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Floer homology and surface decompositions

ANDRÁS JUHÁSZ

Sutured Floer homology, denoted by SFH , is an invariant of balanced sutured
manifolds previously defined by the author. In this paper we give a formula that
shows how this invariant changes under surface decompositions. In particular, if
.M;  / .M 0;  0/ is a sutured manifold decomposition then SFH.M 0;  0/ is a
direct summand of SFH.M;  / . To prove the decomposition formula we give an
algorithm that computes SFH.M;  / from a balanced diagram defining .M;  / that
generalizes the algorithm of Sarkar and Wang.

As a corollary we obtain that if .M;  / is taut then SFH.M;  /¤ 0 . Other applica-
tions include simple proofs of a result of Ozsváth and Szabó that link Floer homology
detects the Thurston norm, and a theorem of Ni that knot Floer homology detects
fibred knots. Our proofs do not make use of any contact geometry.

Moreover, using these methods we show that if K is a genus g knot in a rational
homology 3–sphere Y whose Alexander polynomial has leading coefficient ag ¤ 0

and if rk1HFK.Y;K;g/ < 4 then Y n N.K/ admits a depth � 2 taut foliation
transversal to @N.K/ .

57M27, 57R58

1 Introduction

In [7] we defined a Floer homology invariant for balanced sutured manifolds. In this
paper we study how this invariant changes under surface decompositions. We need
some definitions before we can state our main result. Recall that Spinc structures on
sutured manifolds were defined in [7]; all the necessary definitions can also be found
in Section 3 of the present paper.

Definition 1.1 Let .M;  / be a balanced sutured manifold and let .S; @S/� .M; @M /

be a properly embedded oriented surface. An element s 2 Spinc.M;  / is called outer
with respect to S if there is a unit vector field v on M whose homology class is
s and vp ¤ �.�S /p for every p 2 S . Here �S is the unit normal vector field of S

with respect to some Riemannian metric on M . Let OS denote the set of outer Spinc

structures.
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Definition 1.2 Suppose that R is a compact, oriented, open surface. Let C be an
oriented simple closed curve in R. If ŒC �D 0 in H1.RIZ/ then RnC can be written
as R1[R2 , where R1 is the component of RnC that is disjoint from @R and satisfies
@R1 D C . We call R1 the interior and R2 the exterior of C .

We say that the curve C is boundary-coherent if either ŒC � ¤ 0 in H1.RIZ/, or if
ŒC �D 0 in H1.RIZ/ and C is oriented as the boundary of its interior.

Theorem 1.3 Let .M;  / be a balanced sutured manifold and let .M;  / S .M 0;  0/

be a sutured manifold decomposition. Suppose that S is open and for every component
V of R. / the set of closed components of S \ V consists of parallel oriented
boundary-coherent simple closed curves. Then

SFH.M 0;  0/D
M

s2OS

SFH.M; ; s/:

In particular, SFH.M 0;  0/ is a direct summand of SFH.M;  /.

In order to prove Theorem 1.3 we generalize the algorithm of Sarkar and Wang [16]
to give an algorithm that computes SFH.M;  / from any given balanced diagram of
.M;  /.

From Theorem 1.3 we will deduce the following two theorems. These provide us with
positive answers to Question 9.19 and Conjecture 10.2 of [7].

Theorem 1.4 Suppose that the balanced sutured manifold .M;  / is taut. Then

Z� SFH.M;  /:

If Y is a closed connected oriented 3–manifold and R � Y is a compact oriented
surface with no closed components then we can obtain a balanced sutured manifold
Y .R/D .M;  /, where M D Y n Int.R� I/ and  D @R� I ; see [7, Example 2.6].
Furthermore, if K � Y is a knot, ˛ 2H2.Y;KIZ/, and i 2 Z then let

1HFK .Y;K; ˛; i/D
M

s2Spinc.Y;K /W
hc1.s/;˛iD2i

1HFK .Y;K; s/:

Theorem 1.5 Let K be a null-homologous knot in a closed connected oriented 3–
manifold Y and let S � Y be a Seifert surface of K . Then

SFH.Y .S//� 1HFK.Y;K; ŒS �;g.S//:
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Remark 1.6 Theorem 1.5 implies that the invariant 1HFS of balanced sutured mani-
folds defined by Ni [9] is equal to SFH .

Putting these two theorems together we get a new proof of the fact proved by Ozsváth
and Szabó [13] that knot Floer homology detects the genus of a knot. In particular, if Y

is a rational homology 3–sphere then 1HFK.K;g.K// is nonzero and 1HFK.K; i/D 0

for i > g.K/.

Further applications include a simple proof of a theorem that link Floer homology
detects the Thurston norm, which was proved for links in S3 in Ozsváth and Szabó [12].
We generalize this result to links in arbitrary 3–manifolds. Here we do not use any
symplectic or contact geometry. We also show that the Murasugi sum formula proved
in [10] is an easy consequence of Theorem 1.3. The main application of our apparatus
is a simplified proof that shows knot Floer homology detects fibred knots. This theorem
was conjectured by Ozsváth and Szabó and first proved by Ni [9]. Here we avoid the
contact topology of Ghiggini [6] and this allows us to simplify some of the arguments
in [9].

To show the strength of our approach we prove the following extension of the main result
of [9]. First we review a few definitions about foliations; see Gabai [4, Definition 3.8].

Definition 1.7 Let F be a codimension one transversely oriented foliation. A leaf of
F is of depth 0 if it is compact. Having defined the depth < p leaves we say that a leaf
L is depth p if it is proper (ie, the subspace topology on L equals the leaf topology),
L is not of depth < p , and xL nL is contained in the union of depth < p leaves. If F
contains nonproper leaves then the depth of a leaf may not be defined.

If every leaf of F is of depth at most n and F has a depth n leaf then we say that F
is depth n.

A foliation F is taut if there is a single circle C transverse to F which intersects every
leaf.

Theorem 1.8 Let K be a null-homologous genus g knot in a rational homology
3–sphere Y . Suppose that the coefficient ag of the Alexander polynomial �K .t/ of
K is nonzero and

rk 1HFK.Y;K;g/ < 4:

Then Y nN.K/ has a depth � 2 taut foliation transverse to @N.K/.

This constitutes progress in the direction of solving [5, Problem 8.4]. The problem has
several variations; the following is one of them.

Problem 1.9 Let K be a knot in S3 . Compute the minimal n such that there is a
depth n foliation on S3 nN.K/.
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2 Preliminary definitions

First we briefly review the basic definitions concerning balanced sutured manifolds and
the Floer homology invariant which we defined for them in [7].

Definition 2.1 A sutured manifold .M;  / is a compact oriented 3–manifold M

with boundary together with a set  � @M of pairwise disjoint annuli A. / and tori
T . /. Furthermore, the interior of each component of A. / contains a suture, ie, a
homologically nontrivial oriented simple closed curve. We denote the union of the
sutures by s. /.

Finally every component of R. / D @M n Int. / is oriented. Define RC. / (or
R�. /) to be those components of @M n Int. / whose normal vectors point out of
(into) M . The orientation on R. / must be coherent with respect to s. /, ie, if ı is a
component of @R. / and is given the boundary orientation, then ı must represent the
same homology class in H1. / as some suture.

Definition 2.2 A sutured manifold .M;  / is called balanced if M has no closed
components, �.RC. //D�.R�. //, and the map �0.A. //!�0.@M / is surjective.

Notation 2.3 Throughout this paper we are going to use the following notation. If K

is a submanifold of the manifold M then N.K/ denotes a regular neighborhood of K

in M .

For the following see Examples 2.3, 2.4, and 2.5 in [7].

Definition 2.4 Let Y be a closed connected oriented 3–manifold. Then the balanced
sutured manifold Y .1/ is obtained by removing an open ball from Y and taking an
annular suture on its boundary.

Suppose that L is a link in Y . The balanced sutured manifold Y .L/D .M;  /, where
M D Y nN.L/ and for each component L0 of L the sutures @N.L0/\ s. / consist
of two oppositely oriented meridians of L0 .

Finally, if S is a Seifert surface in Y then the balanced sutured manifold Y .S/D .N; �/,
where N D Y n Int.S � I/ and � D @S � I .

Geometry & Topology, Volume 12 (2008)
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The following definition can be found for example in Scharlemann [17].

Definition 2.5 Let S be a compact oriented surface (possibly with boundary) whose
components are S1; : : : ;Sn . Then define the norm of S to be

x.S/D
X

iW�.Si /<0

j�.Si/j:

Let M be a compact oriented 3–manifold and let N be a subsurface of @M . For
s 2H2.M;N IZ/ we define its norm x.s/ to be the minimum of x.S/ taken over all
properly embedded surfaces .S; @S/ in .M;N / such that ŒS; @S �D s .

If .S; @S/� .M;N / is a properly embedded oriented surface then we say that S is
norm minimizing in H2.M;N / if S is incompressible and x.S/ D x.ŒS; @S �/ for
ŒS; @S � 2H2.M;N IZ/.

Definition 2.6 A sutured manifold .M;  / is taut if M is irreducible and R. / is
norm minimizing in H2.M;  /.

Next we recall the definition of a sutured manifold decomposition; see Gabai [2,
Definition 3.1].

Definition 2.7 Let .M;  / be a sutured manifold. A decomposing surface is a properly
embedded oriented surface S in M such that for every component � of S \  one of
(1)–(3) holds:

(1) � is a properly embedded nonseparating arc in  such that j�\ s. /j D 1.

(2) � is a simple closed curve in an annular component A of  in the same homology
class as A\ s. /.

(3) � is a homotopically nontrivial curve in a torus component T of  , and if ı is
another component of T \S , then � and ı represent the same homology class
in H1.T /.

Then S defines a sutured manifold decomposition

.M;  / S .M 0;  0/;

M 0
DM n Int.N.S//;where

 0 D . \M 0/[N.S 0C\R�. //[N.S 0�\RC. //;

RC.
0/D ..RC. /\M 0/[S 0C/ n Int. 0/;

R�.
0/D ..R�. /\M 0/[S 0�/ n Int. 0/;

Geometry & Topology, Volume 12 (2008)
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where S 0C (S 0� ) is the component of @N.S/\M 0 whose normal vector points out of
(into) M 0 .

Definition 2.8 A decomposing surface S in .M;  / is called a product disk if S is
a disk such that jD \ s. /j D 2. A surface decomposition .M;  / S .M 0;  0/ is
called a product decomposition if S is a product disk.

Definition 2.9 A decomposing surface S lying in the sutured manifold .M;  / is
called a product annulus if S is an annulus, one component of @S is contained in
RC. /, and the other component is contained in R�. /.

Definition 2.10 A sutured Heegaard diagram is a tuple .†;˛;ˇ/, where † is a
compact oriented surface with boundary and ˛ and ˇ are two sets of pairwise disjoint
simple closed curves in Int.†/.

Every sutured Heegaard diagram .†;˛;ˇ/ uniquely defines a sutured manifold .M;  /

using the following construction. Suppose ˛D f˛1; : : : ; ˛m g and ˇ D fˇ1; : : : ; ˇn g.
Let M be the 3–manifold obtained from †�I by attaching 3–dimensional 2–handles
along the curves ˛i�f0g and ǰ �f1g for i D 1; : : : ;m and j D 1; : : : ; n. The sutures
are defined by taking  D @†� I and s. /D @†� f1=2g.

Definition 2.11 A sutured Heegaard diagram .†;˛;ˇ/ is called balanced if j˛jD jˇj
and the maps �0.@†/! �0.† n

S
˛/ and �0.@†/! �0.† n

S
ˇ/ are surjective.

The following is [7, Proposition 2.14].

Proposition 2.12 For every balanced sutured manifold .M;  / there exists a balanced
diagram defining it.

Definition 2.13 For a balanced diagram let D1; : : : ;Dm denote the closures of the
components of † n .

S
˛[

S
ˇ/ disjoint from @†. Then let D.†;˛;ˇ/ be the free

abelian group generated by fD1; : : : ;Dm g. This is of course isomorphic to Zm . We
call an element of D.†;˛;ˇ/ a domain. An element D of Zm

�0
is called a positive

domain, we write D � 0. A domain P 2D.†;˛;ˇ/ is called a periodic domain if the
boundary of the 2–chain P is a linear combination of full ˛– and ˇ–curves.

Definition 2.14 A balanced diagram .†;˛;ˇ/ is called admissible if every periodic
domain P ¤ 0 has both positive and negative coefficients.
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The following proposition is [7, Corollary 3.12].

Proposition 2.15 If .M;  / is a balanced sutured manifold such that

H2.M IZ/D 0

and if .†;˛;ˇ/ is an arbitrary balanced diagram defining .M;  / then there are no
nonzero periodic domains in D.†;˛; ˇ/. Thus any balanced diagram defining .M;  /

is automatically admissible.

For a surface † let Symd .†/ denote the d –fold symmetric product †�d=Sd . This is a
smooth 2d –manifold. A complex structure j on † naturally endows Symd .†/ with a
complex structure. Let .†;˛;ˇ/ be a balanced diagram, where ˛Df˛1; : : : ; ˛d g and
ˇDfˇ1; : : : ; ˇd g. Then the tori T˛D .˛1�� � ��˛d /=Sd and TˇD .ˇ1�� � ��ˇd /=Sd

are d –dimensional totally real submanifolds of Symd .†/.

Definition 2.16 Let x; y 2 T˛ \Tˇ . A domain D 2 D.†;˛;ˇ/ is said to connect
x to y if for every 1 � i � d the equalities @.˛i \ @D/ D .x\ ˛i/� .y\ ˛i/ and
@.ˇi \ @D/D .x\ˇi/� .y\ˇi/ hold. We are going to denote by D.x; y/ the set of
domains connecting x to y.

Notation 2.17 Let D denote the unit disc in C and let e1 D f z 2 @D W Re.z/ � 0 g

and e2 D f z 2 @D W Re.z/� 0 g.

Definition 2.18 Let x; y 2T˛\Tˇ be intersection points. A Whitney disc connecting
x to y is a continuous map uW D ! Symd .†/ such that u.�i/ D x, u.i/ D y and
u.e1/� T˛ , u.e2/� Tˇ . Let �2.x; y/ denote the set of homotopy classes of Whitney
discs connecting x to y.

Definition 2.19 If z 2 † n .
S
˛ [

S
ˇ/ and if u is a Whitney disc then choose

a Whitney disc u0 homotopic to u such that u0 intersects the hypersurface fzg �
Symd�1.†/ transversally. Define nz.u/ to be the algebraic intersection number u0\

.fzg �Symd�1.†//.

Definition 2.20 Let D1; : : : ;Dm be as in Definition 2.13. For every 1� i �m choose
a point zi 2Di . Then the domain of a Whitney disc u is defined as

D.u/D
mX

iD1

nzi
.u/Di 2D.†;˛;ˇ/:

If � 2 �2.x; y/ and if u is a representative of the homotopy class � then let D.�/D
D.u/.

