Floer homology and surface decompositions

ANDRÁS JUHÁSZ

Abstract

Sutured Floer homology, denoted by $S F H$, is an invariant of balanced sutured manifolds previously defined by the author. In this paper we give a formula that shows how this invariant changes under surface decompositions. In particular, if $(M, \gamma) \rightsquigarrow\left(M^{\prime}, \gamma^{\prime}\right)$ is a sutured manifold decomposition then $\operatorname{SFH}\left(M^{\prime}, \gamma^{\prime}\right)$ is a direct summand of $\operatorname{SFH}(M, \gamma)$. To prove the decomposition formula we give an algorithm that computes $\operatorname{SFH}(M, \gamma)$ from a balanced diagram defining (M, γ) that generalizes the algorithm of Sarkar and Wang.

As a corollary we obtain that if (M, γ) is taut then $\operatorname{SFH}(M, \gamma) \neq 0$. Other applications include simple proofs of a result of Ozsváth and Szabó that link Floer homology detects the Thurston norm, and a theorem of Ni that knot Floer homology detects fibred knots. Our proofs do not make use of any contact geometry.

Moreover, using these methods we show that if K is a genus g knot in a rational homology 3-sphere Y whose Alexander polynomial has leading coefficient $a_{g} \neq 0$ and if $\operatorname{rk} \operatorname{HFK}(Y, K, g)<4$ then $Y \backslash N(K)$ admits a depth ≤ 2 taut foliation transversal to $\partial N(K)$.

57M27, 57R58

1 Introduction

In [7] we defined a Floer homology invariant for balanced sutured manifolds. In this paper we study how this invariant changes under surface decompositions. We need some definitions before we can state our main result. Recall that Spin c structures on sutured manifolds were defined in [7]; all the necessary definitions can also be found in Section 3 of the present paper.

Definition 1.1 Let (M, γ) be a balanced sutured manifold and let $(S, \partial S) \subset(M, \partial M)$ be a properly embedded oriented surface. An element $\mathfrak{s} \in \operatorname{Spin}^{c}(M, \gamma)$ is called outer with respect to S if there is a unit vector field v on M whose homology class is \mathfrak{s} and $v_{p} \neq-\left(v_{S}\right)_{p}$ for every $p \in S$. Here v_{S} is the unit normal vector field of S with respect to some Riemannian metric on M. Let O_{S} denote the set of outer Spin ${ }^{c}$ structures.

Definition 1.2 Suppose that R is a compact, oriented, open surface. Let C be an oriented simple closed curve in R. If [C]=0 in $H_{1}(R ; \mathbb{Z})$ then $R \backslash C$ can be written as $R_{1} \cup R_{2}$, where R_{1} is the component of $R \backslash C$ that is disjoint from ∂R and satisfies $\partial R_{1}=C$. We call R_{1} the interior and R_{2} the exterior of C.

We say that the curve C is boundary-coherent if either $[C] \neq 0$ in $H_{1}(R ; \mathbb{Z})$, or if $[C]=0$ in $H_{1}(R ; \mathbb{Z})$ and C is oriented as the boundary of its interior.

Theorem 1.3 Let (M, γ) be a balanced sutured manifold and let $(M, \gamma) \nrightarrow^{S}\left(M^{\prime}, \gamma^{\prime}\right)$ be a sutured manifold decomposition. Suppose that S is open and for every component V of $R(\gamma)$ the set of closed components of $S \cap V$ consists of parallel oriented boundary-coherent simple closed curves. Then

$$
S F H\left(M^{\prime}, \gamma^{\prime}\right)=\bigoplus_{\mathfrak{s} \in O_{S}} S F H(M, \gamma, \mathfrak{s})
$$

In particular, $\operatorname{SFH}\left(M^{\prime}, \gamma^{\prime}\right)$ is a direct summand of $\operatorname{SFH}(M, \gamma)$.

In order to prove Theorem 1.3 we generalize the algorithm of Sarkar and Wang [16] to give an algorithm that computes $\operatorname{SFH}(M, \gamma)$ from any given balanced diagram of (M, γ).

From Theorem 1.3 we will deduce the following two theorems. These provide us with positive answers to Question 9.19 and Conjecture 10.2 of [7].

Theorem 1.4 Suppose that the balanced sutured manifold (M, γ) is taut. Then

$$
\mathbb{Z} \leq S F H(M, \gamma)
$$

If Y is a closed connected oriented 3 -manifold and $R \subset Y$ is a compact oriented surface with no closed components then we can obtain a balanced sutured manifold $Y(R)=(M, \gamma)$, where $M=Y \backslash \operatorname{Int}(R \times I)$ and $\gamma=\partial R \times I$; see [7, Example 2.6]. Furthermore, if $K \subset Y$ is a knot, $\alpha \in H_{2}(Y, K ; \mathbb{Z})$, and $i \in \mathbb{Z}$ then let

$$
\widehat{H F K}(Y, K, \alpha, i)=\bigoplus_{\substack{\mathfrak{s} \in \operatorname{Spin}^{c}(Y, K) \\\left\langle c_{1}(\mathfrak{s}), \alpha\right\rangle=2 i}} \widehat{H F K}(Y, K, \mathfrak{s})
$$

Theorem 1.5 Let K be a null-homologous knot in a closed connected oriented 3manifold Y and let $S \subset Y$ be a Seifert surface of K. Then

$$
S F H(Y(S)) \approx \widehat{H F K}(Y, K,[S], g(S))
$$

Remark 1.6 Theorem 1.5 implies that the invariant $\widehat{H F S}$ of balanced sutured manifolds defined by Ni [9] is equal to $S F H$.

Putting these two theorems together we get a new proof of the fact proved by Ozsváth and Szabó [13] that knot Floer homology detects the genus of a knot. In particular, if Y is a rational homology 3 -sphere then $\widehat{H F K}(K, g(K))$ is nonzero and $\widehat{H F K}(K, i)=0$ for $i>g(K)$.
Further applications include a simple proof of a theorem that link Floer homology detects the Thurston norm, which was proved for links in S^{3} in Ozsváth and Szabó [12]. We generalize this result to links in arbitrary 3 -manifolds. Here we do not use any symplectic or contact geometry. We also show that the Murasugi sum formula proved in [10] is an easy consequence of Theorem 1.3. The main application of our apparatus is a simplified proof that shows knot Floer homology detects fibred knots. This theorem was conjectured by Ozsváth and Szabó and first proved by Ni [9]. Here we avoid the contact topology of Ghiggini [6] and this allows us to simplify some of the arguments in [9].
To show the strength of our approach we prove the following extension of the main result of [9]. First we review a few definitions about foliations; see Gabai [4, Definition 3.8].

Definition 1.7 Let \mathcal{F} be a codimension one transversely oriented foliation. A leaf of \mathcal{F} is of depth 0 if it is compact. Having defined the depth $<p$ leaves we say that a leaf L is depth p if it is proper (ie, the subspace topology on L equals the leaf topology), L is not of depth $<p$, and $\bar{L} \backslash L$ is contained in the union of depth $<p$ leaves. If \mathcal{F} contains nonproper leaves then the depth of a leaf may not be defined.
If every leaf of \mathcal{F} is of depth at most n and \mathcal{F} has a depth n leaf then we say that \mathcal{F} is depth n.
A foliation \mathcal{F} is taut if there is a single circle C transverse to \mathcal{F} which intersects every leaf.

Theorem 1.8 Let K be a null-homologous genus g knot in a rational homology 3 -sphere Y. Suppose that the coefficient a_{g} of the Alexander polynomial $\Delta_{K}(t)$ of K is nonzero and

$$
\text { rk } \widehat{H F K}(Y, K, g)<4 .
$$

Then $Y \backslash N(K)$ has a depth ≤ 2 taut foliation transverse to $\partial N(K)$.
This constitutes progress in the direction of solving [5, Problem 8.4]. The problem has several variations; the following is one of them.

