–70.



FlockLab 2 CPS-IoTBench’20, Sept. 25, 2020, London, UK

[7] Antonio Libri, Andrea Bartolini, Michele Magno, and Luca Benini. 2016. Evalua-
tion of Synchronization Protocols for Fine-grain HPC Sensor Data Time-tamping
and Collection. In 2016 International Conference on High Performance Computing
& Simulation (HPCS). IEEE, 818–825.

[8] Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser, Philipp
Sommer, and Jan Beutel. 2013. FlockLab: A Testbed for Distributed, Synchronized
Tracing and Pro�ling of Wireless Embedded Systems. In Proc. 12th Int’l Conf.
Information Proc. in Sensor Networks (IPSN ’13). ACM, New York, NY, 153–166.

[9] Roman Lim, Balz Maag, Bernhard Dissler, Jan Beutel, and Lothar Thiele. 2015.
A testbed for �ne-grained tracing of time sensitive behavior in wireless sensor
networks. In Proc. IEEE 40th Local Computer Networks Conference. 619–626.

[10] Roman Lim, Balz Maag, and Lothar Thiele. 2016. Time-of-Flight Aware Time
Synchronization for Wireless Embedded Systems.. In EWSN. 149–158.

[11] Roman Lim, Christoph Walser, Federico Ferrari, Marco Zimmerling, and Jan
Beutel. 2012. Distributed and synchronized measurements with FlockLab. In 10th
ACM Conf. on Embedded Networked Sensor Systems (SenSys’ 12). 373–374.

[12] ARM Limited. 2013. CoreSight Technical Introduction. White Paper.

[13] Lukas Sigrist and Andres Gomez and Roman Lim and Stefan Lippuner and
Matthias Leubin and Lothar Thiele. 2017. Measurement and Validation of Energy
Harvesting IoT Devices. In Proc. 2017 Design, Automation & Test in Europe Conf.
& Exhibition (DATE 2017). Lausanne, Switzerland.

[14] Markus Schuß and Carlo Alberto Boano and Manuel Weber and Kay Römer. 2017.
A Competition to Push the Dependability of Low-Power Wireless Protocols to
the Edge. In Proceedings of the 14th International Conference on Embedded Wireless
Systems and Networks (EWSN) (Uppsala, Sweden). Junction Publishing, 54–65.

[15] Neal Stollon. 2010. On-Chip Instrumentation: Design and Debug for Systems on
Chip. Springer Science & Business Media.

[16] Roman Trüb, Reto Da Forno, Tonio Gsell, Jan Beutel, and Lothar Thiele. 2019. A
Testbed for Long-Range LoRa Communication. In Proc. 18th Int’l Conf. Information
Processing in Sensor Networks (IPSN ’19). ACM, New York, NY, 342–343.

[17] Geo�rey Werner-Allen, Patrick Swieskowski, and Matt Welsh. 2005. Motelab: A
wireless sensor network testbed. In Fourth Int’l Symp. Information Processing in
Sensor Networks (IPSN), 2005. IEEE, 483–488.


	Abstract
	1 Introduction
	2 Past Experience and Related Work
	3 A Real-time Tracing Architecture
	3.1 Observer Instrumentation Platform
	3.2 Testbed Management and User Interface
	3.3 Publicly Available Testbed
	3.4 FlockLab 2 Observer Key Characteristics

	4 Using FlockLab 2 in Practice
	4.1 Simple Synchronous Transmission Protocol
	4.2 Testing Workflow
	4.3 Debugging and Analysis of the Protocol

	5 Conclusions
	References