Geometry & Topology, Volume 12 (2008)



306 András Juhász

Definition 2.21 We define the Maslov index of a domain D2D.†;˛;ˇ/ as follows. If
there is a homotopy class � of Whitney discs such that D.�/DD then let �.D/D�.�/.
Otherwise we define �.D/ to be �1. It follows from Definition 2.20 that � is additive
on D.†;˛;ˇ/. Furthermore, let M.D/ denote the moduli space of holomorphic
Whitney discs u such that D.u/DD and let �M.D/DM.D/=R.

Let .M;  / be a balanced sutured manifold and .†;˛;ˇ/ an admissible balanced
diagram defining it. Fix a coherent system of orientations as in [15, Definition 3.11].
Then for a generic almost complex structure the following holds: for each domain
D such that �.D/ D 1 the moduli space �M.D/ is a compact oriented manifold of
dimension 0, ie, a finite set of points with signs. We denote by CF.†;˛;ˇ/ the
free abelian group generated by the points of T˛ \Tˇ . We define an endomorphism
@W CF.†;˛;ˇ/! CF.†;˛;ˇ/ such that on each generator x 2 T˛ \Tˇ it is given
by the formula

@xD
X

y2T˛\Tˇ

X
fD2D.x;y/W�.D/D1 g

# �M.D/ � y:

Then .CF.†;˛;ˇ/; @/ is a chain complex whose homology depends only on the
underlying sutured manifold .M;  /. We denote this homology group by SFH.M;  /.

For the following see [7, Proposition 9.1] and [7, Proposition 9.2].

Proposition 2.22 If Y is a closed connected oriented 3–manifold then

SFH.Y .1//� bHF .Y /:

Furthermore, if L is a link in Y and EL is an arbitrary orientation of L then

SFH.Y .L//˝Z2 �
1HFL. EL/:

3 Spinc structures and relative Chern classes

First we review the definition of a Spinc structure on a balanced sutured manifold
.M;  / that was introduced in [7]. Note that in a balanced sutured manifold none of
the sutures are tori. Fix a Riemannian metric on M .

Notation 3.1 Let v0 be a nowhere vanishing vector field along @M that points into
M along R�. /, points out of M along RC. /, and on  it is the gradient of the
height function s. /� I ! I . The space of such vector fields is contractible.
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Definition 3.2 Let v and w be nowhere vanishing vector fields on M that agree with
v0 on @M . We say that v and w are homologous if there is an open ball B � Int.M /

such that vj.M nB/ is homotopic to wj.M nB/ through nowhere vanishing vector
fields rel @M . We define Spinc.M;  / to be the set of homology classes of nowhere
vanishing vector fields v on M such that vj@M D v0 .

Definition 3.3 Let .M;  / be a balanced sutured manifold and .†;˛;ˇ/ a balanced di-
agram defining it. To each x2T˛\Tˇ we assign a Spinc structure s.x/2Spinc.M;  /

as follows. Choose a Morse function f on M compatible with the given balanced
diagram .†;˛;ˇ/. Then x corresponds to a multi-trajectory x of grad.f / connecting
the index one and two critical points of f . In a regular neighborhood N.x/ we
can modify grad.f / to obtain a nowhere vanishing vector field v on M such that
vj@M D v0 . We define s.x/ to be the homology class of this vector field v .

Proposition 3.4 The vector bundle v?
0

over @M is trivial if and only if for every
component F of @M the equality �.F \RC. //D �.F \R�. // holds.

Proof Since v?
0
jRC. /D TRC. / and v?

0
jR�. /D�TR�. / we get that˝

e.v?0 jF /; ŒF �
˛
D �.F \RC. //��.F \R�. //:

Moreover, the rank two bundle v?
0
jF is trivial if and only if its Euler class vanishes.

Definition 3.5 We call a sutured manifold .M;  / strongly balanced if for every
component F of @M the equality �.F \RC. //D �.F \R�. // holds.

Remark 3.6 Note that if .M;  / is balanced then we can associate to it a strongly
balanced sutured manifold .M 0;  0/ such that .M;  / can be obtained from .M 0;  0/

by a sequence of product decompositions. We can construct such an .M 0;  0/ as follows.
If F1 and F2 are distinct components of @M then choose two points p1 2 s. /\F1

and p2 2 s. /\F2 . For i D 1; 2 let Di be a small neighborhood of pi homeomorphic
to a closed disc. We get a new sutured manifold by gluing together D1 and D2 . Then
.M;  / can be retrieved by decomposing along D1 �D2 . By repeating this process
we get a sutured manifold .M 0;  0/ with a single boundary component. Since .M;  /

was balanced .M 0;  0/ is strongly balanced. By adding such product one-handles we
can even achieve that  is connected.

Definition 3.7 Suppose that .M;  / is a strongly balanced sutured manifold. Let t

be a trivialization of v?
0

and let s 2 Spinc.M;  /. Then we define

c1.s; t/ 2H 2.M; @M IZ/
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to be the relative Euler class of the vector bundle v? with respect to the trivialization
t . In other words, c1.s; t/ is the obstruction to extending t from @M to a trivialization
of v? over M .

Definition 3.8 Let S be a decomposing surface in a balanced sutured manifold .M;  /

such that the positive unit normal field �S of S is nowhere parallel to v0 along @S .
This holds for generic S . We endow @S with the boundary orientation. Let us denote
the components of @S by T1; : : : ;Tk .

Let w0 denote the projection of v0 into TS , this is a nowhere zero vector field.
Moreover, let f be the positive unit tangent vector field of @S . For 1 � i � k we
define the index I.Ti/ to be the number of times w0 rotates with respect to f as we
go around Ti . Then define

I.S/D

kX
iD1

I.Tk/:

Let p.�S / be the projection of �S into v? . Observe that p.�S /j@S is nowhere zero.
For 1� i � k we define r.Ti ; t/ to be the rotation of p.�S /j@Ti with respect to the
trivialization t as we go around Ti . Moreover, let

r.S; t/D

kX
iD1

r.Ti ; t/:

We introduce the notation

c.S; t/D �.S/C I.S/� r.S; t/:

Lemma 3.9 Let .M;  / be a balanced sutured manifold and let S be a decomposing
surface as in Definition 3.8.

(1) If T is a component of @S such that T 6�  then

I.T /D�
jT \ s. /j

2
:

(2) Suppose that T1; : : : ;Ta are components of @S such that T DT1[� � �[Ta� 

is parallel to s. / and �S points out of M along T . Then I.Tj / D 0 for
1� j � aI moreover,

aX
jD1

r.Tj ; t/D �.RC. //:

Geometry & Topology, Volume 12 (2008)
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Proof First we prove part (1). We can suppose that w0 is tangent to T exactly at the
points of @T \ s. /. Then at a point p 2 T \ s. / we have w0=jw0j D f if and only
if T goes from R�. / to RC. / and in that case w0 rotates from the inside of S to
the outside; see Figure 1. Thus w0 rotates �jT \ s. /j=2 times with respect to f as
we go around T .

RC

R�

S

w0

f

s. /

Figure 1: If T 6�  then the index I.T / is �jT \ s. /j=2 .

Now we prove part (2). Let 1 � j � a. Since �S points out of M along Tj we get
that w0 points into S along Tj . So w0 and f are nowhere equal along Tj , and thus
I.Tj /D 0.

Since T is parallel to s. / it bounds a surface RC � @M which is diffeomorphic
to RC. / and contains RC. /. Since �S points out of M along T there is an
isomorphism i W v?

0
jRC! TRC such that i.p.�S // is an outward normal field of

RC along @RC . Moreover, i.t jRC/ gives a trivialization of TRC . Using the
Poincaré–Hopf theorem we get that p.�S / rotates �.RC/ D �.RC. // times with
respect to t as we go around T .

Recall that we defined the notion of an outer Spinc structure in Definition 1.1.

Lemma 3.10 Suppose that .M;  / is a strongly balanced sutured manifold. Let t be
a trivialization of v?

0
, let s 2 Spinc.M;  /, and let S be a decomposing surface in

.M;  / as in Definition 3.8. Denote the components of S by S1; : : : ;Sk : Then s is
outer with respect to S if and only if

(3–1) h c1.s; t/; ŒSi � i D c.Si ; t/ for every 1� i � k:

In particular, if s 2OS then

h c1.s; t/; ŒS � i D

kX
iD1

c.Si ; t/D c.S; t/:

Geometry & Topology, Volume 12 (2008)
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Proof Endow M with an arbitrary Riemannian metric. First we show that if s 2OS

then Equation (3–1) holds. Since s 2OS implies that s 2OSi
for every 1� i � k we

can assume that S is connected. Using the naturality of Chern classes it is sufficient to
prove that if v is a unit vector field over S that agrees with v0 over @S and is nowhere
equal to ��S then h c1.v

?; t/; ŒS � i D c.S; t/.

If we project �S into v? we get a section p.�S / of v? that vanishes exactly where
�S D v . We can perturb v slightly to make all tangencies between v? and S nonde-
generate. Let e and h denote the number of elliptic, respectively hyperbolic tangencies
between v? and S . At each such tangency the orientation of v? and TS agree. Thus
h c1.v

?; t1/; ŒS � i D e� h, where t1 D p.�S /j@S . Since˝
c1.v

?; t1/� c1.v
?; t/; ŒS �

˛
D r.S; t/

we get that ˝
c1.v

?; t/; ŒS �
˛
D e� h� r.S; t/:

On the other hand, if we project v into TS we get a vector field w on S that is zero
exactly at the points where �S D v as well. Note that w has index 1 exactly where v?

and S have an elliptic tangency and has index �1 at hyperbolic tangencies. Moreover,
wj@S D w0 . If we extend f to a vector field f1 over S the sum of the indices of f1

will by �.S/ by the Poincaré–Hopf theorem. Putting these observations together we
get that

I.S/D .e� h/��.S/:

So we conclude that˝
c1.v

?; t/; ŒS �
˛
D �.S/C I.S/� r.S; t/D c.S; t/:

Now we prove that if for s 2 Spinc.M;  / Equation (3–1) holds then s 2 OS . Let
STM denote the unit sphere bundle of TM . Then v0j@S is a section over @S
of .STM jS/ n .��S /, which is a bundle over S with contractible fibers. Thus
v0j@S extends to a section v1W S ! STM jS that is nowhere equal to ��S . In
the first part of the proof we showed that for such a vector field v1 the equation
h c1.v

?
1
; t/; ŒS � i D c.S; t/ holds.

Let v0 be a unit vector field over M whose homology class is s and let v D v0jS .
Since s satisfies Equation (3–1) we get that˝

c1.v
?; t/� c1.v

?
1 ; t/; ŒSi �

˛
D 0 for every 1� i � k:

The obstruction class o.v; v1/ 2H 2.S; @S IZ/ vanishes if and only if the sections v
and v1 of STM jS are homotopic relative to @S . A cochain o representing o.v; v1/

can be obtained as follows. First take a triangulation of S and a trivialization of
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STM jS . Then v and v1 can be considered to be maps from S to S2 . One can
homotope v rel @S to agree with v1 on the one-skeleton of S . The value of o on a
2–simplex � is the difference of vj� and v1j�, which is an element of �2.S

2/� Z.
Since 2o.v; v1/ D c1.v

?; t/� c1.v
?
1
; t/ and H 2.S; @S IZ/ � Zk is torsion free we

get that o.v; v1/D 0, ie, v is homotopic to v1 rel @S . By extending this homotopy of
v0 fixing v0j@M we get a vector field v0

1
on M that agrees with v1 on S . Thus s can

be represented by the vector field v0
1

that is nowhere equal to ��S , and so s 2OS .

In light of Lemma 3.10 we can reformulate Theorem 1.3 for strongly balanced sutured
manifolds as follows.

Theorem 3.11 Let .M;  / be a strongly balanced sutured manifold; furthermore, let
.M;  / S .M 0;  0/ be a sutured manifold decomposition. Suppose that S is open
and for every component V of R. / the set of closed components of S \V consists
of parallel oriented boundary-coherent simple closed curves. Denote the components of
S by S1; : : : ;Sk and choose a trivialization t of v?

0
. Then

SFH.M 0;  0/D
M

s2Spinc.M; /W
h c1.s;t/;ŒSi � iDc.Si ;t/ 81�i�k

SFH.M; ; s/:

SFH.M 0;  0/�
M

s2Spinc.M; /W
h c1.s;t/;ŒS � iDc.S;t/

SFH.M; ; s/:In particular,

4 Finding a balanced diagram adapted to a decomposing sur-
face

Definition 4.1 We say that the decomposing surfaces S0 and S1 are equivalent if
they can be connected by an isotopy through decomposing surfaces.

Remark 4.2 During an isotopy through decomposing surfaces the number of arcs of
S \  can never change. Moreover, if S0 and S1 are equivalent then decomposing
along them give the same sutured manifold.

Definition 4.3 A balanced diagram adapted to the decomposing surface S in .M;  /

is a quadruple .†;˛;ˇ;P / that satisfies the following conditions. .†;˛;ˇ/ is a
balanced diagram of .M;  /I furthermore, P � † is a quasi-polygon (ie, a closed
subsurface of † whose boundary is a union of polygons) such that P \ @† is exactly
the set of vertices of P . We are also given a decomposition @P D A [ B , where
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both A and B are unions of pairwise disjoint edges of P . This decomposition
has to satisfy the property that ˛ \ B D ∅ and ˇ \ A D ∅ for every ˛ 2 ˛ and
ˇ 2 ˇ . Finally, S is given up to equivalence by smoothing the corners of the surface
.P � f1=2g/ [ .A � Œ1=2; 1�/ [ .B � Œ0; 1=2�/ � .M;  / (see Definition 2.10). The
orientation of S is given by the orientation of P � †. We call a tuple .†;˛;ˇ;P /
satisfying the above conditions a surface diagram.

Proposition 4.4 Suppose that S is a decomposing surface in the balanced sutured
manifold .M;  /. If the boundary of each component of S intersects both RC. / and
R�. / (in particular S is open) and @S has no closed component lying entirely in 
then there exists a Heegaard diagram of .M;  / adapted to S .

Proof We are going to construct a self-indexing Morse function f on M with no
minima and maxima as in the proof of [7, Proposition 2.13] with some additional prop-
erties. In particular, we require that f jR�. /��1 and f jRC. /� 4. Furthermore,
f j is given by the formula p2 ı' , where 'W  ! s. /� Œ�1; 4� is a diffeomorphism
such that '.s. //D s. /� f3=2g and p2W s. /� Œ�1; 4�! Œ�1; 4� is the projection
onto the second factor. We choose ' such that each arc of S \  maps to a single
point under p1 ı'W  ! s. /.

s. /

P

K0

D

L

RC

Figure 2: This diagram shows a decomposing surface which is a disk that
intersects s. / in four points.