Problem 1.9 Let K be a knot in S^{3}. Compute the minimal n such that there is a depth n foliation on $S^{3} \backslash N(K)$.

Acknowledgements I am grateful for the guidance of Zoltán Szabó during the course of this work. I would also like to thank David Gabai, Paolo Ghiggini, and Yi Ni for the helpful discussions.

This research was partially supported by OTKA grant no T49449.

2 Preliminary definitions

First we briefly review the basic definitions concerning balanced sutured manifolds and the Floer homology invariant which we defined for them in [7].

Definition 2.1 A sutured manifold (M, γ) is a compact oriented 3-manifold M with boundary together with a set $\gamma \subset \partial M$ of pairwise disjoint annuli $A(\gamma)$ and tori $T(\gamma)$. Furthermore, the interior of each component of $A(\gamma)$ contains a suture, ie, a homologically nontrivial oriented simple closed curve. We denote the union of the sutures by $s(\gamma)$.

Finally every component of $R(\gamma)=\partial M \backslash \operatorname{Int}(\gamma)$ is oriented. Define $R_{+}(\gamma)$ (or $\left.R_{-}(\gamma)\right)$ to be those components of $\partial M \backslash \operatorname{Int}(\gamma)$ whose normal vectors point out of (into) M. The orientation on $R(\gamma)$ must be coherent with respect to $s(\gamma)$, ie, if δ is a component of $\partial R(\gamma)$ and is given the boundary orientation, then δ must represent the same homology class in $H_{1}(\gamma)$ as some suture.

Definition 2.2 A sutured manifold (M, γ) is called balanced if M has no closed components, $\chi\left(R_{+}(\gamma)\right)=\chi\left(R_{-}(\gamma)\right)$, and the map $\pi_{0}(A(\gamma)) \rightarrow \pi_{0}(\partial M)$ is surjective.

Notation 2.3 Throughout this paper we are going to use the following notation. If K is a submanifold of the manifold M then $N(K)$ denotes a regular neighborhood of K in M.

For the following see Examples 2.3, 2.4, and 2.5 in [7].
Definition 2.4 Let Y be a closed connected oriented 3-manifold. Then the balanced sutured manifold $Y(1)$ is obtained by removing an open ball from Y and taking an annular suture on its boundary.
Suppose that L is a link in Y. The balanced sutured manifold $Y(L)=(M, \gamma)$, where $M=Y \backslash N(L)$ and for each component L_{0} of L the sutures $\partial N\left(L_{0}\right) \cap s(\gamma)$ consist of two oppositely oriented meridians of L_{0}.

Finally, if S is a Seifert surface in Y then the balanced sutured manifold $Y(S)=(N, v)$, where $N=Y \backslash \operatorname{Int}(S \times I)$ and $v=\partial S \times I$.

The following definition can be found for example in Scharlemann [17].
Definition 2.5 Let S be a compact oriented surface (possibly with boundary) whose components are S_{1}, \ldots, S_{n}. Then define the norm of S to be

$$
x(S)=\sum_{i: \chi\left(S_{i}\right)<0}\left|\chi\left(S_{i}\right)\right| .
$$

Let M be a compact oriented 3-manifold and let N be a subsurface of ∂M. For $s \in H_{2}(M, N ; \mathbb{Z})$ we define its norm $x(s)$ to be the minimum of $x(S)$ taken over all properly embedded surfaces $(S, \partial S)$ in (M, N) such that $[S, \partial S]=s$.
If $(S, \partial S) \subset(M, N)$ is a properly embedded oriented surface then we say that S is norm minimizing in $H_{2}(M, N)$ if S is incompressible and $x(S)=x([S, \partial S])$ for $[S, \partial S] \in H_{2}(M, N ; \mathbb{Z})$.

Definition 2.6 A sutured manifold (M, γ) is taut if M is irreducible and $R(\gamma)$ is norm minimizing in $H_{2}(M, \gamma)$.

Next we recall the definition of a sutured manifold decomposition; see Gabai [2, Definition 3.1].

Definition 2.7 Let (M, γ) be a sutured manifold. A decomposing surface is a properly embedded oriented surface S in M such that for every component λ of $S \cap \gamma$ one of (1)-(3) holds:
(1) λ is a properly embedded nonseparating arc in γ such that $|\lambda \cap s(\gamma)|=1$.
(2) λ is a simple closed curve in an annular component A of γ in the same homology class as $A \cap s(\gamma)$.
(3) λ is a homotopically nontrivial curve in a torus component T of γ, and if δ is another component of $T \cap S$, then λ and δ represent the same homology class in $H_{1}(T)$.

Then S defines a sutured manifold decomposition

$$
(M, \gamma) \rightsquigarrow S^{S}\left(M^{\prime}, \gamma^{\prime}\right),
$$

where

$$
\begin{aligned}
M^{\prime} & =M \backslash \operatorname{Int}(N(S)), \\
\gamma^{\prime} & =\left(\gamma \cap M^{\prime}\right) \cup N\left(S_{+}^{\prime} \cap R_{-}(\gamma)\right) \cup N\left(S_{-}^{\prime} \cap R_{+}(\gamma)\right), \\
R_{+}\left(\gamma^{\prime}\right) & =\left(\left(R_{+}(\gamma) \cap M^{\prime}\right) \cup S_{+}^{\prime}\right) \backslash \operatorname{Int}\left(\gamma^{\prime}\right), \\
R_{-}\left(\gamma^{\prime}\right) & =\left(\left(R_{-}(\gamma) \cap M^{\prime}\right) \cup S_{-}^{\prime}\right) \backslash \operatorname{Int}\left(\gamma^{\prime}\right),
\end{aligned}
$$

where $S_{+}^{\prime}\left(S_{-}^{\prime}\right)$ is the component of $\partial N(S) \cap M^{\prime}$ whose normal vector points out of (into) M^{\prime}.

Definition 2.8 A decomposing surface S in (M, γ) is called a product disk if S is a disk such that $|D \cap s(\gamma)|=2$. A surface decomposition $(M, \gamma) \not \mapsto^{S}\left(M^{\prime}, \gamma^{\prime}\right)$ is called a product decomposition if S is a product disk.

Definition 2.9 A decomposing surface S lying in the sutured manifold (M, γ) is called a product annulus if S is an annulus, one component of ∂S is contained in $R_{+}(\gamma)$, and the other component is contained in $R_{-}(\gamma)$.

Definition 2.10 A sutured Heegaard diagram is a tuple $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$, where Σ is a compact oriented surface with boundary and $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are two sets of pairwise disjoint simple closed curves in $\operatorname{Int}(\Sigma)$.

Every sutured Heegaard diagram $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ uniquely defines a sutured manifold (M, γ) using the following construction. Suppose $\boldsymbol{\alpha}=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ and $\boldsymbol{\beta}=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$. Let M be the $3-$ manifold obtained from $\Sigma \times I$ by attaching 3 -dimensional 2 -handles along the curves $\alpha_{i} \times\{0\}$ and $\beta_{j} \times\{1\}$ for $i=1, \ldots, m$ and $j=1, \ldots, n$. The sutures are defined by taking $\gamma=\partial \Sigma \times I$ and $s(\gamma)=\partial \Sigma \times\{1 / 2\}$.

Definition 2.11 A sutured Heegaard diagram $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is called balanced if $|\boldsymbol{\alpha}|=|\boldsymbol{\beta}|$ and the maps $\pi_{0}(\partial \Sigma) \rightarrow \pi_{0}(\Sigma \backslash \bigcup \boldsymbol{\alpha})$ and $\pi_{0}(\partial \Sigma) \rightarrow \pi_{0}(\Sigma \backslash \bigcup \boldsymbol{\beta})$ are surjective.

The following is [7, Proposition 2.14].

Proposition 2.12 For every balanced sutured manifold (M, γ) there exists a balanced diagram defining it.