We are going to define a quasi-polygon P � S such that S \ s. / is the set of
vertices of P ; see Figure 2. Let K1; : : : ;KmCn be the closures of the components
of @S n s. / enumerated such that Ki is an arc for 1� i �m and Ki is a circle for
mC 1� i �mC n.
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For every 1 � i � m choose an arc Li whose interior lies in int.S/ parallel to Ki

and such that @Li D @Ki . Moreover, let Di be the closed bigon bounded by Ki and
Li and define K0i D Ki \R. /. Also choose a diffeomorphism di W Di ! I � I

that takes K0i to I � f0g and Li to I � f1g and such that for each t 2 Œ0; 1� we have
f ı d�1

i .0; t/D f ı d�1
i .1; t/. Note that f is already defined on @M . We define f

on Di by the formula
f .d�1

i .u; t//D f .d�1
i .0; t//:

If mC 1� i �mC n then let Li be a circle parallel to Ki lying in the interior of S .
Let Di be the annulus bounded by Ki and Li . Choose a diffeomorphism

di W Di! S1
�Ji ;

where Ji D Œ3=2; 4� if Ki �RC. / and Ji D Œ�1; 3=2� otherwise. In both cases we
require that di.Li/D 3=2. Then let f jDi D �2 ı di , where �2W S

1 �Ji ! Ji is the
projection onto the second factor.

We take

@P D

mCn[
iD1

Li ;

and Li will be an edge of @P for every 1� i�mCn. The decomposition @PDA[B is
given by taking A to be the union of those edges Li of @P for which Ki\RC. /¤∅.

Let P be the closure of the components of S n @P that are disjoint from @S . For
p 2 P let f .p/D 3=2. Note that the function f jS is not smooth along @P , so we
modify S by introducing a right angle edge along @P (such that we get back S after
smoothing the corners). There are essentially two ways of creasing S along an edge
Li of P . Let �P D �S jP be the positive unit normal field of P in M . If Li �A then
we choose the crease such that �P jLi points into Di and if Li � B then we require
that �P jLi points out of Di .

Now extend f from @M [S to a Morse function f0 on M . Then

P D S \f �1
0 .3=2/:

We choose the extension f0 as follows. For 1 � i � mC n let N.Di/ be a regular
neighborhood of Di and let Ti W N.Di/! Di � Œ�1; 1� be a diffeomorphism. Then
for .x; t/ 2Di � Œ�1; 1� let

f0.T
�1
i .x; t//D f .x/:

Due to the choice of the creases we can define f0 such that grad.f /jP ¤��S . Thus
we have achieved that for each a2A the gradient flow line of f0 coming out of a ends
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on RC. / and for each b 2B the negative gradient flow line of f0 going through b

ends on R�. /.

By making f0 self-indexing we obtain a Morse function f . Suppose that the Heegaard
diagram corresponding to f is .†;˛;ˇ/. We have two partitions ˛D ˛0[˛1 and
ˇ D ˇ0[ˇ1 , where curves in ˛1 correspond to index one critical points p of f0 for
which f0.p/ > 3=2 and ˇ1 comes from those index two critical points q of f0 for
which f0.q/ < 3=2. Then f �1.3=2/ differs from f �1

0
.3=2/ as follows. Add an S2

component to f �1
0
.3=2/ for each index zero critical point of f0 lying above 3=2 and

for each index three critical point of f0 lying below 3=2. Then add two-dimensional
one-handles to the previous surface whose belt circles are the curves in ˛1[ˇ1 .

Let P 0 D S \ f �1.3=2/. Then @P 0 is the union of @P and some of the feet of the
additional tubes. Next we are going to modify P 0 such that it becomes disjoint from
these additional tubes and it defines a surface equivalent to S .

Let S0 be a component of S and let P 0
0
DP 0\S0 . Since @S0 intersects both RC. /

and R�. / we see that A\P 0
0
¤∅ and B \P 0

0
¤∅. Because S0 is connected P 0

0

is also connected. Note that for ˛ 2 ˛1 we have ˛\P 0 D ∅. Thus we can achieve
using isotopies that every arc of ˛\P 0 for each ˛ 2˛0 intersects A. Indeed, for every
component P 0

0
of P 0 choose an arc '0 � P 0

0
whose endpoint lies on A and intersects

every ˛–arc lying in P 0
0

. Then simultaneously apply a finger move along '0 to all
the ˛–arcs that intersect '0 . Similarly, we can achieve that each arc of ˇ \P 0 for
every ˇ 2 ˇ0 intersects B . This can be done keeping both the ˛– and the ˇ–curves
pairwise disjoint.

Let F � @P 0 be the foot of a tube whose belt circle is a curve ˛1 2 ˛1 . Pick a
point p 2 F . Since every arc of ˇ \P 0 for ˇ 2 ˇ0 intersects B each component
of P 0 n .

S
ˇ0/ intersects B . Thus we can connect p to B with an arc ' lying in

P 0 n .
S
ˇ/. Now handleslide every ˛ 2 ˛0 that intersects ' over ˛1 along ' . Then

we can handleslide B over ˛1 along ' . To this handleslide corresponds an isotopy of
S through decomposing surfaces such that S \ f �1.3=2/ changes the required way
(given by taking the negative gradient flow lines of f flowing out of B ). Thus we have
removed F from P 0 . The case when the belt circle of the tube lies in ˇ1 is completely
analogous. By repeating this process we can remove all the additional one-handles
from P 0 . Call this new quasi-polygon P .

Finally, cancel every index zero critical point with an index one critical point and every
index three critical point with an index two critical point and delete the corresponding
˛– and ˇ–curves. The balanced diagram obtained this way, together with the quasi-
polygon P , defines S .
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Lemma 4.5 Let .M;  / S .M 0;  0/ be a surface decomposition such that for every
component V of R. / the set of closed components of S \ V consists of parallel
oriented boundary-coherent simple closed curves. Then S is isotopic to a decomposing
surface S 0 such that each component of @S 0 intersects both RC. / and R�. / and
decomposing .M;  / along S 0 also gives .M 0;  0/. Furthermore, OS DOS 0 .

Proof We call a tangency between two curves positive if their positive unit tangent
vectors coincide at the tangency point. Our main observation is the following. Isotope a
small arc of @S on @M using a finger move through  such that during the isotopy we
have a positive tangency between @S and s. / (thus introducing two new intersection
points between @S and s. /). Let the resulting isotopy of @S be f st W 0 � t � 1 g.
Attach the collar @M � I to M to get a new manifold �M and attach

S
t2I .st � ftg/

to S to obtain a surface zS � �M . Then decomposing

. �M ;  � f1g/� .M;  /

along zS we also get .M 0;  0/; see Figure 3. Furthermore, zS is isotopic to S .

Let 0 be a component of  such that 0\ @S consists of closed curves �1; : : : ; �k .
First isotope S in a neighborhood of @S \ 0 through decomposing surfaces such that
after the isotopy �1; : : : ; �k are all parallel to s. / and �S points out of M along
@S \ 0 . This new decomposing surface is equivalent to the original. Then isotope
�1; : : : ; �k into R�. /. Decomposing along S still gives .M 0;  0/. Let ı be an
oriented arc that intersects �1; : : : ; �k , and s. / exactly once and its endpoint lies
in RC. /. Applying a finger move to �1; : : : ; �k simultaneously along ı we get a
positive tangency between each �i and s. / since they are oriented coherently.

Let V be a component of R. / and let C1; : : : ;Ck be the parallel oriented closed
components of S \V . Choose a small arc T that intersects every Ci in a single point.
Let @T D fx;yg. First suppose that ŒC1�¤ 0 in H1.V IZ/. Then we can connect both
x and y to s. / by an arc whose interior lies in @M n .@S [ s. //. This is possible
since C1 does not separate @V and now @S \  has no closed components. This way
we obtain an arc ı � @M such that for every 1 � i � k we have jı \Ci j D 1 and
@ı D ı\ s. /I moreover,

ı\ @S D ı\ .C1[ � � � [Ck/:

Recall that s. / is oriented coherently with @V (this is especially important if s. /

is disconnected and ı connects two distinct components of s. /) and the curves
C1; : : : ;Ck are also oriented coherently. Thus with exactly one of the orientations of
ı if we apply a finger move to all the Ci simultaneously we get a positive tangency
between each Ci and @V , and thus also s. /.
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Now suppose that ŒC1� D 0 in H1.V IZ/ and C1 is oriented as the boundary of its
interior. Then exactly one of x and y can be connected to s. / by an arc ı0 whose
interior lies in @M n .@S [ s. //. The arc T [ ı0 defines an oriented arc ı whose
endpoint lies on s. /. If we apply a finger move to each Ci along ı we get positive
tangencies with s. / because every Ci is oriented as the boundary of its interior and
s. / is oriented coherently with respect to @V .

Continuing this process we get a surface S 0 isotopic to S such that each component
of @S 0 intersects s. / and decomposing .M;  / along S 0 we still get .M 0;  0/.

S
v



S 0
v



Figure 3: Making a decomposing surface good

To show that OS DOS 0 first observe that if S0 and S1 are equivalent then OS0
DOS1

.
Now suppose that for some component 0 of  the components of @S \0 are curves
�1; : : : ; �k parallel to s. / such that �S points out of M along them. Moreover,
suppose that S 0 only differs from S by isotoping �1; : : : ; �k into R�. /. If s is a
Spinc structure and v is a vector field representing it, then in a standard neighborhood
of 0 we have v ¤˙�S and v ¤˙�S 0 . So s 2OS if and only if s 2OS 0 .

Thus we only have to show that OS DOS 0 when S and S 0 are related by a small finger
move of @S that crosses s. / through a positive tangency. Let s be a Spinc structure
on .M;  / and v a vector field representing it. Then in a standard neighborhood U

of the tangency point we can perform the isotopy such that in U we have v ¤˙�S I

furthermore, v? and S 0 only have a single hyperbolic tangency, where v D �S 0 (see
Figure 3). Thus s 2OS if and only if s 2OS 0 . Note that if the tangency of @S and
s. / is negative during the isotopy then at the hyperbolic tangency v D��S 0 .

If .M;  / is strongly balanced then OS DOS 0 also follows from Lemma 3.10. Indeed,
h c1.s; t/; ŒS � i is invariant under isotopies of S . As before, we can suppose that the
closed components of @S \  are parallel to s. / and �S points out of M along
them. In the above proof I and r are unchanged when we isotope �i from 0 to
R�. / since we can achieve that �S and v are never parallel along @S , so I and
r change continuously. When we do a finger move I decreases by 1 according to
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part (1) of Lemma 3.9 and r also decreases by 1, as can be seen from Figure 3. Thus
c.S; t/D c.S 0; t/.

Definition 4.6 We call a decomposing surface S � .M;  / good if it is open and
each component of @S intersects both RC. / and R�. /. We call a surface diagram
.†;˛;ˇ;P / good if A and B have no closed components.

Remark 4.7 Because of Lemma 4.5 it is sufficient to prove Theorem 1.3 for good
decomposing surfaces. According to Proposition 4.4 for each good decomposing
surface we can find a good surface diagram adapted to it.

Proposition 4.8 Suppose that S is a good decomposing surface in the balanced
sutured manifold .M;  /. Then there exists an admissible surface diagram of .M;  /

adapted to S .

Proof According to Remark 4.7 we can find a good surface diagram .†;˛;ˇ;P /

adapted to S .

Here we improve on the idea of the proof of [7, Proposition 3.15]. Choose pairwise
disjoint arcs 1; : : : ; k � † nB whose endpoints lie on @† and together generate
H1.†nB; @.†nB/IZ/. This is possible because each component of @.†nB/ intersects
@†. Choose curves  0

1
; : : : ;  0

k
such that i and  0i are parallel and oriented oppositely.

Then wind the ˛ curves along 1; 
0
1
; : : : ; k ; 

0
k

as in the proof of [7, Proposition 3.15].
A similar argument as there gives that after the winding .†;˛;ˇ/ will be admissible.
Note that every ˛ 2 ˛ lies in † nB . Thus if a linear combination A of ˛–curves
intersects every i algebraically zero times then A is null-homologous in † nB , and
thus also in †. Since the winding is done away from B the new diagram is still adapted
to S .

5 Balanced diagrams and surface decompositions

Definition 5.1 Let .†;˛;ˇ;P / be a surface diagram (see Definition 4.3). Then we
can uniquely associate to it a tuple D.P /D .†0;˛0;ˇ 0;PA;PB;p/, where .†0;˛0;ˇ 0/
is a balanced diagram, pW †0!† is a smooth map, and PA;PB �†

0 are two closed
subsurfaces (see Figure 4).

To define †0 take two disjoint copies of P that we call PA and PB together with
diffeomorphisms pAW PA ! P and pBW PB ! P . Cut † along @P and remove
P . Then glue A to PA using p�1

A
and B to PB using p�1

B
to obtain †0 . The map
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pW †0! † agrees with pA on PA and pB on PB , and it maps †0 n .PA [PB/ to
†nP using the obvious diffeomorphism. Finally, let ˛0D fp�1.˛/nPB W ˛ 2 ˛ g and
ˇ 0 D fp�1.ˇ/ nPA W ˇ 2 ˇ g.

D.P / is uniquely characterized by the following properties. The map p is a local
diffeomorphism in int.†0/I furthermore, p�1.P / is the disjoint union of PA and PB .
Moreover, pjPAW PA! P , and pjPBW PB! P , and also

pj.†0 n .PA[PB//W †
0
n .PA[PB/!† nP

are diffeomorphisms. Furthermore, p.int.†0/\@PA/D int.A/ and p.int.†0/\@PB/D

int.B/. Finally, pj.[˛0/W
S
˛0 !

S
˛ and pj.

S
ˇ 0/W

S
ˇ 0 !

S
ˇ are diffeomor-

phisms. Thus .
S
˛0/\PB D∅ and .

S
ˇ 0/\PA D∅.

˛0

ˇ0

PB

PA

P

p

˛

ˇ

Figure 4: Balanced diagrams before and after a surface decomposition

There is a unique holomorphic structure on †0 that makes the map p holomorphic.
Since p is a local diffeomorphism in int.†0/ it is even conformal.

So p is 1W1 over † nP , it is 2W1 over P , and ˛ curves are lifted to PA and ˇ curves
to PB .

Proposition 5.2 Let .M;  / be a balanced sutured manifold and

.M;  / S .M 0;  0/

a surface decomposition. If .†;˛;ˇ;P / is a surface diagram adapted to S and
if D.P / D .†0;˛0;ˇ 0;PA;PB;p/ then .†0;˛0;ˇ 0/ is a balanced diagram defining
.M 0;  0/.
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Proof Let .M1; 1/ be the sutured manifold defined by the diagram .†0;˛0;ˇ 0/.
We are going to construct an orientation preserving homeomorphism hW .M1; 1/!

.M 0;  0/ that takes RC.1/ to RC.
0/. Figure 5 is a schematic illustration of the

proof.

Let NA and NB be regular neighborhoods of PA and PB in †0 so small that ˛0\NBD

∅ and ˇ0\NA D∅ for every ˛0 2 ˛0 and ˇ0 2 ˇ 0 . Furthermore, let N DNA[NB .
Define �W †0! I to be a smooth function such that �.x/ D 1 for x 2 †0 nN and
�.x/D 1=2 for x 2 PA [PB . Moreover, let �W †0! I be a smooth function such
that �.x/D 1��.x/ for x 2NB and �.x/D 0 for x 2†0 nNB .

The homeomorphism h is constructed as follows. For .x; t/ 2†0 � I let

h.x; t/D .p.x/; �.x/C�.x/t/ :

Since for every x 2†0 and t 2 I the inequality 0� �.x/C�.x/t � 1 holds the map
h takes †0 � I into †� I � .M;  /. Choose an ˛0 2 ˛0 and let ˛ D p.˛0/ 2 ˛. Let
D˛0 be the 2–handle attached to †0�I along ˛0�f0g and D˛ the 2–handle attached
to †� I along ˛ � f0g. Since ˛0 \NB D ∅ and because �.x/C �.x/ � 0 D 0 for
x 2 †0 nNB we see that h.˛0 � f0g/ D ˛ � f0g. Thus h naturally extends to a map
from .†0 � I/[D˛0 to .†� I/[D˛ . Similarly, for ˇ0 2 ˇ 0 we have ˇ0\NA D∅.
Furthermore, �.x/C�.x/�1D1 for x 2†0nNA . Thus h also extends to the 2–handles
attached along the ˇ–curves. So now we have a local homeomorphism from .M1; 1/

into .M;  /.

Recall that S � .M;  / is equivalent to the surface obtained by smoothing

.P � f1=2g/[ .A� Œ1=2; 1�/[ .B � Œ0; 1=2�/�†� I:

Since h.NB � f0g/[ h.NA � f1g/ is a smoothing of the above surface we can assume
that it is in fact equal to S . Indeed, for x 2 PA we have that �.x/C �.x/ � 1D 1=2

and for x 2 PB the equality �.x/C �.x/ � 0 D 1 � �.x/ D 1=2 holds. Moreover,
p.@NA n@†

0/DA0 is a curve parallel to A, thus for x 2 @NA n@†
0 we have h.x; 1/ 2

A0�f1g. Similarly, h.x; 0/2B0�f0g for x 2 @NB n@†
0 , where B0 is a curve parallel

and close to B .

Let EA �†� I be the set of points .y; s/ such that y D p.x/ for some x 2NA nPA

and s � �.x/C �.x/. Define EB � †� I to be the set of those points .y; s/ such
that y D p.x/ for some x 2NB nPB and s � �.x/. Now we are going to show that
the map

hj.†0 � I n .NA � f1g[NB � f0g//! .†� I/ n .S [EA[EB/
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†0

1

1=2

0
�

NB

�

PB

†0

1

1=2

0 �

NA

�

PA

PB NB †0

PANA†0

˛0

h

†

EB
B

P
A

EAS

˛

†

Figure 5: The left hand side shows the homeomorphism h . On the right we
can see the functions � and � .

is a homeomorphism by constructing its continuous inverse. Let

.y; s/ 2 .†� I/ n .S [EA[EB/:

If y 2†np.N / then h�1.y; s/D .p�1.y/; s/. If y 2P and s< 1=2 then h�1.y; s/D

.p�1.y/\PA; 2s/ and for s > 1=2 we have h�1.y; s/D .p�1.y/\PB; 2s� 1/. In
the case when y 2 p.NA nPA/ and s <�.x/C�.x/ we let h�1.y; s/D .x; t/, where
x D p�1.y/ and t D .s��.x//=�.x/ < 1. Note that here �.x/D 0, and thus t � 0.
Finally, for y 2p.NB nPB/ and s >�.x/ define h.y; s/D .x; t/, where xDp�1.y/

and t D .s��.x//=�.x/ > 0. Here t � 1 because s � 1 and �.x/D 1��.x/.

Recall that we defined the surfaces S 0C and S 0� in Definition 2.7. Since S is oriented
coherently with P �f1=2g thickening S 0C\R�. / in @M 0 can be achieved by cutting
off its neighborhood EB and taking B � Œ0; 1=2� � @EB to belong to  0 . Similarly,
EA is a neighborhood of S 0� \RC. / in M 0 , and cutting it off from M 0 we can
add A � Œ1=2; 1� to  0 . Thus we can identify M 0 with the metric completion of
M n .S [EA[EB/ and  0 with . \M 0/[ .A� Œ1=2; 1�/[ .B � Œ0; 1=2�/.

What remains is to show that h.1/D 
0 . If x 2 .@†0/n .PA[PB/ then for any t 2 I

we have
h.x; t/D .p.x/; �.x/C�.x/t/ 2  \M 0

�  0

because p.x/ 2 @†. On the other hand, for x 2 @†0 \ PA and t 2 I we have
h.x; t/ 2 B � Œ0; 1=2�, which is part of  0 by the above construction. The case
x 2 @†0\PB is similar.
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Remark 5.3 It is not hard to show that the homeomorphism h constructed in the
above proof is a actually a diffeomorphism.

Definition 5.4 Let .†;˛;ˇ;P / be a surface diagram. We call an intersection point
x 2T˛\Tˇ outer if x\P D∅. We denote by OP the set of outer intersection points.
Then IP D .T˛ \Tˇ/ nOP is called the set of inner intersection points.

Lemma 5.5 Let .M;  / S .M 0;  0/ be a surface decomposition and suppose that
.†;˛;ˇ;P / is a surface diagram adapted to S . Let x 2 T˛ \Tˇ . Then x 2 OP if
and only if s.x/ 2OS . Furthermore, if D.P /D .†0;˛0;ˇ 0;PA;PB;p/ then p gives
a bijection between T˛0 \Tˇ0 and OP .

Proof Let f be a Morse function on M compatible with the diagram .†;˛;ˇ/. If x2
OP then the multi-trajectory x (see Definition 3.3) is disjoint from S . Consequently,
the regular neighborhood N.x/ can be chosen to be disjoint from S . Thus s.x/
can be represented by a unit vector field v that agrees with grad.f /= kgrad.f /k in a
neighborhood of S . Since the orientation of S is compatible with the orientation of
P �†, even after smoothing the corners of .P�f1=2g/[.A�Œ1=2; 1�/[.B�Œ0; 1=2�/
we have that v is nowhere equal to ��S . So we see that s.x/ 2OS .

S S
�

DC

D�

bC

b�

v

Figure 6: This is a schematic two-dimensional picture illustrating the proof
of Lemma 5.5.

Now suppose that x 2 IP . Let x be the multi-trajectory associated to x. Since S is
open its tangent bundle TS is trivial. Thus there is a trivialization � D .�1; �2; �3/ of
TM j.S[N.x// such that �3jS D �S and .�1jS; �2jS/ is a trivialization of TS . The
Spinc structure s.x/ can be represented by a unit vector field v such that vj.M nN.x//

agrees with

g D
grad.f /j.M nN.x//

kgrad.f /j.M nN.x//k
:

If v was outer then for any ball B3 �M nS the vector field vj.M nB3/ would be
homotopic through unit vector fields rel @M to a field v0 such that v0jS is nowhere
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equal to ��S . So to prove that s.x/ 62 OS it is sufficient to show that vjS is not
homotopic through unit vector fields rel @S to a vector field v0 on S that is nowhere
equal to ��S . In the trivialization � we can think of vj.S [N.x// as a map from
S [N.x/ to S2 and ��S corresponds to the South Pole s 2 S2 . If we put S in
generic position v0D vj@M is nowhere equal to ��S . Thus v maps @S into S2 nfsg.

Let x 2 x and let x be the component of x containing x . Then x\S D∅ if x 62P

and x \S D fxg if x 2 P . So suppose that x 2 P . We denote N.x/ by B and let
BC and B� be the closures of the two components of BnS I an index one critical point
of f lies in B� and an index two critical point in BC . Moreover, let D˙ D @B˙ nS .
The vector field grad.f /jB is a map from B to R3 in the trivialization � . Let

b˙ D
grad.f /j@B˙
kgrad.f /j@B˙k

(see Figure 6). Since B˙ contains an index ˙1 singularity of grad.f / we see that
#b�1
˙
.s/D˙1. Here # denotes the algebraic number of points in a given set. Since

grad.f /j.S \B/ is equal to �S we even get that #.b�1
˙
.s/\D˙/D˙1. Let v˙ D

vj@B˙ . Then #v�1
˙
.s/D 0 because v is nowhere zero. The co-orientation of S is given

by grad.f /, so S\B�S is oriented coherently with @B� . Moreover, vjD�Db�jD� ,
so we see that #.v�1

� .s/\S/D 1. We have seen that gj.S nP /D vj.S nP / is nowhere
equal to ��S . So we conclude that #.vjS/�1.s/D jx\P j. Thus if x 2 IP then vjS
is not homotopic to a map S ! S2 n fsg through a homotopy fixing @S . This means
that s.x/ 62OS .

The last part of the statement follows from the fact that p is a diffeomorphism between
†0 n .PA[PB/ and † nP , furthermore .

S
˛0/\PB D∅ and .

S
ˇ 0/\PA D∅.

Remark 5.6 We can slightly simplify the proof of Lemma 5.5 when OP ¤∅. Suppose
that x 2 IP and let y 2OP be an arbitrary intersection point. Using [7, Lemma 4.7]
we get that s.x/� s.y/D PDŒx� y�. Since the co-orientation of P � S is given by
grad.f / we get that

h s.x/� s.y/; ŒS � i D jx\S j � jy\S j D jx\P j � jy\P j ¤ 0:

If s.x/ was outer then both s.x/ and s.y/ could be represented by unit vector fields that
are homotopic over S rel @S since .STM jS/ n .��S / is a bundle with contractible
fibers. And that would imply that h s.x/� s.y/; ŒS � i D 0. Thus s.x/ is not outer.

Notation 5.7 We will also denote by OP and IP the subgroups of CF.†;˛;ˇ/

generated by the outer and inner intersection points, respectively.
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Corollary 5.8 For a surface diagram .†;˛;ˇ;P / such that .†;˛;ˇ/ is admissible
the chain complex .CF.†;˛;ˇ/; @/ is the direct sum of the subcomplexes .OP ; @jOP /

and .IP ; @jIP /.

6 An algorithm providing a nice surface diagram

In this section we generalize the results of Sarkar and Wang [16] to sutured Floer
homology and surface diagrams. Our argument is an elaboration of the Sarkar–Wang
algorithm. The basic approach is the same, but there are some important differences.
The definition of distance had to be modified to work in this generality. Additional
technical difficulties arise because when we would like to make a surface diagram nice
we have to assure that the property A\B D∅ is preserved. Moreover, ˛ or ˇ might
not span H1.†IZ/, which makes some of the arguments more involved.

Definition 6.1 We say that the surface diagram .†;˛;ˇ;P / is nice if every compo-
nent of † n .

S
˛[

S
ˇ [A[B/ whose closure is disjoint from @† is a bigon or a

square. In particular, a balanced diagram .†;˛;ˇ/ is called nice if the surface diagram
.†;˛;ˇ;∅/ is nice.

Definition 6.2 Let .†;˛;ˇ;P / be a surface diagram. Then a permissible move is an
isotopy or a handle slide of the ˛–curves in † nB or the ˇ–curves in † nA.

Lemma 6.3 Let S be a surface diagram adapted to the decomposing surface S �

.M;  /. If the surface diagram S 0 is obtained from S using permissible moves then S 0
is also adapted to S .

Proof This is a simple consequence of the definitions.

Theorem 6.4 Every good surface diagram S D .†;˛;ˇ;P / can be made nice using
permissible moves. If .†;˛;ˇ/ was admissible our algorithm gives an admissible
diagram.

Proof Let A D .
S
˛/[B and B D .

S
ˇ/[A. The set of those components of

† n .A[B/ whose closure is disjoint from @† is denoted by C.S/.

First we achieve that every element of C.S/ is homeomorphic to D2 . Let R.S/
denote the set of those elements of C.S/ which are not homeomorphic to D2 and let
a.S/D

P
R2R.S/.1��.R//. Choose a component R 2R.S/. Then H1.R; @R/¤ 0,

thus there exists a curve .ı; @ı/� .R; @R/ such that Œı�¤ 0 in H1.R; @R/. Moreover,
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we can choose ı such that either ı.0/2
S
˛ and ı.1/2B , or ı.0/2

S
ˇ and ı.1/2A,

as follows. Since our surface diagram is good there are no closed components of A

and B , and note that A\B D∅. Furthermore, @R\A¤∅ and @R\B¤∅ since
otherwise R would give a linear relation between either the ˛–curves or the ˇ–curves.
So if @R is disconnected we can even find two distinct components C and C 0 of @R
such that C \A¤∅ and C 0\B¤∅. Thus we can choose ı such that @ı\A¤∅
and @ı\B¤∅. If @ı\A¤∅ and @ı\B ¤∅ then move the endpoint of ı lying
on A to the neighboring ˛–arc. Possibly changing the orientation of ı we obtain a
curve with the required properties.

Now perform a finger move of the ˛– or ˇ–arc through ı.0/, pushing it all the way
along ı . Since R0DRn ı is connected we obtain a surface diagram S 0 where R is re-
placed by a component homeomorphic to R0 , plus an extra bigon. The homeomorphism
type of every other component remains unchanged. Observe that �.R0/D �.R/C 1,
so we have a.S 0/D a.S/� 1. If we repeat this process we end up in a finite number
of steps with a diagram, also denoted by S , where a.S/ D 0. Note that for every
connected surface F with nonempty boundary we have �.F /� 1, and �.F /D 1 if
and only if F �D2 . Thus a.S/D 0 implies that R.S/D∅.

Next we achieve that every component D 2 C.S/ is a bigon or a square. All the
operations that follow preserve the property that R.S/D∅.

Definition 6.5 If D is a component of † n .A[B/ then its distance d.D/ from @†

is defined to be the minimum of j'\ .
S
˛[

S
ˇ/j taken over those curves ' �† for

which '.0/ 2 @† and '.1/ 2 int.D/I furthermore, '.t/ 2† n .A[B/ for 0< t � 1.
If ' passes through an intersection point between an ˛– and a ˇ–curve we count that
with multiplicity two in j' \ .

S
˛[

S
ˇ/j.

If D 2C.S/ is a 2n–gon, then its badness is defined to be maxfn�2; 0g. The distance
of a surface diagram S is

d.S/Dmaxf d.D/ WD 2 C.S/; b.D/ > 0 g:

For d > 0 the distance d complexity of the surface diagram S is defined to be the tuple 
mX

iD1

b.Di/;�b.D1/; : : : ;�b.Dm/

!
;

where D1; : : : ;Dm are all the elements of C.S/ with d.D/ D d and b.D/ > 0,
enumerated such that b.D1/�� � ��b.Dm/. We order the set of distance d complexities
lexicographically. Finally, let bd .S/D

Pm
iD1 b.Di/.
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Lemma 6.6 Let S be a surface diagram of distance d.S/D d > 0 and R.S/D ∅.
Then we can modify S using permissible moves to get a surface diagram S 0 with
R.S 0/D∅, distance d.S 0/� d.S/, and cd .S 0/ < cd .S/.