Definition 2.13 For a balanced diagram let $\mathcal{D}_{1}, \ldots, \mathcal{D}_{m}$ denote the closures of the components of $\Sigma \backslash(\bigcup \boldsymbol{\alpha} \cup \bigcup \boldsymbol{\beta})$ disjoint from $\partial \Sigma$. Then let $D(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ be the free abelian group generated by $\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{m}\right\}$. This is of course isomorphic to \mathbb{Z}^{m}. We call an element of $D(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ a domain. An element \mathcal{D} of $\mathbb{Z}_{\geq 0}^{m}$ is called a positive domain, we write $\mathcal{D} \geq 0$. A domain $\mathcal{P} \in D(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is called a periodic domain if the boundary of the 2 -chain \mathcal{P} is a linear combination of full α - and β-curves.

Definition 2.14 A balanced diagram $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is called admissible if every periodic domain $\mathcal{P} \neq 0$ has both positive and negative coefficients.

The following proposition is [7, Corollary 3.12].
Proposition 2.15 If (M, γ) is a balanced sutured manifold such that

$$
H_{2}(M ; \mathbb{Z})=0
$$

and if $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is an arbitrary balanced diagram defining (M, γ) then there are no nonzero periodic domains in $D(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$. Thus any balanced diagram defining (M, γ) is automatically admissible.

For a surface Σ let $\operatorname{Sym}^{d}(\Sigma)$ denote the d-fold symmetric product $\Sigma^{\times d} / S_{d}$. This is a smooth $2 d$-manifold. A complex structure \mathfrak{j} on Σ naturally endows $\operatorname{Sym}^{d}(\Sigma)$ with a complex structure. Let $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ be a balanced diagram, where $\boldsymbol{\alpha}=\left\{\alpha_{1}, \ldots, \alpha_{d}\right\}$ and $\boldsymbol{\beta}=\left\{\beta_{1}, \ldots, \beta_{d}\right\}$. Then the tori $\mathbb{T}_{\alpha}=\left(\alpha_{1} \times \cdots \times \alpha_{d}\right) / S_{d}$ and $\mathbb{T}_{\beta}=\left(\beta_{1} \times \cdots \times \beta_{d}\right) / S_{d}$ are d-dimensional totally real submanifolds of $\operatorname{Sym}^{d}(\Sigma)$.

Definition 2.16 Let $\mathbf{x}, \mathbf{y} \in \mathbb{T}_{\boldsymbol{\alpha}} \cap \mathbb{T}_{\boldsymbol{\beta}}$. A domain $\mathcal{D} \in D(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is said to connect \mathbf{x} to \mathbf{y} if for every $1 \leq i \leq d$ the equalities $\partial\left(\alpha_{i} \cap \partial \mathcal{D}\right)=\left(\mathbf{x} \cap \alpha_{i}\right)-\left(\mathbf{y} \cap \alpha_{i}\right)$ and $\partial\left(\beta_{i} \cap \partial \mathcal{D}\right)=\left(\mathbf{x} \cap \beta_{i}\right)-\left(\mathbf{y} \cap \beta_{i}\right)$ hold. We are going to denote by $D(\mathbf{x}, \mathbf{y})$ the set of domains connecting \mathbf{x} to \mathbf{y}.

Notation 2.17 Let \mathbb{D} denote the unit disc in \mathbb{C} and let $e_{1}=\{z \in \partial \mathbb{D}: \operatorname{Re}(z) \geq 0\}$ and $e_{2}=\{z \in \partial \mathbb{D}: \operatorname{Re}(z) \leq 0\}$.

Definition 2.18 Let $\mathbf{x}, \mathbf{y} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$ be intersection points. A Whitney disc connecting \mathbf{x} to \mathbf{y} is a continuous map $u: \mathbb{D} \rightarrow \operatorname{Sym}^{d}(\Sigma)$ such that $u(-i)=\mathbf{x}, u(i)=\mathbf{y}$ and $u\left(e_{1}\right) \subset \mathbb{T}_{\alpha}, u\left(e_{2}\right) \subset \mathbb{T}_{\beta}$. Let $\pi_{2}(\mathbf{x}, \mathbf{y})$ denote the set of homotopy classes of Whitney discs connecting \mathbf{x} to \mathbf{y}.

Definition 2.19 If $z \in \Sigma \backslash(\bigcup \boldsymbol{\alpha} \cup \bigcup \boldsymbol{\beta})$ and if u is a Whitney disc then choose a Whitney disc u^{\prime} homotopic to u such that u^{\prime} intersects the hypersurface $\{z\} \times$ $\operatorname{Sym}^{d-1}(\Sigma)$ transversally. Define $n_{z}(u)$ to be the algebraic intersection number $u^{\prime} \cap$ $\left(\{z\} \times \operatorname{Sym}^{d-1}(\Sigma)\right)$.

Definition 2.20 Let $\mathcal{D}_{1}, \ldots, \mathcal{D}_{m}$ be as in Definition 2.13. For every $1 \leq i \leq m$ choose a point $z_{i} \in \mathcal{D}_{i}$. Then the domain of a Whitney disc u is defined as

$$
\mathcal{D}(u)=\sum_{i=1}^{m} n_{z_{i}}(u) \mathcal{D}_{i} \in D(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}) .
$$

If $\phi \in \pi_{2}(\mathbf{x}, \mathbf{y})$ and if u is a representative of the homotopy class ϕ then let $\mathcal{D}(\phi)=$ $\mathcal{D}(u)$.

Definition 2.21 We define the Maslov index of a domain $\mathcal{D} \in D(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ as follows. If there is a homotopy class ϕ of Whitney discs such that $\mathcal{D}(\phi)=\mathcal{D}$ then let $\mu(\mathcal{D})=\mu(\phi)$. Otherwise we define $\mu(\mathcal{D})$ to be $-\infty$. It follows from Definition 2.20 that μ is additive on $D(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$. Furthermore, let $\mathcal{M}(\mathcal{D})$ denote the moduli space of holomorphic Whitney discs u such that $\mathcal{D}(u)=\mathcal{D}$ and let $\widehat{\mathcal{M}}(\mathcal{D})=\mathcal{M}(\mathcal{D}) / \mathbb{R}$.

Let (M, γ) be a balanced sutured manifold and $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ an admissible balanced diagram defining it. Fix a coherent system of orientations as in [15, Definition 3.11]. Then for a generic almost complex structure the following holds: for each domain \mathcal{D} such that $\mu(\mathcal{D})=1$ the moduli space $\widehat{\mathcal{M}}(\mathcal{D})$ is a compact oriented manifold of dimension 0 , ie, a finite set of points with signs. We denote by $C F(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ the free abelian group generated by the points of $\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$. We define an endomorphism $\partial: C F(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}) \rightarrow C F(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ such that on each generator $\mathbf{x} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$ it is given by the formula

$$
\partial \mathbf{x}=\sum_{\mathbf{y} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}\{\mathcal{D} \in D(\mathbf{x}, \mathbf{y}): \mu(\mathcal{D})=1\}} \# \widehat{\mathcal{M}}(\mathcal{D}) \cdot \mathbf{y}
$$

Then $(C F(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}), \partial)$ is a chain complex whose homology depends only on the underlying sutured manifold (M, γ). We denote this homology group by $S F H(M, \gamma)$.

For the following see [7, Proposition 9.1] and [7, Proposition 9.2].

Proposition 2.22 If Y is a closed connected oriented 3-manifold then

$$
S F H(Y(1)) \approx \widehat{H F}(Y)
$$

Furthermore, if L is a link in Y and \vec{L} is an arbitrary orientation of L then

$$
S F H(Y(L)) \otimes \mathbb{Z}_{2} \approx \widehat{H F L}(\vec{L})
$$

$3 \operatorname{Spin}^{\text {c }}$ structures and relative Chern classes

First we review the definition of a Spin^{c} structure on a balanced sutured manifold (M, γ) that was introduced in [7]. Note that in a balanced sutured manifold none of the sutures are tori. Fix a Riemannian metric on M.