Proof Let D1; : : : ;Dm be an enumeration of the distance d bad elements of C.S/
as in Definition 6.5. Then Dm is a 2n–gon for some n� 3. Let D� be a component
of † n .A[B/ with d.D�/D d � 1 and having at least one common ˛– or ˇ–edge
with Dm . Without loss of generality we can suppose that they have a common ˇ–edge
b� . Let a1; : : : ; an be an enumeration of the edges of Dm lying in A starting from b�
and going around @Dm counterclockwise.

Let 1 � i � n. We denote by R1
i ; : : : ;R

ki

i the following distinct components of
† n .A[ B/. For every 1 � j � ki � 1 the component R

j
i is a square of distance

d.R
j
i / � d , but R

ki

i does not have this property. Furthermore, ai \R1
i ¤ ∅ and

R
j
i \R

jC1
i � A for 1 � j � ki � 1. Then R

ki

i is either a bigon or a component
of distance d.R

ki

i / � d . Note that it is possible that R
ki

i D Dm , in which case
R

j
i DR

ki�j

l
for some al �R

ki�1
i \R

ki

i and every 1� j � ki � 1.

Thus if we leave Dm through ai and move through opposite edges we visit the sequence
of squares R1

i ; : : : ;R
ki�1
i until we reach a component R

ki

i which is not a square of
distance � d .

Let I D f 1� i � n WR
ki

i ¤Dm g. We claim that I ¤∅. Indeed, otherwise take the
domain D that is the sum of those components of † n .A[B/ that appear as some
R

j
i for 1� i � n and 1� j � ki , each taken with coefficient one. Then @D is a sum

of closed components of B . Since B has no closed components @D is a sum of full
ˇ–curves, contradicting the fact that the elements of ˇ are linearly independent in
H1.†IZ/.

First suppose that 9i 2 I \ f2; : : : ; n � 1g. Then choose a properly embedded arc
ı � Dm [ .R

1
i [ � � � [R

ki

i / such that ı.0/ 2 b� and ı.1/ 2 int.Rki

i /I furthermore,
jı\ @R

j
i j D 2 for 1� j < ki . Observe that ı.t/\BD∅ for 0< t � 1. Do a finger

move of the b� arc along ı and call the resulting surface diagram S 0 . The finger cuts
Dm into two pieces called D1

m and D2
m , and D� becomes a new component D0� .

We claim that S 0 satisfies the required properties. Indeed, d.S 0/ � d.S/ because ı
does not enter any region of distance < d except possibly R

ki

i for which R
ki

i n ı is
still connected. Thus d.D0�/ < d and the only new bad regions that we possibly make,
D1

m and D2
m , have a common edge with D0� . All the other new components are bigons

or squares. To show that cd .S 0/ < cd .S/ we distinguish three cases. Observe that we
have

(6–1) b.D1
m/C b.D2

m/D b.Dm/� 1:
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Indeed, if D1
m is a 2n1 –gon and D2

m is a 2n2 –gon then n1 > 1 and n2 > 1 since
1< i < n. Thus b.D1

m/D n1� 2 and b.D2
m/D n2� 2. Since the finger cuts ai into

two distinct arcs we have that n1C n2 D nC 1, ie, .n1� 2/C .n2� 2/D .n� 2/� 1.
Furthermore, the finger cuts R

j
i for 1� j < ki into three squares.

Case 1 R
ki

i is a bigon of distance � d . Then R
ki

i ¤D� because their distances are
different. Thus the finger cuts R

ki

i into a bigon and a square, both have badness 0. So
Equation (6–1) implies that bd .S 0/D bd .S/� 1, showing that cd .S 0/ < cd .S/.

Case 2 d.R
ki

i / < d . Then the finger cuts R
ki

i into a bigon and a component of
distance < d . Thus again we have that bd .S 0/D bd .S/� 1.

Case 3 R
ki

i D Dl for some 1 � l < m. Then the finger cuts Dl into a bigon and
a component D0

l
such that d.D0

l
/ D d and b.D0

l
/ D b.Dl/C 1. Thus bd .S 0/ D

bd .S/. But we still have cd .S 0/ < cd .S/ because D1; : : : ;Dl�1 remained unchanged,
�b.D0

l
/ < �b.Dl/, and every other distance d region in S 0 has badness < b.D0

l
/.

Now suppose that I \f2; : : : ; n� 1g D∅. Since I ¤∅ we have 1 2 I or n 2 I . We
can suppose without loss of generality that 1 2 I . Then we have two cases.

R2
2

R1
2

ˇ

a3

b0�

a2

Dm

a1

b�

D1
m

al a2

D2
m D3

m

D4
m

a1

b�

Figure 7: The handle slide of Case A is shown on the left. Subcase B2 is
illustrated on the right.

Case A nD 3I for an illustration see the left hand side of Figure 7. Then R
k2

2
DDm ,

and thus R
k2�1
2
\Dm � a3 , so I D f1g. Let b be the B–arc of @Dm lying between

a2 and a3 . Then the component C of @.R1
2
[ � � � [R

k2

2
/ containing b is a closed

curve such that C � B . Since B has no closed components C D ˇ 2 ˇ is disjoint
from b� . Then handle slide b� over ˇ to get a new surface diagram S 0 . In S 0 the
component D� becomes D0� with b.D0�/D b.D�/C 2. Let b0� denote b� after the
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handle slide. Since d.R
j
2
/� d for 1� j � k2 we see that d.S 0/� d.S/I furthermore,

d.D0�/ < d . The arc b0� cuts Dm into a bigon and a square; moreover, it cuts each R
j
2

for 1� j < k2�1 into two squares. Thus we got rid of the distance d bad component
Dm , so bd .S 0/ < bd .S/.

Case B n> 3. Then for some 2< l � n we have al �R
k2�1
2
\Dm .

Subcase B1 l < nI for an illustration see the right hand side of Figure 7. Let

ı � .R1
1[ � � � [R

k1

1
/[ .R1

2[ � � � [R
k2

2
/

be a properly embedded arc that starts on b� , enters R
k2�1
2

through al , crosses each
R

j
2

for 1 � j < k2 � 1 exactly once, reenters Dm through a2 , leaves Dm through
a1 and ends in R

k1

1
. Note that R

k1

1
¤ Dm since 1 2 I . Do a finger move of b�

along ı , we obtain a surface diagram S 0 . The finger cuts Dm into four components
D1

m; : : : ;D
4
m and D� becomes a component D0� . Observe that D3

m and D4
m are

squares, d.D0�/ < d , and both D1
m and D2

m have a common edge with D0� . Moreover,
the only component ı enters that can be of distance < d is R

k1

1
. Thus d.S 0/� d.S/.

Furthermore, b.D1
m/Cb.D2

m/D b.Dm/�1. So we can conclude that cd .S 0/ < cd .S/
in a manner analogous to cases 1–3 above, according to the type of R

k1

1
.

Subcase B2 l D n. Then ap �R
kn�1�1
n�1

\Dm for some 2< p < n� 1. We define a
properly embedded arc

ı � .R1
1[ � � � [R

k1

1
/[ .R1

2[ � � � [R
k2

2
/[ .R1

p [ � � � [R
kp

p /

as follows (see Figure 8). The curve ı starts on b� , enters R1
p through ap , reenters

Dm through an�1 , goes into R1
n DR

k2�1
2

through an , reenters Dm through a2 ,
leaves across a1 , and ends in R

k1

1
. Furthermore, ı\R

j
i consists of a single arc for

i 2 f1; 2;pg and 1� j < ki . Note that all these squares R
j
i are pairwise distinct, so

ı can be chosen to be embedded. Do a finger move of b� along ı to obtain a surface
diagram S 0 . The component D� becomes D0� and the finger cuts Dm into six pieces
D1

m; : : : ;D
6
m . Observe that D1

m;D
2
m;D

5
m , and D6

m are all squares; moreover, both
D3

m and D4
m have a common edge with D0� . Since d.D0�/ < d we have d.D3

m/� d

and d.D4
m/� d . Furthermore, b.D3

m/Cb.D4
m/D b.Dm/�1. Thus we get, similarly

to Subcase B1, that S 0 has the required properties.

Applying Lemma 6.6 to S a finite number of times we get a surface diagram S 0 D
.†;˛0;ˇ 0;P / with d.S 0/D 0, which means that S 0 is nice. All that remains to show
is that .†;˛0;ˇ 0/ is admissible if .†;˛;ˇ/ was admissible.

The proof of the fact that isotopies of the ˛– and ˇ–curves do not spoil admissibility is
a local computation that is analogous to the one found in [16, Section 4.3]. Handleslides
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R4
2

R3
2

an�1

D2
m

D1
m

an

D3
m

R2
2

ap

D0�

b�

D4
m

a1

D6
m

D5
m

a2

R1
2

Figure 8: The finger move of Subcase B2

only happen in Case A of Lemma 6.6. The local computation of [16, Section 4.3]
happens in D DR1

2
[ � � � [R

k2

2
, which satisfies @D\B �

S
ˇ because both b� and

b belong to a ˇ–curve. The computation does not depend on whether an arc of @D\A
belongs to

S
˛ or B , so the same proof works here too.

This concludes the proof of Theorem 6.4.

7 Holomorphic disks in nice surface diagrams

In this section we give a complete description of Maslov index one holomorphic disks
in nice balanced diagrams. Using that result we prove Theorem 1.3. First we state a
generalization of [8, Corollary 4.3].

Definition 7.1 Let .†;˛;ˇ/ be a balanced diagram and let x; y 2 T˛ \ Tˇ . For
D 2D.x; y/ we define �.D/ as follows. Let � be a homotopy class of Whitney disks
such that D.�/DD . Then �.D/ is the algebraic intersection number of � and the
diagonal in Symd .†/.
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Suppose that D D
Pm

iD1 aiDi ; see Definition 2.13. If p 2 .
S
˛/ \ .

S
ˇ/ and

Di1
; : : : ;Di4

are the four components that meet at p then we define

np.D/D
1

4
.ai1
C � � �C ai4

/:

Furthermore, if xD .x1; : : : ;xd / and yD .y1; : : : ;yd / then let nx.D/D
Pd

iD1 nxi
.D/

and ny.D/D
Pd

iD1 nyi
.D/.

To define the Euler measure e.D/ of D choose a metric of constant curvature 1; 0, or
�1 on † such that @D is geodesic and such that the corners of D are right angles.
Then e.D/ is 1=2� times the area of D .

Remark 7.2 The Euler measure is additive under disjoint unions and gluing of com-
ponents along boundaries. Moreover, the Euler measurer of a 2n–gon is 1� n=2.

Proposition 7.3 If .†;˛;ˇ/ is a balanced diagram, x; y 2T˛\Tˇ , and D 2D.x; y/
is a positive domain then

�.D/D e.D/C nx.D/C ny.D/I

furthermore, �.D/D nx.D/C ny.D/� e.D/:

Proof Observe that the proof of [8, Corollary 4.3] does not use the fact that the number
of elements of ˛ and ˇ equals the genus of †.

Theorem 7.4 Suppose that .†;˛;ˇ/ is a nice balanced diagram, x; y 2T˛\Tˇ , and
D 2D.x; y/ is a positive domain with �.D/D 1. Then for a generic almost complex
structure, �M.D/ consists of a single element which is represented by an embedding of
a disk with two or four marked points into †.

Proof In light of Proposition 7.3 the proof is completely analogous to the proofs of
Theorems 3.2 and 3.3 of [16].

Proposition 7.5 If the surface diagram S D .†;˛;ˇ;P / is nice and .†;˛;ˇ/ is
admissible then the balanced diagram .†;˛;ˇ/ is also nice.

Proof As before, let C.S/ denote the set of those components of † n .A[B/ whose
closure is disjoint from @†. Since S is nice each component R 2 C.S/ is a bigon or
a square, and thus its Euler measure e.R/ � 0. Let S 0 D .†;˛;ˇ;∅/. Then every
component R0 2 C.S 0/ is a sum of elements of C.S/, each taken with multiplicity
one. Thus e.R0/� 0, which implies that R0 is a bigon, a square, an annulus, or a disk.
It cannot be an annulus or a disk because that would give a nontrivial positive periodic
domain in .†;˛;ˇ/.
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Proposition 7.6 Let SD .†;˛;ˇ;P / be a good, nice, and admissible surface diagram
and let D.P / D .†0;˛0;ˇ 0;PA;PB;p/. Then the balanced diagram .†0;˛0;ˇ 0/ is
admissible and

CF.†0;˛0;ˇ 0/� .OP ; @jOP /:

Proof Suppose that Q0 is a periodic domain in .†0;˛0;ˇ 0/ with either no positive or
no negative multiplicities. Then QD p.Q0/ is a periodic domain in .†;˛;ˇ/ since
p.@Q0/ D @Q will be a linear combination of full ˛– and ˇ–curves. Furthermore,
Q has either no positive or no negative multiplicities, thus by the admissibility of
.†;˛;ˇ/ we get that QD 0. So Q0 is also zero since all of its coefficients have the
same sign.

According to Lemma 5.5 the map p induces a bijection between T˛0 \Tˇ0 and OP ,
which we denote by p� . We claim that p� is an isomorphism of chain complexes.

Let x0; y0 2 T˛0 \Tˇ0 and let x D p�.x0/ and y D p�.y0/. Then x; y 2 OP . Take a
positive domain D0 2D.x0; y0/ such that �.D0/D 1 and let DD p.D0/. Observe that
nx.D/D nx.D0/, ny.D/D ny.D0/, and e.D/D e.D0/. Then D is a positive domain
with �.D/D 1 due to Proposition 7.3. Thus p induces a map p0 from

L0 D fD0 2D.x0; y0/ WD0 � 0 and �.D0/D 1 g

LD fD 2D.x; y/ WD � 0 and �.D/D 1 g:to

We claim that p0 is a bijection by constructing its inverse r0 .

Let AD .
S
˛/[A and BD .

S
ˇ/[B . Suppose that D 2L. Then D is an embedded

square or bigon according to Theorem 7.4. Let C be a component of D \ P . We
claim that either @C �A or @C � B . Indeed, C is a sum of elements of C.S/ (recall
that C.S/ was defined in the proof of Theorem 6.4), which are all bigons and squares.
Thus the Euler measure e.C /� 0. The component C cannot be an annulus or a disk
since A and B have no closed components and .†;˛;ˇ/ is admissible. Thus C is
either a bigon or a square. Since x; y 2OP and because D is an embedded bigon or
square no corner of C can be an intersection of an ˛– and a ˇ–edge of @C . Thus if
C is a bigon it can either have an ˛– and an A–edge, or a ˇ– and a B –edge. On the
other hand, if C is a square it can have two opposite ˛– and two opposite A–edges,
or two opposite ˇ– and two opposite B –edges. Note that in all these cases if @C �A
then @C \A¤∅ and if @C � B then @C \B ¤∅.