Notation 3.1 Let v_{0} be a nowhere vanishing vector field along ∂M that points into M along $R_{-}(\gamma)$, points out of M along $R_{+}(\gamma)$, and on γ it is the gradient of the height function $s(\gamma) \times I \rightarrow I$. The space of such vector fields is contractible.

Definition 3.2 Let v and w be nowhere vanishing vector fields on M that agree with v_{0} on ∂M. We say that v and w are homologous if there is an open ball $B \subset \operatorname{Int}(M)$ such that $v \mid(M \backslash B)$ is homotopic to $w \mid(M \backslash B)$ through nowhere vanishing vector fields rel ∂M. We define $\operatorname{Spin}^{c}(M, \gamma)$ to be the set of homology classes of nowhere vanishing vector fields v on M such that $v \mid \partial M=v_{0}$.

Definition 3.3 Let (M, γ) be a balanced sutured manifold and $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ a balanced diagram defining it. To each $\mathbf{x} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$ we assign a Spin^{c} structure $\mathfrak{s}(\mathbf{x}) \in \operatorname{Spin}^{c}(M, \gamma)$ as follows. Choose a Morse function f on M compatible with the given balanced diagram $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$. Then \mathbf{x} corresponds to a multi-trajectory $\gamma_{\mathbf{x}}$ of $\operatorname{grad}(f)$ connecting the index one and two critical points of f. In a regular neighborhood $N\left(\gamma_{\mathbf{x}}\right)$ we can modify $\operatorname{grad}(f)$ to obtain a nowhere vanishing vector field v on M such that $v \mid \partial M=v_{0}$. We define $\mathfrak{s}(\mathbf{x})$ to be the homology class of this vector field v.

Proposition 3.4 The vector bundle v_{0}^{\perp} over ∂M is trivial if and only if for every component F of ∂M the equality $\chi\left(F \cap R_{+}(\gamma)\right)=\chi\left(F \cap R_{-}(\gamma)\right)$ holds.

Proof Since $v_{0}^{\perp} \mid R_{+}(\gamma)=T R_{+}(\gamma)$ and $v_{0}^{\perp} \mid R_{-}(\gamma)=-T R_{-}(\gamma)$ we get that

$$
\left\langle e\left(v_{0}^{\perp} \mid F\right),[F]\right\rangle=\chi\left(F \cap R_{+}(\gamma)\right)-\chi\left(F \cap R_{-}(\gamma)\right) .
$$

Moreover, the rank two bundle $v_{0}^{\perp} \mid F$ is trivial if and only if its Euler class vanishes.
Definition 3.5 We call a sutured manifold (M, γ) strongly balanced if for every component F of ∂M the equality $\chi\left(F \cap R_{+}(\gamma)\right)=\chi\left(F \cap R_{-}(\gamma)\right)$ holds.

Remark 3.6 Note that if (M, γ) is balanced then we can associate to it a strongly balanced sutured manifold ($M^{\prime}, \gamma^{\prime}$) such that (M, γ) can be obtained from ($M^{\prime}, \gamma^{\prime}$) by a sequence of product decompositions. We can construct such an $\left(M^{\prime}, \gamma^{\prime}\right)$ as follows. If F_{1} and F_{2} are distinct components of ∂M then choose two points $p_{1} \in s(\gamma) \cap F_{1}$ and $p_{2} \in s(\gamma) \cap F_{2}$. For $i=1,2$ let D_{i} be a small neighborhood of p_{i} homeomorphic to a closed disc. We get a new sutured manifold by gluing together D_{1} and D_{2}. Then (M, γ) can be retrieved by decomposing along $D_{1} \sim D_{2}$. By repeating this process we get a sutured manifold ($M^{\prime}, \gamma^{\prime}$) with a single boundary component. Since (M, γ) was balanced ($M^{\prime}, \gamma^{\prime}$) is strongly balanced. By adding such product one-handles we can even achieve that γ is connected.

Definition 3.7 Suppose that (M, γ) is a strongly balanced sutured manifold. Let t be a trivialization of v_{0}^{\perp} and let $\mathfrak{s} \in \operatorname{Spin}^{c}(M, \gamma)$. Then we define

$$
c_{1}(\mathfrak{s}, t) \in H^{2}(M, \partial M ; \mathbb{Z})
$$

to be the relative Euler class of the vector bundle v^{\perp} with respect to the trivialization t. In other words, $c_{1}(\mathfrak{s}, t)$ is the obstruction to extending t from ∂M to a trivialization of v^{\perp} over M.

Definition 3.8 Let S be a decomposing surface in a balanced sutured manifold (M, γ) such that the positive unit normal field v_{S} of S is nowhere parallel to v_{0} along ∂S. This holds for generic S. We endow ∂S with the boundary orientation. Let us denote the components of ∂S by T_{1}, \ldots, T_{k}.

Let w_{0} denote the projection of v_{0} into $T S$, this is a nowhere zero vector field. Moreover, let f be the positive unit tangent vector field of ∂S. For $1 \leq i \leq k$ we define the index $I\left(T_{i}\right)$ to be the number of times w_{0} rotates with respect to f as we go around T_{i}. Then define

$$
I(S)=\sum_{i=1}^{k} I\left(T_{k}\right) .
$$

Let $p\left(v_{S}\right)$ be the projection of v_{S} into v^{\perp}. Observe that $p\left(v_{S}\right) \mid \partial S$ is nowhere zero. For $1 \leq i \leq k$ we define $r\left(T_{i}, t\right)$ to be the rotation of $p\left(v_{S}\right) \mid \partial T_{i}$ with respect to the trivialization t as we go around T_{i}. Moreover, let

$$
r(S, t)=\sum_{i=1}^{k} r\left(T_{i}, t\right)
$$

We introduce the notation

$$
c(S, t)=\chi(S)+I(S)-r(S, t) .
$$

Lemma 3.9 Let (M, γ) be a balanced sutured manifold and let S be a decomposing surface as in Definition 3.8.
(1) If T is a component of ∂S such that $T \not \subset \gamma$ then

$$
I(T)=-\frac{|T \cap s(\gamma)|}{2} .
$$

(2) Suppose that T_{1}, \ldots, T_{a} are components of ∂S such that $\mathcal{T}=T_{1} \cup \cdots \cup T_{a} \subset \gamma$ is parallel to $s(\gamma)$ and ν_{S} points out of M along \mathcal{T}. Then $I\left(T_{j}\right)=0$ for $1 \leq j \leq a$; moreover,

$$
\sum_{j=1}^{a} r\left(T_{j}, t\right)=\chi\left(R_{+}(\gamma)\right)
$$

Proof First we prove part (1). We can suppose that w_{0} is tangent to T exactly at the points of $\partial T \cap s(\gamma)$. Then at a point $p \in T \cap s(\gamma)$ we have $w_{0} /\left|w_{0}\right|=f$ if and only if T goes from $R_{-}(\gamma)$ to $R_{+}(\gamma)$ and in that case w_{0} rotates from the inside of S to the outside; see Figure 1. Thus w_{0} rotates $-|T \cap s(\gamma)| / 2$ times with respect to f as we go around T.

Figure 1: If $T \not \subset \gamma$ then the index $I(T)$ is $-|T \cap s(\gamma)| / 2$.
Now we prove part (2). Let $1 \leq j \leq a$. Since v_{S} points out of M along T_{j} we get that w_{0} points into S along T_{j}. So w_{0} and f are nowhere equal along T_{j}, and thus $I\left(T_{j}\right)=0$.