Now we define a map h D hDW D! †0 as follows. Let x 2 D . If x 2 D nP then
let h.x/ D p�1.x/. If x lies in a component C of D \P such that @C � A then
let h.x/D p�1.x/\PAI finally, let h.x/D p�1.x/\PB if @C � B . The map h is
continuous because if x 2 A (or x 2 B ) and the sequence .xn/ � D nP converges
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to x then the sequence .p�1.xn// converges to p�1.x/\PA (or p�1.x/\PB ). See
Figure 4. The map p is conformal, thus h is holomorphic. Furthermore, p ı hD idD
and thus h is an embedding. So h is a conformal equivalence between D and h.D/,
which implies that h.D/ 2 L0 . We define r0.D/ to be h.D/. Then it is clear that
p0 ı r0 D idL .

Now we prove that r0 ı p0 D idL0 . Let D0 2 L0 and let D D p0.D0/I furthermore,
h D hD . Since D0 � 0 and D has only 0 and 1 multiplicities we see that D0 also
has only 0 and 1 multiplicities. Since p is conformal the map pjD0W D0! D is a
conformal equivalence. Let

h0 D .pjD0/�1
W D!D0:

It suffices to show that hD h0 because this would imply that

r0.D/D h.D/D h0.D/DD0:

Since pW .†0 nP /! .† nP / is a conformal equivalence we get that hj.D nP / D

h0j.DnP /. Let C be a component of D\P . Without loss of generality we can suppose
that @C �A, and thus @C \A¤∅. Let x 2 @C \A. Then h0.C / is connected, so
either h0.C /� PA or h0.C /� PB . But h0.C /� PB cannot happen. Indeed, then we
had

h0.x/ 2 p�1.A/\PB � @†
0:

Moreover, the multiplicity of D0 at h0.x/ is one, but D0 has multiplicity zero along
@†0 , a contradiction. So h0.C /� PA , which means that hjC D h0jC .

Thus p0 is indeed a bijection between L0 and L. We have seen that if D0 2L0 and
DD p0.D0/ then both D and D0 are either embedded bigons or embedded squares;
moreover, hD is a conformal equivalence between them. In both cases �M.D/ and�M.D0/ have a single element.

This implies that p� is an isomorphism between the chain complexes .†0;˛0;ˇ 0/ and
.OP ; @jOP /.

Proof of Theorem 1.3 According to Lemma 4.5 it is sufficient to prove the theorem for
good decomposing surfaces. Because of Proposition 4.4 for each good decomposing
surface we can find a good surface diagram S D .†;˛;ˇ;P / adapted to it. This
surface diagram can be made admissible using isotopies according to Proposition 4.8.
According to Theorem 6.4 we can achieve that S is nice using permissible moves,
and it still defines .M;  / because of Lemma 6.3. Now Proposition 5.2 says that
if D.P / D .†0;˛0;ˇ 0;PA;PB;p/ then .†0;˛0;ˇ 0/ is a balanced diagram defining
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.M 0;  0/. From Proposition 7.6 we see that .†0;˛0;ˇ 0/ is admissible; furthermore,

SFH.M 0;  0/D SFH.†0;˛0;ˇ 0/�H.OP ; @jOP /:

Finally, Lemma 5.5 implies that .OP ; @jOP / is the subcomplex of CF.†;˛;ˇ/ gen-
erated by those x 2 T˛ \Tˇ for which s.x/ 2OS . So

H.OP ; @jOP /�
M

s2OS

SFH.M; ; s/;

which concludes the proof.

8 Applications

First we are going to remind the reader of Definition 4.11 and Theorem 4.2 of Gabai [2].
See also Theorem 4.19 of Scharlemann [17].

Definition 8.1 A sutured manifold hierarchy is a sequence of decompositions

.M0; 0/ S1 .M1; 1/ S2 � � � Sn .Mn; n/;

where .Mn; n/ is a product sutured manifold, ie, .Mn; n/ D .R� I; @R� I/ and
RC.n/ D R� f1g for some surface R. We define the depth of .M0; 0/ to be the
minimum m for which there is a hierarchy where exactly m of S1; : : : ;Sn are not
disjoint unions of horizontal surfaces (see Definition 9.3).

Theorem 8.2 Let .M;  / be a connected taut sutured manifold (see Definition 2.6),
where M is not a rational homology sphere containing no essential tori. Then .M;  /

has a sutured manifold hierarchy such that each Si is connected, Si \ @Mi�1 ¤ ∅
if @Mi�1 ¤ ∅, and for every component V of R.i/ the intersection SiC1 \V is a
union of parallel oriented nonseparating simple closed curves or arcs.

Proof of Theorem 1.4 According to Theorem 8.2 every taut balanced sutured manifold
.M;  /D .M0; 0/ admits a sutured manifold hierarchy

.M0; 0/ S1 .M1; 1/ S2 � � � Sn .Mn; n/:

Note that by definition M is open. So every surface Si in the hierarchy satisfies the
requirements of Theorem 1.3. Thus for every 1� i � n we get that

SFH.Mi ; i/� SFH.Mi�1; i�1/:

Finally, since .Mn; n/ is a product it has a balanced diagram with ˛D∅ and ˇ D∅,
and thus SFH.Mn; n/ � Z (also see [7, Proposition 9.4]). So we conclude that
Z� SFH.Mn; n/� SFH.M0; 0/.
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Proof of Theorem 1.5 Let Y .K/ be the balanced sutured manifold .M;  /, where
M is the knot complement Y nN.K/ and s. / consists of a meridian of K and a
parallel copy of it oriented in the opposite direction; see Definition 2.4. Let � be a
tangent vector field along @N.K/ pointing in the meridional direction. Then � lies in
v?

0
, and thus gives a canonical trivialization t0 of v?

0
. Observe that there is a surface

decomposition
Y .K/ S Y .S/:

Since Y .S/ is strongly balanced we can apply Theorem 3.11 to get that

SFH.Y .S//D
M

s2Spinc.Y .K //W
h c1.s;t0/;ŒS � iDc.S;t0/

SFH.Y .K/; s/:

Recall that
c.S; t0/D �.S/C I.S/� r.S; t0/:

Since @S � @N.K/ is a longitude of K we see that the rotation of p.�S / with respect
to � is zero. Furthermore, �.S/D 1�2g.S/ and I.S/D�1 by part (1) of Lemma 3.9,
thus c.S; t0/D�2g.S/. So we get that

SFH.Y .S//D
M

s2Spinc.Y .K //W
h c1.s;t0/;ŒS � iD�2g.S/

SFH.Y .K/; s/;

which in turn is isomorphic to 1HFK.Y;K; ŒS �;�g.S// � 1HFK.Y;K; ŒS �;g.S//;
see [11]. Note that we get 1HFK.Y;K; ŒS �;g.S// if we decompose along �S instead
of S .

Using our machinery we give a simpler proof of the fact that knot Floer homology
detects the genus of a knot, which was first proved in [13].

Corollary 8.3 Let K be a null-homologous knot in a rational homology 3–sphere Y

whose Seifert genus is g.K/. Then

1HFK.K;g.K//¤ 0I

1HFK.K; i/D 0 for i > g.K/:moreover,

Proof First suppose that Y nN.K/ is irreducible. Let S be a Seifert surface of K .
Then Y .S/ is taut if and only if g.S/D g.K/. Thus, according to Theorem 1.4, if
g.S/D g.K/ then Z � SFH.Y .S// and because of [7, Proposition 9.18] we have
that SFH.Y .S//D 0 if g.S/ > g.K/. Since for every i � g.K/ we can find a Seifert
surface S such that g.S/D i , together with Theorem 1.5 we are done for the case
when Y nN.K/ is irreducible.
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Now suppose that Y .K/ can be written as a connected sum .M;  /#Y1 , where .M;  /

is irreducible and Y1 is a rational homology 3–sphere. Since we can find a mini-
mal genus Seifert surface S lying entirely in .M;  / (otherwise we can do cut-and-
paste along the connected sum sphere) we can apply the connected sum formula
[7, Proposition 9.15] to get that SFH.Y .S// � SFH.M;  / ˝ bHF .Y1/ over Q.
Since rk bHF .Y1/¤ 0 [14, Proposition 5.1], we can finish the proof as in the previous
case.

Next we are going to give a new proof of [12, Theorem 1.1]. Let L be a link in S3 ,
then

xW H2.S
3;LIR/!R

denotes the Thurston semi-norm. Link Floer homology provides a function

yW H 1.S3
nLIR/!R

defined by
y.h/D max

f s2H1.LIZ/WdHFL.L;s/¤0 g

jh s; h ij:

Theorem 8.4 For a link L�S3 with no trivial components and every h2H 1.S3nL/

we have that

2y.h/D x.PDŒh�/C

lX
iD1

jh h; �i ij;

where �i is the meridian of the i th component Li of L.

Proof Let � be a unit vector field along @N.L/ that points in the direction of the
meridian �i along @N.Li/. Consider the balanced sutured manifold .M;  /DS3.L/,
then � is a section of v?

0
, and consequently it defines a canonical trivialization t0 of

v?
0

. Let R be a Thurston norm minimizing representative of PDŒh� having no S2

components. Note that R has no D2 components because no component of L is
trivial.

We claim that r.R; t0/D 0. Indeed, Ki DR\@N.Li/ is a torus link. We can arrange
that Ki and � make a constant angle and that R is perpendicular to @N.Li/ along Ki .
Then �i D �RjKi is the positive unit normal field of Ki in @N.Li/ and h �i ; � iq is
some constant ci for every q 2Ki ; see Figure 9. First suppose that ci D 0. Then Ki

is a meridian of Li and we can suppose that Ki �R. /. Thus p.�R/jKi is always
perpendicular to � . Now suppose that ci ¤ 0. We define the function

ai.q/D hp.�R/= kp.�R/k ; � iq
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v0

�i

Ki

�

R�


RC

Figure 9: A portion of the torus @N.Li/ , together with the trivialization �
of v?

0
and �i

for q 2 Ki . Then ai.q/ D sgn.ci/ for q 2 Ki \ s. / and ai.q/ D ci for every
q 2Ki \R. / such that v0 is perpendicular to R. /. Moreover, the range of ai is
Œci ; sgn.ci/�; see Figure 9. So in both cases the rotation of p.�R/jKi in the trivialization
t0 is zero as we go around Ki .

Furthermore, we can achieve that

j@R\ s. /j D 2

lX
iD1

jh h; �i ij:

Since R is norm minimizing and has no S2 and D2 components �.R/D�x.PDŒh�/.
So using part (1) of Lemma 3.9 we get that

c.R; t0/D�x.PDŒh�/�

lX
iD1

jh h; �i ij:

Note that c.R; t0/� 0.

Now observe that S3.R/ can be obtained from S3.L/ by decomposing along R. Since
R is norm minimizing S3.R/ is a connected sum of taut balanced sutured manifolds,
thus combining Theorem 1.4 with the connected sum formula [7, Proposition 9.15] we
get that rk SFH.S3.R//¤ 0. So if we apply Theorem 3.11 to the decomposition

S3.L/ R S3.R/

we see that there is an s0 2 Spinc.S3.L// such that s0 2OR , hence h c1.s0; t0/; h i D

c.R; t0/ and 1HFL.L; s0/ � SFH.S3.L/; s0/˝ Z2 ¤ 0; see [7, Proposition 9.2].
Thus

2y.h/D max
f s2H1.LIZ/WdHFL.L;s/¤0 g

jh c1.s; t0/; h ij � x.PDŒh�/C

lX
iD1

jh h; �i ij:
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To prove that we have an equality let s be a Spinc structure on S3.L/ for which

jh c1.s; t0/; h ij> x.PDŒh�/C

lX
iD1

jh h; �i ij D �c.R; t0/:

Denote the components of R by R1; : : : ;Rk and let hj D ŒRj �: Since

kX
jD1

jh c1.s; t0/; hj ij � jh c1.s; t0/; h ij> �c.R; t0/D�

kX
jD1

c.Rj ; t0/

there is a j for which jh c1.s; t0/; hj ij> �c.Rj ; t0/: Thus

jh c1.s; t0/; hj ijC c.Rj ; t0/D 2d > 0:

The above sum is even since h c1.s0; t0/; hj i D c.Rj ; t0/ and

hc1.s; t0/� c1.s0; t0/; hj i D h2.s� s0/; hj i:

Let Rd
j be a Seifert surface of L obtained from Rj by d stabilizations and oriented

such that hc1.s; t0/; ŒR
d
j �i< 0. Observe that ŒRd

j �D˙hj , thus

hc1.s; t0/; ŒR
d
j �i D c.Rj ; t0/� 2d D c.Rd

j ; t0/;

which implies that s 2ORd
j

. Now R.S3.Rd
j // is not Thurston norm minimizing, thus

according to [7, Proposition 9.19] we have that SFH.S3.Rd
j //D 0. So if we apply

Theorem 3.11 again we see that

1HFL.L; s/� SFH.S3.L/; s/˝Z2 � SFH.S3.Rd
j //˝Z2 D 0

for such an s.

Remark 8.5 Suppose that Y is an oriented 3–manifold and L � Y is a link such
that Y nN.L/ is irreducible. Let xW H2.Y;LIR/! R be the Thurston semi-norm
and for h 2H2.Y;LIR/ let

z.h/D max
f s2Spinc.Y;L/WdHFL.Y;L;s/¤0 g

jh c1.s/; h ij:

Then an analogous proof as above gives that

z.h/D x.h/C

lX
iD1

jh h; �i ij;

where �i is the meridian of the i th component of L.
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The following proposition generalizes the horizontal decomposition formula [9, Theo-
rem 3.4].

Proposition 8.6 Let .M;  / be a balanced sutured manifold. Suppose that

.M;  / S .M 0;  0/

is a decomposition such that S is connected satisfies the requirements of Theorem 1.3,
.M 0;  0/ is taut, and ŒS �D 0 in H2.M; @M /. The surface S separates .M 0;  0/ into
two parts denoted by .M1; 1/ and .M2; 2/. Then

SFH.M;  /� SFH.M 0;  0/� SFH.M1; 1/˝SFH.M2; 2/

over any field F .

Proof Since .M 0;  0/ is taut we can apply Theorem 1.4 to conclude that

SFH.M 0;  0/¤ 0:

Together with Theorem 1.3 this implies that OS ¤∅. Fix an element s0 2OS . Then
for every Spinc structure s 2 Spinc.M;  / the equality

h s� s0; ŒS � i D 0

holds since ŒS �D 0. Thus s 2OS ; see the proof of Lemma 3.10 and Remark 5.6. So
we get that OS D Spinc.M;  /, and thus SFH.M 0;  0/� SFH.M;  /.