Since \mathcal{T} is parallel to $s(\gamma)$ it bounds a surface $\mathcal{R}_{+} \subset \partial M$ which is diffeomorphic to $R_{+}(\gamma)$ and contains $R_{+}(\gamma)$. Since ν_{S} points out of M along \mathcal{T} there is an isomorphism $i: v_{0}^{\perp} \mid \mathcal{R}_{+} \rightarrow T \mathcal{R}_{+}$such that $i\left(p\left(v_{S}\right)\right)$ is an outward normal field of \mathcal{R}_{+}along $\partial \mathcal{R}_{+}$. Moreover, $i\left(t \mid \mathcal{R}_{+}\right)$gives a trivialization of $T \mathcal{R}_{+}$. Using the Poincaré-Hopf theorem we get that $p\left(v_{S}\right)$ rotates $\chi\left(\mathcal{R}_{+}\right)=\chi\left(R_{+}(\gamma)\right)$ times with respect to t as we go around \mathcal{T}.

Recall that we defined the notion of an outer Spin^{c} structure in Definition 1.1.
Lemma 3.10 Suppose that (M, γ) is a strongly balanced sutured manifold. Let t be a trivialization of v_{0}^{\perp}, let $\mathfrak{s} \in \operatorname{Spin}^{c}(M, \gamma)$, and let S be a decomposing surface in (M, γ) as in Definition 3.8. Denote the components of S by S_{1}, \ldots, S_{k}. Then \mathfrak{s} is outer with respect to S if and only if

$$
\begin{equation*}
\left\langle c_{1}(\mathfrak{s}, t),\left[S_{i}\right]\right\rangle=c\left(S_{i}, t\right) \text { for every } 1 \leq i \leq k . \tag{3-1}
\end{equation*}
$$

In particular, if $\mathfrak{s} \in O_{S}$ then

$$
\left\langle c_{1}(\mathfrak{s}, t),[S]\right\rangle=\sum_{i=1}^{k} c\left(S_{i}, t\right)=c(S, t) .
$$

Proof Endow M with an arbitrary Riemannian metric. First we show that if $\mathfrak{s} \in O_{S}$ then Equation (3-1) holds. Since $\mathfrak{s} \in O_{S}$ implies that $\mathfrak{s} \in O_{S_{i}}$ for every $1 \leq i \leq k$ we can assume that S is connected. Using the naturality of Chern classes it is sufficient to prove that if v is a unit vector field over S that agrees with v_{0} over ∂S and is nowhere equal to $-v_{S}$ then $\left\langle c_{1}\left(v^{\perp}, t\right),[S]\right\rangle=c(S, t)$.

If we project v_{S} into v^{\perp} we get a section $p\left(v_{S}\right)$ of v^{\perp} that vanishes exactly where $v_{S}=v$. We can perturb v slightly to make all tangencies between v^{\perp} and S nondegenerate. Let e and h denote the number of elliptic, respectively hyperbolic tangencies between v^{\perp} and S. At each such tangency the orientation of v^{\perp} and $T S$ agree. Thus $\left\langle c_{1}\left(v^{\perp}, t_{1}\right),[S]\right\rangle=e-h$, where $t_{1}=p\left(v_{S}\right) \mid \partial S$. Since

$$
\left\langle c_{1}\left(v^{\perp}, t_{1}\right)-c_{1}\left(v^{\perp}, t\right),[S]\right\rangle=r(S, t)
$$

we get that

$$
\left\langle c_{1}\left(v^{\perp}, t\right),[S]\right\rangle=e-h-r(S, t)
$$

On the other hand, if we project v into $T S$ we get a vector field w on S that is zero exactly at the points where $v_{S}=v$ as well. Note that w has index 1 exactly where v^{\perp} and S have an elliptic tangency and has index -1 at hyperbolic tangencies. Moreover, $w \mid \partial S=w_{0}$. If we extend f to a vector field f_{1} over S the sum of the indices of f_{1} will by $\chi(S)$ by the Poincaré-Hopf theorem. Putting these observations together we get that

$$
I(S)=(e-h)-\chi(S)
$$

So we conclude that

$$
\left\langle c_{1}\left(v^{\perp}, t\right),[S]\right\rangle=\chi(S)+I(S)-r(S, t)=c(S, t) .
$$

Now we prove that if for $\mathfrak{s} \in \operatorname{Spin}^{c}(M, \gamma)$ Equation (3-1) holds then $\mathfrak{s} \in O_{S}$. Let $S T M$ denote the unit sphere bundle of $T M$. Then $v_{0} \mid \partial S$ is a section over ∂S of $(S T M \mid S) \backslash\left(-v_{S}\right)$, which is a bundle over S with contractible fibers. Thus $v_{0} \mid \partial S$ extends to a section $v_{1}: S \rightarrow S T M \mid S$ that is nowhere equal to $-v_{S}$. In the first part of the proof we showed that for such a vector field v_{1} the equation $\left\langle c_{1}\left(v_{1}^{\perp}, t\right),[S]\right\rangle=c(S, t)$ holds.

Let v^{\prime} be a unit vector field over M whose homology class is \mathfrak{s} and let $v=v^{\prime} \mid S$. Since \mathfrak{s} satisfies Equation (3-1) we get that

$$
\left\langle c_{1}\left(v^{\perp}, t\right)-c_{1}\left(v_{1}^{\perp}, t\right),\left[S_{i}\right]\right\rangle=0 \text { for every } 1 \leq i \leq k .
$$

The obstruction class $o\left(v, v_{1}\right) \in H^{2}(S, \partial S ; \mathbb{Z})$ vanishes if and only if the sections v and v_{1} of $S T M \mid S$ are homotopic relative to ∂S. A cochain o representing $o\left(v, v_{1}\right)$ can be obtained as follows. First take a triangulation of S and a trivialization of
$S T M \mid S$. Then v and v_{1} can be considered to be maps from S to S^{2}. One can homotope v rel ∂S to agree with v_{1} on the one-skeleton of S. The value of o on a $2-\operatorname{simplex} \Delta$ is the difference of $v \mid \Delta$ and $v_{1} \mid \Delta$, which is an element of $\pi_{2}\left(S^{2}\right) \approx \mathbb{Z}$. Since $2 o\left(v, v_{1}\right)=c_{1}\left(v^{\perp}, t\right)-c_{1}\left(v_{1}^{\perp}, t\right)$ and $H^{2}(S, \partial S ; \mathbb{Z}) \approx \mathbb{Z}^{k}$ is torsion free we get that $o\left(v, v_{1}\right)=0$, ie, v is homotopic to v_{1} rel ∂S. By extending this homotopy of v^{\prime} fixing $v^{\prime} \mid \partial M$ we get a vector field v_{1}^{\prime} on M that agrees with v_{1} on S. Thus \mathfrak{s} can be represented by the vector field v_{1}^{\prime} that is nowhere equal to $-v_{S}$, and so $\mathfrak{s} \in O_{S}$.

In light of Lemma 3.10 we can reformulate Theorem 1.3 for strongly balanced sutured manifolds as follows.

Theorem 3.11 Let (M, γ) be a strongly balanced sutured manifold; furthermore, let $(M, \gamma) \rightsquigarrow S$ ($\left.M^{\prime}, \gamma^{\prime}\right)$ be a sutured manifold decomposition. Suppose that S is open and for every component V of $R(\gamma)$ the set of closed components of $S \cap V$ consists of parallel oriented boundary-coherent simple closed curves. Denote the components of S by S_{1}, \ldots, S_{k} and choose a trivialization t of v_{0}^{\perp}. Then

$$
S F H\left(M^{\prime}, \gamma^{\prime}\right)=\bigoplus_{\substack{\mathfrak{s} \in \operatorname{Sin} c(M, \gamma): \\\left\langle c_{1}(\mathfrak{s}, t),\left[S_{i}\right]\right\rangle=c\left(S_{i}, t\right) \forall 1 \leq i \leq k}} S F H(M, \gamma, \mathfrak{s}) .
$$

In particular, $\quad \operatorname{SFH}\left(M^{\prime}, \gamma^{\prime}\right) \leq \quad \bigoplus \quad \operatorname{SFH}(M, \gamma, \mathfrak{s})$.

$$
\left\langle c_{1}(\mathfrak{s}, t),[S]\right\rangle=c(S, t)
$$

4 Finding a balanced diagram adapted to a decomposing surface

Definition 4.1 We say that the decomposing surfaces S_{0} and S_{1} are equivalent if they can be connected by an isotopy through decomposing surfaces.

Remark 4.2 During an isotopy through decomposing surfaces the number of arcs of $S \cap \gamma$ can never change. Moreover, if S_{0} and S_{1} are equivalent then decomposing along them give the same sutured manifold.

Definition 4.3 A balanced diagram adapted to the decomposing surface S in (M, γ) is a quadruple $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, P)$ that satisfies the following conditions. $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is a balanced diagram of (M, γ); furthermore, $P \subset \Sigma$ is a quasi-polygon (ie, a closed subsurface of Σ whose boundary is a union of polygons) such that $P \cap \partial \Sigma$ is exactly the set of vertices of P. We are also given a decomposition $\partial P=A \cup B$, where
both A and B are unions of pairwise disjoint edges of P. This decomposition has to satisfy the property that $\alpha \cap B=\varnothing$ and $\beta \cap A=\varnothing$ for every $\alpha \in \boldsymbol{\alpha}$ and $\beta \in \boldsymbol{\beta}$. Finally, S is given up to equivalence by smoothing the corners of the surface $(P \times\{1 / 2\}) \cup(A \times[1 / 2,1]) \cup(B \times[0,1 / 2]) \subset(M, \gamma)$ (see Definition 2.10). The orientation of S is given by the orientation of $P \subset \Sigma$. We call a tuple ($\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, P$) satisfying the above conditions a surface diagram.

Proposition 4.4 Suppose that S is a decomposing surface in the balanced sutured manifold (M, γ). If the boundary of each component of S intersects both $R_{+}(\gamma)$ and $R_{-}(\gamma)$ (in particular S is open) and ∂S has no closed component lying entirely in γ then there exists a Heegaard diagram of (M, γ) adapted to S.

Proof We are going to construct a self-indexing Morse function f on M with no minima and maxima as in the proof of [7, Proposition 2.13] with some additional properties. In particular, we require that $f \mid R_{-}(\gamma) \equiv-1$ and $f \mid R_{+}(\gamma) \equiv 4$. Furthermore, $f \mid \gamma$ is given by the formula $p_{2} \circ \varphi$, where $\varphi: \gamma \rightarrow s(\gamma) \times[-1,4]$ is a diffeomorphism such that $\varphi(s(\gamma))=s(\gamma) \times\{3 / 2\}$ and $p_{2}: s(\gamma) \times[-1,4] \rightarrow[-1,4]$ is the projection onto the second factor. We choose φ such that each arc of $S \cap \gamma$ maps to a single point under $p_{1} \circ \varphi: \gamma \rightarrow s(\gamma)$.

Figure 2: This diagram shows a decomposing surface which is a disk that intersects $s(\gamma)$ in four points.

We are going to define a quasi-polygon $P \subset S$ such that $S \cap s(\gamma)$ is the set of vertices of P; see Figure 2. Let K_{1}, \ldots, K_{m+n} be the closures of the components of $\partial S \backslash s(\gamma)$ enumerated such that K_{i} is an arc for $1 \leq i \leq m$ and K_{i} is a circle for $m+1 \leq i \leq m+n$.

For every $1 \leq i \leq m$ choose an arc L_{i} whose interior lies in int (S) parallel to K_{i} and such that $\partial L_{i}=\partial K_{i}$. Moreover, let D_{i} be the closed bigon bounded by K_{i} and L_{i} and define $K_{i}^{\prime}=K_{i} \cap R(\gamma)$. Also choose a diffeomorphism $d_{i}: D_{i} \rightarrow I \times I$ that takes K_{i}^{\prime} to $I \times\{0\}$ and L_{i} to $I \times\{1\}$ and such that for each $t \in[0,1]$ we have $f \circ d_{i}^{-1}(0, t)=f \circ d_{i}^{-1}(1, t)$. Note that f is already defined on ∂M. We define f on D_{i} by the formula

$$
f\left(d_{i}^{-1}(u, t)\right)=f\left(d_{i}^{-1}(0, t)\right)
$$

If $m+1 \leq i \leq m+n$ then let L_{i} be a circle parallel to K_{i} lying in the interior of S. Let D_{i} be the annulus bounded by K_{i} and L_{i}. Choose a diffeomorphism

$$
d_{i}: D_{i} \rightarrow S^{1} \times J_{i}
$$

where $J_{i}=[3 / 2,4]$ if $K_{i} \subset R_{+}(\gamma)$ and $J_{i}=[-1,3 / 2]$ otherwise. In both cases we require that $d_{i}\left(L_{i}\right)=3 / 2$. Then let $f \mid D_{i}=\pi_{2} \circ d_{i}$, where $\pi_{2}: S^{1} \times J_{i} \rightarrow J_{i}$ is the projection onto the second factor.

We take

$$
\partial P=\bigcup_{i=1}^{m+n} L_{i}
$$

and L_{i} will be an edge of ∂P for every $1 \leq i \leq m+n$. The decomposition $\partial P=A \cup B$ is given by taking A to be the union of those edges L_{i} of ∂P for which $K_{i} \cap R_{+}(\gamma) \neq \varnothing$.

Let P be the closure of the components of $S \backslash \partial P$ that are disjoint from ∂S. For $p \in P$ let $f(p)=3 / 2$. Note that the function $f \mid S$ is not smooth along ∂P, so we modify S by introducing a right angle edge along ∂P (such that we get back S after smoothing the corners). There are essentially two ways of creasing S along an edge L_{i} of P. Let $v_{P}=v_{S} \mid P$ be the positive unit normal field of P in M. If $L_{i} \subset A$ then we choose the crease such that $\nu_{P} \mid L_{i}$ points into D_{i} and if $L_{i} \subset B$ then we require that $v_{P} \mid L_{i}$ points out of D_{i}.

Now extend f from $\partial M \cup S$ to a Morse function f_{0} on M. Then

$$
P=S \cap f_{0}^{-1}(3 / 2) .
$$

We choose the extension f_{0} as follows. For $1 \leq i \leq m+n$ let $N\left(D_{i}\right)$ be a regular neighborhood of D_{i} and let $T_{i}: N\left(D_{i}\right) \rightarrow D_{i} \times[-1,1]$ be a diffeomorphism. Then for $(x, t) \in D_{i} \times[-1,1]$ let

$$
f_{0}\left(T_{i}^{-1}(x, t)\right)=f(x)
$$

Due to the choice of the creases we can define f_{0} such that $\operatorname{grad}(f) \mid P \neq-v_{S}$. Thus we have achieved that for each $a \in A$ the gradient flow line of f_{0} coming out of a ends
on $R_{+}(\gamma)$ and for each $b \in B$ the negative gradient flow line of f_{0} going through b ends on $R_{-}(\gamma)$.

By making f_{0} self-indexing we obtain a Morse function f. Suppose that the Heegaard diagram corresponding to f is $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$. We have two partitions $\boldsymbol{\alpha}=\boldsymbol{\alpha}_{0} \cup \boldsymbol{\alpha}_{1}$ and $\boldsymbol{\beta}=\boldsymbol{\beta}_{0} \cup \boldsymbol{\beta}_{1}$, where curves in $\boldsymbol{\alpha}_{1}$ correspond to index one critical points p of f_{0} for which $f_{0}(p)>3 / 2$ and $\boldsymbol{\beta}_{1}$ comes from those index two critical points q of f_{0} for which $f_{0}(q)<3 / 2$. Then $f^{-1}(3 / 2)$ differs from $f_{0}^{-1}(3 / 2)$ as follows. Add an S^{2} component to $f_{0}^{-1}(3 / 2)$ for each index zero critical point of f_{0} lying above $3 / 2$ and for each index three critical point of f_{0} lying below $3 / 2$. Then add two-dimensional one-handles to the previous surface whose belt circles are the curves in $\boldsymbol{\alpha}_{1} \cup \boldsymbol{\beta}_{1}$.