Now we sketch an alternative proof. Let SD .†;˛;ˇ;P / be a surface diagram adapted
to S . Then D.P / D .†0;˛0;ˇ 0;PA;PB;p/ (see Definition 5.1) can be written as
the disjoint union of two balanced diagrams .†1;˛1;ˇ1/ and .†2;˛2;ˇ2/ such that
PA � †1 and PB � †2 . Let ˇ1 2 ˇ1 and ˛2 2 ˛2 be arbitrary curves. Since
ˇ1 \PA D ∅ and ˛2 \PB D ∅ we get that p.ˇ1/\P D ∅ and p.˛2/\P D ∅.
Furthermore, p.ˇ1/\ p.˛2/ D ∅. Thus for the surface diagram S the set of inner
intersection points IP D∅. So Theorem 1.3 gives that SFH.M;  /� SFH.M 0;  0/.

Note that .†i ;˛i ;ˇ i/ is a balanced diagram of .Mi ; i/ for i D 1; 2I moreover,

CF.†;˛;ˇ/� CF.†1;˛1;ˇ1/˝CF.†2;˛2;ˇ2/:

As a corollary of this we give a simple proof of [10, Theorem 1.1]. The following
definition can be found in [3]:

Definition 8.7 The oriented surface R � S3 is a Murasugi sum of the compact
oriented surfaces R1 and R2 in S3 if the following conditions are satisfied. First,
RDR1 [E R2 , where E is a 2n–gon. Furthermore, there are balls B1 and B2 in
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S3 such that R1 � B1 and R2 � B2 , the intersection B1\B2 DH is a two-sphere,
B1 [B2 D S3 , and R1 \H D R2 \H D E . We also say that the knot @R is a
Murasugi sum of the knots @R1 and @R2 .

Corollary 8.8 Suppose that the knot K � S3 is the Murasugi sum of the knots K1

and K2 along some minimal genus Seifert surfaces. Then

1HFK.K;g.K//� 1HFK.K1;g.K1//˝1HFK.K2;g.K2//

over any field F .

Proof Let R1 and R2 be minimal genus Seifert surfaces of K1 and K2 , respectively.
The Murasugi sum of R1 and R2 is a minimal genus Seifert surface R of K ; see
Gabai [3]. By the definition of the Murasugi sum there is an embedded 2-sphere
H � S3 that separates R1 and R2 and such that R1\H DR2\H is a 2n–gon E

for some n> 0. Thus in the balanced sutured manifold S3.R/ the disk DDH nint.E/
is a separating decomposing surface that satisfies the requirements of Theorem 1.3.
Decomposition along D gives the disjoint union of S3.R1/ and S3.R2/, which is
taut. Thus, according to Proposition 8.6,

SFH.S3.R//� SFH.S3.R1//˝SFH.S3.R2//

over F . Using Theorem 1.5 we get the required formula.

Lemma 8.9 Suppose that .M;  / is a balanced sutured manifold such that

H2.M IZ/D 0:

Let S � .M;  / be a product annulus (see Definition 2.9) such that at least one
component of @S is nonzero in H1.R. /IZ/ or both components of @S are boundary-
coherent in R. /. If S gives a surface decomposition .M;  / S .M 0;  0/ then

SFH.M 0;  0/� SFH.M;  /:

Proof With at least one orientation of S both components of @S are boundary-
coherent in R. /. On the other hand, .M 0;  0/ does not depend on the orientation of
S . Thus we can suppose that both components of @S are boundary-coherent.

Since S is connected and @S intersects both RC. / and R�. / we can apply
Proposition 4.4 to get a surface diagram .†;˛;ˇ;P / adapted to S . Here P is
an annulus with one boundary component being A and the other one B . Thus we
can isotope all the ˛– and ˇ–curves to be disjoint from P , and so IP D ∅ for this
new diagram. The balanced diagram .†;˛;ˇ/ is admissible due to Proposition 2.15.
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Now Lemma 5.5 implies that for every x 2 T˛ \ Tˇ we have x 2 OP if and only
if s.x/ 2 OS . Consequently, CF.†;˛;ˇ; s/ D 0 for s 2 Spinc.M;  / nOS . Thus
SFH.M; ; s/D 0 for s 62OS . The surface S satisfies the conditions of Theorem 1.3,
and so SFH.M 0;  0/� SFH.M;  /.

The next proposition is an analogue of the decomposition formula for separating product
annuli proved in [9, Theorem 4.1] using completely different methods.

Proposition 8.10 Suppose that .M;  / is a balanced sutured manifold such that
H2.M IZ/D 0. Let S � .M;  / be a product annulus such that at least one compo-
nent of @S does not bound a disk in R. /. Then S gives a surface decomposition
.M;  / S .M 0;  0/, where SFH.M 0;  0/ � SFH.M;  /. If we also suppose that
S is separating in M then SFH.M 0;  0/� SFH.M;  /.

RC

R�

S

CC

T

T 0

C 0C

S 0

C�



Figure 10: A product annulus

Proof Let C˙D @S\R˙. / and suppose that CC does not bound a disk in RC. /;
see Figure 10. According to Lemma 8.9 we only have to consider the case when
both ŒCC� and ŒC�� are zero in H1.R. /IZ/. Since .M 0;  0/ does not depend on the
orientation of S we can suppose that S is oriented such that C� is boundary-coherent
in R�. /. If CC is also boundary-coherent in RC. / then we are again done due to
Lemma 8.9. Thus suppose that CC is not boundary-coherent.

The idea of the following argument was communicated to me by Yi Ni. Let T denote the
interior of CC in RC. /I then CC and @T are oriented oppositely; see Definition 1.2.
Let C 0C be a curve lying in int.S/ parallel and close to CC and choose a surface T 0

parallel to T such that int.T 0/� int.M nS/ and @T DC 0C . Let S0 be the component
of S n C 0C containing C� . We define S 0 to be the surface S0 [ T 0 . Note that the
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orientations of S0 and T 0 match along C 0C , so S 0 has a natural orientation. Let
.M0; 0/ be the manifold obtained after decomposing .M;  / along S 0 . Observe that
@S 0 D C� is boundary-coherent in R�. /, thus we can apply Theorem 1.3 to S 0 and
get that SFH.M0; 0/�SFH.M;  /. If we also suppose that S is separating then S 0

is separating and so we have an equality due to Proposition 8.6. Decomposing .M0; 0/

along the annulus S nS0 we get a sutured manifold homeomorphic to the disjoint union
of .M 0;  0/ and .T � I; @T � I/. Since T ¤D2 we can remove the .T � I; @T � I/

part of .M0; 0/ by a series of decompositions along product disks and product annuli
having no separating boundary components. Thus SFH.M 0;  0/� SFH.M0; 0/ by
[7, Lemma 9.13] and Lemma 8.9.

9 Fibred knots

Ghiggini [6] (for the genus one case) and Ni [9] recently proved a conjecture of Ozsváth
and Szabó that knot Floer homology detects fibred knots. We use the methods developed
in this paper to simplify their proof by avoiding the introduction of contact structures.
Moreover, we give a relationship between knot Floer homology and the existence of
depth two taut foliations on the knot complement.

Definition 9.1 Let .M;  / be a balanced sutured manifold. Then .M;  / is called a
homology product if H1.M;RC. /IZ/D 0 and H1.M;R�. /IZ/D 0. Similarly,
.M;  / is said to be a rational homology product if H1.M;RC. /IQ/ D 0 and
H1.M;R�. /IQ/D 0.

Remark 9.2 It follows from the universal coefficient theorem that every homology
product is also a rational homology product.

Definition 9.3 Let .M;  / be a balanced sutured manifold. A decomposing surface
S �M is called a horizontal surface if

(i) S is open,

(ii) @S �  and j@S j D js. /j,

(iii) ŒS �D ŒRC. /� in H2.M;  /,

(iv) �.S/D �.RC. //.

We say that .M;  / is horizontally prime if every horizontal surface in .M;  / is
parallel to either RC. / or R�. /.
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Lemma 9.4 Suppose that .M;  / is a balanced sutured manifold and let

.M;  / S .M 0;  0/

be a surface decomposition. Then the following holds.

(1) If .M;  / is a rational homology product then H2.M;R˙. /IQ/D 0, and both
H2.M IQ/ and H2.M IZ/ vanish.

(2) If S is either a product disk or a product annulus then .M 0;  0/ is a rational
homology product if and only if .M;  / is.

(3) If RC. / is connected, S is a connected horizontal surface, and .M;  / is a
rational homology product then .M 0;  0/ is also a rational homology product.

Proof Let R˙DR˙. / and R0
˙
DR˙.

0/. Then using Alexander–Poincaré duality
we get that

H2.M;RCIQ/�H 1.M;R�IQ/�H1.M;R�IQ/D 0:

A similar argument shows that H2.M;R�IQ/D 0.

Look at the following segment of the long exact sequence of the pair .M;RC/ W

H2.RCIQ/!H2.M IQ/!H2.M;RCIQ/D 0:

Since RC has no closed components H2.RCIQ/ D 0, so H2.M IQ/ D 0. From
Poincaré duality and the universal coefficient theorem

H2.M IZ/�H 1.M; @M IZ/� Hom.H1.M; @M IZ/;Z/˚Tor.H0.M; @M IZ//;

which implies that H2.M IZ/ is torsion free. Thus H2.M IZ/D 0. This proves (1).

Now suppose that S is a product disk or a product annulus. Consider the relative
Mayer–Vietoris sequence associated to the pairs .M 0;R0C/ and .N.S/;RC\N.S//.
From the segment

0DH1.M
0
\N.S/;R0C\N.S/IQ/

!H1.M
0;R0CIQ/˚H1.N.S/;RC\N.S/IQ/

!H1.M;RCIQ/!H0.M
0
\N.S/;R0C\N.S/IQ/D 0

and since H1.N.S/;RC \N.S/IQ/ D 0 we get that H1.M
0;R0CIQ/ D 0 if and

only if H1.M;RCIQ/D 0. We can similarly show that H1.M
0;R0�IQ/D 0 if and

only if H1.M;R�IQ/D 0. This proves (2).

Finally, let S be a connected horizontal surface in the balanced sutured manifold .M;  /

with RC connected. We denote by .M1; 1/ and .M2; 2/ the two components of
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.M 0;  0/, indexed such that RC �M1 and R� �M2 . The sutured manifold .M;  /

is a homology product and we have already seen that this implies that H2.M IQ/D 0.
So from the Mayer–Vietoris sequence

0DH2.S IQ/!H2.M1IQ/˚H2.M2IQ/!H2.M IQ/D 0

we obtain that H2.Mi IQ/ D 0 for i D 1; 2. Another segment of the same exact
sequence is

0!H1.S IQ/!H1.M1IQ/˚H1.M2IQ/!H1.M IQ/! zH0.S IQ/D 0;

thus dim H1.M1IQ/C dim H1.M2IQ/D dim H1.S IQ/C dim H1.M IQ/:

From the long exact sequence of the pair .M;R˙/ we see that

0DH2.M;R˙IQ/!H1.R˙IQ/!H1.M IQ/! 0;

and so dim H1.M IQ/ D dim H1.R˙IQ/. Since S is horizontal �.S/ D �.RC/.
Moreover, RC and S are both connected, thus dim H1.R˙IQ/ D dim H1.S IQ/.
Consequently,

(9–1) dim H1.M1IQ/C dim H1.M2IQ/D 2 dim H1.S IQ/:

From the long exact sequence of the triple .M;M2;R�/ consider

0DH1.M;R�IQ/!H1.M;M2IQ/!H0.M2;R�IQ/:

Here H0.M2;R�IQ/D 0 because .M2; 2/ is balanced. So, using excision, we get
that H1.M1;S IQ/�H1.M;M2IQ/D 0. Now the exact sequence

0DH2.M1IQ/!H2.M1;S IQ/!H1.S IQ/!H1.M1IQ/!H1.M1;S IQ/D 0

implies that dim H1.M1IQ/� dim H1.S IQ/. Using a similar argument we get that
dim H1.M2IQ/� dim H1.S IQ/. Together with Equation (9–1) we see that

dim H1.Mi IQ/D dim H1.S IQ/

for i D 1; 2. So the map H1.S IQ/! H1.M1IQ/ is an isomorphism and we can
conclude that H2.M1;S IQ/D 0. Using Alexander–Poincaré duality we get that

H1.M1;RCIQ/�H 1.M1;RCIQ/�H2.M1;S IQ/D 0:

Together with H1.M1;S IQ/D 0 this implies that .M1; 1/ is a rational homology
product. An analogous argument shows that .M2; 2/ is also a rational homology
product. This proves (3).
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Observe that the proof of [9, Proposition 3.1] gives the following slightly stronger
result.

Lemma 9.5 Let K be a null-homologous knot in the oriented 3–manifold Y and let
S be a Seifert surface of K . If

rk 1HFK.Y;K; ŒS �;g.S//D 1

then Y .S/ is a homology product.

Corollary 9.6 If .M;  / is a balanced sutured manifold with  connected and

rk SFH.M;  /D 1

then .M;  / is a homology product, and thus also a rational homology product.

Proof Since .M;  / is balanced and  is connected RC. / and R�. / are diffeo-
morphic. Glue RC. / and R�. / together using an arbitrary diffeomorphism, then
do an arbitrary Dehn filling along the torus boundary. This way we get a 3–manifold
Y together with a null-homologous knot K (the core of the Dehn filling). Moreover,
RC. / gives a Seifert surface S of K such that Y .S/D .M;  /. Using Theorem 1.5

1HFK.Y;K; ŒS �;g.S//� SFH.M;  /:

So Lemma 9.5 implies that Y .S/D .M;  / is a homology product.

Theorem 9.7 Suppose that .M;  / is a taut balanced sutured manifold that is not a
product. Then SFH.M;  /� Z2 .

Proof The outline of the proof is the following. First we modify .M;  / using
decompositions along product disks and product annuli, horizontal decompositions, and
adding product one-handles. The goal is to make .M;  / a rational homology product,
strongly balanced, and horizontally prime. Moreover, we need a curve in RC. /

which homologically lies outside the characteristic product region (see Definition 9.8).
Then we can find decomposing surfaces S1 and S2 which give taut decompositions
.M;  / Si .Mi ; i/ for i D 1; 2 such that OS1

\OS2
D∅. To distinguish between

Spinc structures we use Lemma 3.10. According to Theorem 1.4 we have Z �
SFH.Mi ; i/. From Theorem 1.3 we get that

SFH.M1; 1/˚SFH.M2; 2/� SFH.M;  /;

which concludes the proof.
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Throughout the proof we use the fact that if .N; �/ J .N 0; �0/ is a decomposition
such that J is either a product disk or product annulus then .N; �/ is taut if and only
if .N 0; �0/ is taut. This is [2, Lemma 3.12].

By adding product one-handles to .M;  / as in Remark 3.6 we can achieve that 
is connected. This new .M;  / is still taut and is not a product. It was shown in [7,
Lemma 9.13] that adding product one-handles does not change SFH.M;  /, so it is
sufficient to prove the theorem when  is connected. In particular, both RC. / and
R�. / are connected, thus .M;  / is strongly balanced.