Let $P^{\prime}=S \cap f^{-1}(3 / 2)$. Then ∂P^{\prime} is the union of ∂P and some of the feet of the additional tubes. Next we are going to modify P^{\prime} such that it becomes disjoint from these additional tubes and it defines a surface equivalent to S.

Let S_{0} be a component of S and let $P_{0}^{\prime}=P^{\prime} \cap S_{0}$. Since ∂S_{0} intersects both $R_{+}(\gamma)$ and $R_{-}(\gamma)$ we see that $A \cap P_{0}^{\prime} \neq \varnothing$ and $B \cap P_{0}^{\prime} \neq \varnothing$. Because S_{0} is connected P_{0}^{\prime} is also connected. Note that for $\alpha \in \alpha_{1}$ we have $\alpha \cap P^{\prime}=\varnothing$. Thus we can achieve using isotopies that every arc of $\alpha \cap P^{\prime}$ for each $\alpha \in \boldsymbol{\alpha}_{0}$ intersects A. Indeed, for every component P_{0}^{\prime} of P^{\prime} choose an arc $\varphi_{0} \subset P_{0}^{\prime}$ whose endpoint lies on A and intersects every α-arc lying in P_{0}^{\prime}. Then simultaneously apply a finger move along φ_{0} to all the α-arcs that intersect φ_{0}. Similarly, we can achieve that each arc of $\beta \cap P^{\prime}$ for every $\beta \in \boldsymbol{\beta}_{0}$ intersects B. This can be done keeping both the α - and the β-curves pairwise disjoint.

Let $F \subset \partial P^{\prime}$ be the foot of a tube whose belt circle is a curve $\alpha_{1} \in \alpha_{1}$. Pick a point $p \in F$. Since every arc of $\beta \cap P^{\prime}$ for $\beta \in \boldsymbol{\beta}_{0}$ intersects B each component of $P^{\prime} \backslash\left(\bigcup \boldsymbol{\beta}_{0}\right)$ intersects B. Thus we can connect p to B with an arc φ lying in $P^{\prime} \backslash(\bigcup \boldsymbol{\beta})$. Now handleslide every $\alpha \in \boldsymbol{\alpha}_{0}$ that intersects φ over α_{1} along φ. Then we can handleslide B over α_{1} along φ. To this handleslide corresponds an isotopy of S through decomposing surfaces such that $S \cap f^{-1}(3 / 2)$ changes the required way (given by taking the negative gradient flow lines of f flowing out of B). Thus we have removed F from P^{\prime}. The case when the belt circle of the tube lies in $\boldsymbol{\beta}_{1}$ is completely analogous. By repeating this process we can remove all the additional one-handles from P^{\prime}. Call this new quasi-polygon P.

Finally, cancel every index zero critical point with an index one critical point and every index three critical point with an index two critical point and delete the corresponding α - and β-curves. The balanced diagram obtained this way, together with the quasipolygon P, defines S.

Lemma 4.5 Let $(M, \gamma) \not \rightsquigarrow^{S}\left(M^{\prime}, \gamma^{\prime}\right)$ be a surface decomposition such that for every component V of $R(\gamma)$ the set of closed components of $S \cap V$ consists of parallel oriented boundary-coherent simple closed curves. Then S is isotopic to a decomposing surface S^{\prime} such that each component of ∂S^{\prime} intersects both $R_{+}(\gamma)$ and $R_{-}(\gamma)$ and decomposing (M, γ) along S^{\prime} also gives $\left(M^{\prime}, \gamma^{\prime}\right)$. Furthermore, $O_{S}=O_{S^{\prime}}$.

Proof We call a tangency between two curves positive if their positive unit tangent vectors coincide at the tangency point. Our main observation is the following. Isotope a small arc of ∂S on ∂M using a finger move through γ such that during the isotopy we have a positive tangency between ∂S and $s(\gamma)$ (thus introducing two new intersection points between ∂S and $s(\gamma))$. Let the resulting isotopy of ∂S be $\left\{s_{t}: 0 \leq t \leq 1\right\}$. Attach the collar $\partial M \times I$ to M to get a new manifold \widetilde{M} and attach $\bigcup_{t \in I}\left(s_{t} \times\{t\}\right)$ to S to obtain a surface $\widetilde{S} \subset \widetilde{M}$. Then decomposing

$$
(\widetilde{M}, \gamma \times\{1\}) \approx(M, \gamma)
$$

along \widetilde{S} we also get $\left(M^{\prime}, \gamma^{\prime}\right)$; see Figure 3. Furthermore, \widetilde{S} is isotopic to S.
Let γ_{0} be a component of γ such that $\gamma_{0} \cap \partial S$ consists of closed curves $\sigma_{1}, \ldots, \sigma_{k}$. First isotope S in a neighborhood of $\partial S \cap \gamma_{0}$ through decomposing surfaces such that after the isotopy $\sigma_{1}, \ldots, \sigma_{k}$ are all parallel to $s(\gamma)$ and v_{S} points out of M along $\partial S \cap \gamma_{0}$. This new decomposing surface is equivalent to the original. Then isotope $\sigma_{1}, \ldots, \sigma_{k}$ into $R_{-}(\gamma)$. Decomposing along S still gives ($M^{\prime}, \gamma^{\prime}$). Let δ be an oriented arc that intersects $\sigma_{1}, \ldots, \sigma_{k}$, and $s(\gamma)$ exactly once and its endpoint lies in $R_{+}(\gamma)$. Applying a finger move to $\sigma_{1}, \ldots, \sigma_{k}$ simultaneously along δ we get a positive tangency between each σ_{i} and $s(\gamma)$ since they are oriented coherently.

Let V be a component of $R(\gamma)$ and let C_{1}, \ldots, C_{k} be the parallel oriented closed components of $S \cap V$. Choose a small arc T that intersects every C_{i} in a single point. Let $\partial T=\{x, y\}$. First suppose that $\left[C_{1}\right] \neq 0$ in $H_{1}(V ; \mathbb{Z})$. Then we can connect both x and y to $s(\gamma)$ by an arc whose interior lies in $\partial M \backslash(\partial S \cup s(\gamma))$. This is possible since C_{1} does not separate ∂V and now $\partial S \cap \gamma$ has no closed components. This way we obtain an arc $\delta \subset \partial M$ such that for every $1 \leq i \leq k$ we have $\left|\delta \cap C_{i}\right|=1$ and $\partial \delta=\delta \cap s(\gamma) ;$ moreover,

$$
\delta \cap \partial S=\delta \cap\left(C_{1} \cup \cdots \cup C_{k}\right) .
$$

Recall that $s(\gamma)$ is oriented coherently with ∂V (this is especially important if $s(\gamma)$ is disconnected and δ connects two distinct components of $s(\gamma))$ and the curves C_{1}, \ldots, C_{k} are also oriented coherently. Thus with exactly one of the orientations of δ if we apply a finger move to all the C_{i} simultaneously we get a positive tangency between each C_{i} and ∂V, and thus also $s(\gamma)$.

Now suppose that $\left[C_{1}\right]=0$ in $H_{1}(V ; \mathbb{Z})$ and C_{1} is oriented as the boundary of its interior. Then exactly one of x and y can be connected to $s(\gamma)$ by an arc δ_{0} whose interior lies in $\partial M \backslash(\partial S \cup s(\gamma))$. The arc $T \cup \delta_{0}$ defines an oriented arc δ whose endpoint lies on $s(\gamma)$. If we apply a finger move to each C_{i} along δ we get positive tangencies with $s(\gamma)$ because every C_{i} is oriented as the boundary of its interior and $s(\gamma)$ is oriented coherently with respect to ∂V.