By Theorem 1.4 and Corollary 9.6 if the taut balanced sutured manifold .M;  / is
not a rational homology product and if  is connected then SFH.M;  / � Z2 . So
in order to prove Theorem 9.7 it is sufficient to consider the case when .M;  / is a
rational homology product.

Let R0; : : : ;RkC1 be a maximal family of pairwise disjoint and nonparallel horizontal
surfaces in .M;  / such that R0DRC. / and RkC1DR�. /. Since  is connected,
Ri is open, and j@Ri jD js. /j we get that each Ri is connected. Decomposing .M;  /

along R1; : : : ;Rk we get taut balanced sutured manifolds .Mi ; i/ for 1� i � kC 1

such that RC.i/DRi�1 and R�.i/DRi . From Proposition 8.6

SFH.M;  /D

kC1O
iD1

SFH.Mi ; i/

over Q. Furthermore, part (3) of Lemma 9.4 implies that each .Mi ; i/ is a rational
homology product. And .Mi ; i/ is not a product since Ri�1 and Ri are not parallel.
Thus it is enough to prove Theorem 9.7 for .M;  /D .M1; 1/. So we can suppose
that .M;  / is horizontally prime (see Definition 9.3). Next we recall Definition 6.1 of
Ni [9]; also see Cooper and Long [1].

Definition 9.8 Suppose that .M;  / is an irreducible sutured manifold, R�. / and
RC. / are incompressible and diffeomorphic to each other. A product region of
.M;  / is a submanifold ˆ�I of M such that ˆ is a compact (possibly disconnected)
surface and ˆ�f0g and ˆ�f1g are incompressible subsurfaces of R�. / and RC. /,
respectively.

In [1, Theorem 3.4] it is proven that there is a product region E � I such that if ˆ� I

is any product region of .M;  / then there is an ambient isotopy of M which takes
ˆ� I into E � I . We call E � I a characteristic product region of .M;  /.

Let E�I be a characteristic product region of .M;  /. We can suppose that  �E�I .
Since .M;  / is not a product E � I ¤M . Let

.M 0;  0/D .M nE � I; .@E � I/ n  /:
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Denote the components of .@E � I/ n  by F1; : : : ;Fm . Then each Fi is a product
annulus in .M;  /. Moreover, no component of @Fi bounds a disk in R. / since
E � f0g and E � f1g are incompressible subsurfaces of R. /. After the sequence
of decompositions along the product annuli F1; : : : ;Fm we get the disjoint union
of .M 0;  0/ and the product sutured manifold .E � I; @E � I/. From part (2) of
Lemma 9.4 we get that .M 0;  0/ is also a rational homology product. Moreover, using
Proposition 8.10 and the fact that

SFH..M 0;  0/[ .E � I; @E � I//� SFH.M 0;  0/˝Z� SFH.M 0;  0/

we obtain that SFH.M 0;  0/ � SFH.M;  /. Of course .M 0;  0/ is not a product.
Thus it is sufficient to prove that SFH.M 0;  0/� Z2 . Note that E0 � I DN. 0/ is a
characteristic product region of .M 0;  0/. Furthermore, .M 0;  0/ is taut, horizontally
prime, and strongly balanced.

If RC.
0/ is not planar then let .M1; 1/ D .M 0;  0/ and E1 � I D E0 � I . If

RC.
0/ is planar then @RC. 0/ is disconnected since otherwise we had @M 0 D S2

and .M 0;  0/ would not be irreducible. Connect two different components of  0 with
a product one-handle T as in Remark 3.6 to obtain a sutured manifold .M1; 1/. Then
E1� I DN. 0/[T is a characteristic product region of .M1; 1/. According to part
(2) of Lemma 9.4 the sutured manifold .M1; 1/ is also a rational homology product.
In both cases the map

H1.E1 � f1gIQ/!H1.RC.1/IQ/

is not surjective. Indeed, in the second case the curve ! obtained by closing the
core of the handle T \ RC.1/ in RC.

0/ lies outside H1.E1 � f1gIQ/. Also,
SFH.M1; 1/ D SFH.M 0;  0/ in both cases. Note that .M1; 1/ is still taut, hori-
zontally prime, and strongly balanced.

From now on let .M;  / D .M1; 1/ and E � I D E1 � I . Let !C � RC. /

be a properly embedded oriented curve such that Œ!C� 62 H1.E � f1gIQ/. Then
nŒ!C� 62H1.E � I IZ/ for every n 2 Z. Since .M;  / is a rational homology product
the maps

i˙W H1.R˙. /IQ/!H1.M IQ/

are isomorphisms; see Lemma 9.4. Thus there exists a properly embedded oriented
curve !� �R�. / such that Œ!��¤ 0 in H1.R�. /IQ/ and nonzero integers a; b

such that a � iC.Œ!C�/D b � i�.Œ!��/ in H1.M IZ/. Choose a regular neighborhood
N.!C[!�/ of !C[!� in R. /. Then

N D  [N.!C[!�/
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is a subsurface of @M . Let x be the Thurston semi-norm on H2.M;N IZ/; see
Definition 2.5. Since H2.M IZ/D 0 the map

@W H2.M;N IZ/!H1.N IZ/

is injective. Thus there is a unique homology class s 2 H2.M;N IZ/ such that
@s D aŒ!C�� bŒ!��. Moreover, let

r D ŒRC. /�D ŒR�. /� 2H2.M;N IZ/;

then @r D Œs. /�. We will need the following definition; see Scharlemann [17].

Definition 9.9 Suppose .S1; @S1/ and .S2; @S2/ are oriented surfaces in general
position in .M; @M /. Then the double curve sum of S1 and S2 is obtained by doing
oriented cut and paste along S1\S2 to get an oriented surface representing the cycle
S1CS2 . The result is an embedded oriented surface coinciding with S1[S2 outside
a regular neighborhood of S1\S2 .

The following claim is analogous to [9, Lemma 6.5].

Claim 9.10 For any integers p; q � 0 we have a strict inequality

x.sCpr/Cx.�sC qr/ > .pC q/x.r/:

Proof Let the surfaces S1 and S2 be norm minimizing representatives of sC pr

and �sC qr , respectively. Since M is irreducible and R. / is incompressible we
can assume that S1 and S2 have no S2 or D2 components. Thus �.S1/D�x.S1/

and �.S2/D�x.S2/. Furthermore, we can suppose that S1 and S2 are transversal,
.S1[S2/\ consists of pCq parallel copies of s. /, and S1\R. /D S2\R. /

consists of a parallel copies of !C and b parallel copies of !� . Since M is irreducible
and S1 and S2 are incompressible we can achieve that .S1[S2/ n .S1\S2/ has no
disk components. Let P denote the double curve sum of S1 and S2 ; see Definition 9.9.
Then ŒP �D .pC q/r and P has no S2 or D2 components. Moreover, for any double
curve sum �.P / D �.S1/C �.S2/. Thus x.P / D x.S1/C x.S2/. Also note that
P \R. /D∅ and P \  consists of pC q parallel copies of s. /.

Suppose that T is a torus component of P . Then T D
S2m

jD1 Aj , where A2i�1 � S1

and A2i � S2 are annuli for 1� i �m. Let A1D
Sm

iD1 A2i�1 and A2D
Sm

iD1 A2i ,
and define S 0

1
D .S1nA

1/[.�A2/ and S 0
2
D .S2nA

2/[.�A1/. With a small isotopy
we can achieve that jS 0

1
\S 0

2
j< jS1\S2j. For i D 1; 2 we have @S 0i D @Si , and thus

ŒS 0i � D ŒSi � in H2.M;N /I moreover, x.S 0i/ D x.Si/. Thus we can suppose that P

has no torus components.
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Due to the triangle inequality we only have to exclude the case

x.sCpr/Cx.�sC qr/D .pC q/x.r/:

Thus suppose that x.P / D .pC q/x.r/. We define a function 'W M n P ! Z by
setting '.z/ to be the algebraic intersection number of P with a path connecting z and
RC. /. This is well defined because the image of ŒP �D .pC q/r in H2.M; @M / is
zero, and thus any closed curve in M intersects P algebraically zero times.

Let Ji D cl.'�1.i// for 0� i �pCq and let Pi D Ji�1\Ji for 1� i �pCq . Then
P D

`pCq
iD1

Pi and
Si�1

kD0 Ji is a homology between RC. / and Pi in H2.M;N /.
Thus ŒPi �D ŒRC. /�D r and x.Pi/� x.r/. Since

pCqX
iD1

x.Pi/D x.P /D .pC q/x.r/

we must have x.Pi/D x.r/ for 1� i � pC q . Each Pi is connected since it has no
S2 and T 2 components, and H2.M /D 0 implies that Pi can have no higher genus
closed components, otherwise it would not be norm minimizing in r .

So each Pi is a horizontal surface in .M;  /, consequently it is parallel to RC. / or
R�. /. Thus for some 0� k � pC q the surfaces P1; : : : ;Pk are parallel to RC. /

and PkC1; : : : ;PpCq are parallel to R�. /. Let P0DRC. / and PpCqC1DR�. /.

We can isotope S1 such that S1 \ int.Ji/ is a collection of vertical annuli for 0 �

i � p C q . Thus S1 \ int.Ji/ D Ci � .0; 1/, where Ci is a collection of circles in
Pi . Let k D  \Jk . Observe that there is a homeomorphism hW .M;  /! .Jk ; k/

such that ŒCk �D aŒh.!C/� in H1.Pk/. Since aŒh.!C/� 62H1.h.E � f1g// there is a
component C 0

k
of Ck such that ŒC 0

k
� 62 H1.h.E � f1g//. Thus the product annulus

C 0
k
� I cannot be homotoped into h.E � I/, which contradicts the fact that h.E � I/

is a characteristic product region of .Jk ; k/.

From [17, Theorem 2.5] we see that there are decomposing surfaces S1 and S2 in
.M;  / such that

(1) ŒS1�D sCpr and ŒS2�D�sC qr in H2.M;N / for some integers p; q � 0,

(2) if we decompose .M;  / along Si for i D 1; 2 we get a taut sutured manifold
.Mi ; i/,

(3) �Si
is nowhere parallel to v0 along @Si for i D 1; 2,

(4) @S1\R. / consists of a parallel copies of !C and b parallel copies of �!� ,

(5) @S2\R. /D�@S1\R. /,

Geometry & Topology, Volume 12 (2008)



348 András Juhász

(6) @Si \  consists of parallel copies of s. / and �Si
j.@Si \  / points out of M

for i D 1; 2.

From (2) and Theorem 1.4 we get that

Z� SFH.Mi ; i/

for i D 1; 2. Since .M;  / is strongly balanced and S satisfies (3) we can define
c.S1; t/ and c.S2; t/ for some trivialization t of v?

0
; see Definition 3.8.

Using part (2) of Lemma 3.9 and (6) we get that I.S1/ D 0 and I.S2/ D 0. More-
over, r.S1; t/D p�.RC. //CK and r.S2; t/D q�.RC. //�K , where K is the
contribution of @S1\R. / to r.S1; t/.

Since .M;  / is taut �.RC. //D�x.r/. Thus

c.S1; t/D �.S1/Cpx.r/�K D�x.sCpr/Cpx.r/�K

c.S2; t/D �.S2/C qx.r/CK D�x.�sC qr/C qx.r/CK:and

From Claim 9.10 we get that

c.S1; t/C c.S2; t/D .pC q/x.r/� .x.sCpr/Cx.�sC qr// < 0:

Let si 2 OSi
for i D 1; 2. Lemma 3.10 implies that hc1.s1; t/; ŒS1�i D c.S1; t/ and

hc1.s2; t/; ŒS2�i D c.S2; t/. But r D 0 in H2.M; @M /, and thus ŒS1�D s D�ŒS2� in
H2.M; @M /. So hc1.s2; t/; ŒS1�i D �c.S2; t/. Together with c.S1; t/ ¤ �c.S2; t/

this implies that s1 ¤ s2 , and thus OS1
\OS2

D∅. Using Theorem 1.3 we get that

Z2
� SFH.M1; 1/˚SFH.M2; 2/� SFH.M;  /:

This concludes the proof of Theorem 9.7.

Theorem 9.11 Let K be a null-homologous knot in an oriented 3–manifold Y such
that Y nK is irreducible and let S be a Seifert surface of K . If

rk 1HFK.Y;K; ŒS �;g.S//D 1

then K is fibred with fibre S .

Proof From Theorem 1.5

SFH.Y .S//� 1HFK.Y;K; ŒS �;g.S//:

Consequently, SFH.Y .S//¤0 and thus Y .S/ is taut. So we can apply Theorem 9.7 to
Y .S/ and conclude that Y .S/ is a product, since otherwise we had Z2�SFH.Y .S//.
This implies that the knot K is fibred with fibre S .
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Theorem 9.12 Let .M;  / be a taut balanced sutured manifold that is a rational
homology product. If rk SFH.M;  / < 4 then the depth of .M;  / is at most two.

Proof Suppose that the depth of .M;  / is � 3. Note that decompositions along
product disks and product annuli do not decrease the depth of a sutured manifold, and
decompositions along disjoint unions of product annuli can decrease the depth by at
most one. Thus applying the same procedure to .M;  / as in the proof of Theorem 9.7
we get two depth � 1 (ie, nonproduct) taut balanced sutured manifolds .M1; 1/ and
.M2; 2/ such that

SFH.M;  /� SFH.M1; 1/˚SFH.M2; 2/:

Theorem 9.7 implies that SFH.Mi ; i/�Z2 for iD1; 2. Thus SFH.M;  /�Z4 .

Proof of Theorem 1.8 Let S be a genus g Seifert surface of K . Then .M;  / D

Y .S/ is a taut balanced sutured manifold with SFH.Y .S//� 1HFK.Y;K;g/ due to
Theorem 1.5. The linking matrix V of S is a matrix of the map

iCW H1.RC. /IQ/!H1.M IQ/;

thus det V D˙ag ¤ 0 and iC is an isomorphism. From the long exact sequence of the
pair .M;RC. // we see that H1.M;RC. /IQ/D 0. Similarly, H1.M;R�. /IQ/
is also zero, thus .M;  / is a rational homology product. Using Theorem 9.12 we
conclude that the depth of .M;  / is � 2. Now using [2] we get a depth � 2 taut
foliation on .M;  / transverse to  and leaves including R˙. /.

Remark 9.13 If rk 1HFK.Y;K;g/D 3 then using the fact that �.1HFK.Y;K;g//D

ag we see that the condition ag ¤ 0 is automatically satisfied.

Question 9.14 Let K be a knot in a rational homology 3–sphere Y and suppose that
k is a positive integer. Does

rk 1HFK.Y;K;g.K// < 2k

imply that Y nN.K/ has a depth < 2.k � 1/ taut foliation transverse to @N.K/?
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