Continuing this process we get a surface S^{\prime} isotopic to S such that each component of ∂S^{\prime} intersects $s(\gamma)$ and decomposing (M, γ) along S^{\prime} we still get $\left(M^{\prime}, \gamma^{\prime}\right)$.

Figure 3: Making a decomposing surface good
To show that $O_{S}=O_{S^{\prime}}$ first observe that if S_{0} and S_{1} are equivalent then $O_{S_{0}}=O_{S_{1}}$. Now suppose that for some component γ_{0} of γ the components of $\partial S \cap \gamma_{0}$ are curves $\sigma_{1}, \ldots, \sigma_{k}$ parallel to $s(\gamma)$ such that ν_{S} points out of M along them. Moreover, suppose that S^{\prime} only differs from S by isotoping $\sigma_{1}, \ldots, \sigma_{k}$ into $R_{-}(\gamma)$. If \mathfrak{s} is a Spin^{c} structure and v is a vector field representing it, then in a standard neighborhood of γ_{0} we have $v \neq \pm v_{S}$ and $v \neq \pm v_{S^{\prime}}$. So $\mathfrak{s} \in O_{S}$ if and only if $\mathfrak{s} \in O_{S^{\prime}}$.

Thus we only have to show that $O_{S}=O_{S^{\prime}}$ when S and S^{\prime} are related by a small finger move of ∂S that crosses $s(\gamma)$ through a positive tangency. Let \mathfrak{s} be a Spin^{c} structure on (M, γ) and v a vector field representing it. Then in a standard neighborhood U of the tangency point we can perform the isotopy such that in U we have $v \neq \pm v_{S}$; furthermore, v^{\perp} and S^{\prime} only have a single hyperbolic tangency, where $v=v_{S^{\prime}}$ (see Figure 3). Thus $\mathfrak{s} \in O_{S}$ if and only if $\mathfrak{s} \in O_{S^{\prime}}$. Note that if the tangency of ∂S and $s(\gamma)$ is negative during the isotopy then at the hyperbolic tangency $v=-v_{S^{\prime}}$.

If (M, γ) is strongly balanced then $O_{S}=O_{S^{\prime}}$ also follows from Lemma 3.10. Indeed, $\left\langle c_{1}(\mathfrak{s}, t),[S]\right\rangle$ is invariant under isotopies of S. As before, we can suppose that the closed components of $\partial S \cap \gamma$ are parallel to $s(\gamma)$ and ν_{S} points out of M along them. In the above proof I and r are unchanged when we isotope σ_{i} from γ_{0} to $R_{-}(\gamma)$ since we can achieve that ν_{S} and v are never parallel along ∂S, so I and r change continuously. When we do a finger move I decreases by 1 according to
part (1) of Lemma 3.9 and r also decreases by 1, as can be seen from Figure 3. Thus $c(S, t)=c\left(S^{\prime}, t\right)$.

Definition 4.6 We call a decomposing surface $S \subset(M, \gamma)$ good if it is open and each component of ∂S intersects both $R_{+}(\gamma)$ and $R_{-}(\gamma)$. We call a surface diagram $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, P) \operatorname{good}$ if A and B have no closed components.

Remark 4.7 Because of Lemma 4.5 it is sufficient to prove Theorem 1.3 for good decomposing surfaces. According to Proposition 4.4 for each good decomposing surface we can find a good surface diagram adapted to it.

Proposition 4.8 Suppose that S is a good decomposing surface in the balanced sutured manifold (M, γ). Then there exists an admissible surface diagram of (M, γ) adapted to S.

Proof According to Remark 4.7 we can find a good surface diagram $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, P)$ adapted to S.

Here we improve on the idea of the proof of [7, Proposition 3.15]. Choose pairwise disjoint $\operatorname{arcs} \gamma_{1}, \ldots, \gamma_{k} \subset \Sigma \backslash B$ whose endpoints lie on $\partial \Sigma$ and together generate $H_{1}(\Sigma \backslash B, \partial(\Sigma \backslash B) ; \mathbb{Z})$. This is possible because each component of $\partial(\Sigma \backslash B)$ intersects $\partial \Sigma$. Choose curves $\gamma_{1}^{\prime}, \ldots, \gamma_{k}^{\prime}$ such that γ_{i} and γ_{i}^{\prime} are parallel and oriented oppositely.

Then wind the $\boldsymbol{\alpha}$ curves along $\gamma_{1}, \gamma_{1}^{\prime}, \ldots, \gamma_{k}, \gamma_{k}^{\prime}$ as in the proof of [7, Proposition 3.15]. A similar argument as there gives that after the winding $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ will be admissible. Note that every $\alpha \in \boldsymbol{\alpha}$ lies in $\Sigma \backslash B$. Thus if a linear combination \mathcal{A} of α-curves intersects every γ_{i} algebraically zero times then \mathcal{A} is null-homologous in $\Sigma \backslash B$, and thus also in Σ. Since the winding is done away from B the new diagram is still adapted to S.

5 Balanced diagrams and surface decompositions

Definition 5.1 Let $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, P)$ be a surface diagram (see Definition 4.3). Then we can uniquely associate to it a tuple $D(P)=\left(\Sigma^{\prime}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}, P_{A}, P_{B}, p\right)$, where $\left(\Sigma^{\prime}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}\right)$ is a balanced diagram, $p: \Sigma^{\prime} \rightarrow \Sigma$ is a smooth map, and $P_{A}, P_{B} \subset \Sigma^{\prime}$ are two closed subsurfaces (see Figure 4).

To define Σ^{\prime} take two disjoint copies of P that we call P_{A} and P_{B} together with diffeomorphisms $p_{A}: P_{A} \rightarrow P$ and $p_{B}: P_{B} \rightarrow P$. Cut Σ along ∂P and remove P. Then glue A to P_{A} using p_{A}^{-1} and B to P_{B} using p_{B}^{-1} to obtain Σ^{\prime}. The map
$p: \Sigma^{\prime} \rightarrow \Sigma$ agrees with p_{A} on P_{A} and p_{B} on P_{B}, and it maps $\Sigma^{\prime} \backslash\left(P_{A} \cup P_{B}\right)$ to $\Sigma \backslash P$ using the obvious diffeomorphism. Finally, let $\boldsymbol{\alpha}^{\prime}=\left\{p^{-1}(\alpha) \backslash P_{B}: \alpha \in \boldsymbol{\alpha}\right\}$ and $\boldsymbol{\beta}^{\prime}=\left\{p^{-1}(\beta) \backslash P_{A}: \beta \in \boldsymbol{\beta}\right\}$.
$D(P)$ is uniquely characterized by the following properties. The map p is a local diffeomorphism in $\operatorname{int}\left(\Sigma^{\prime}\right)$; furthermore, $p^{-1}(P)$ is the disjoint union of P_{A} and P_{B}. Moreover, $p \mid P_{A}: P_{A} \rightarrow P$, and $p \mid P_{B}: P_{B} \rightarrow P$, and also

$$
p \mid\left(\Sigma^{\prime} \backslash\left(P_{A} \cup P_{B}\right)\right): \Sigma^{\prime} \backslash\left(P_{A} \cup P_{B}\right) \rightarrow \Sigma \backslash P
$$

are diffeomorphisms. Furthermore, $p\left(\operatorname{int}\left(\Sigma^{\prime}\right) \cap \partial P_{A}\right)=\operatorname{int}(A)$ and $p\left(\operatorname{int}\left(\Sigma^{\prime}\right) \cap \partial P_{B}\right)=$ $\operatorname{int}(B)$. Finally, $p \mid\left(\cup \boldsymbol{\alpha}^{\prime}\right): \bigcup \boldsymbol{\alpha}^{\prime} \rightarrow \bigcup \boldsymbol{\alpha}$ and $p \mid\left(\bigcup \boldsymbol{\beta}^{\prime}\right): \bigcup \boldsymbol{\beta}^{\prime} \rightarrow \bigcup \boldsymbol{\beta}$ are diffeomorphisms. Thus $\left(\bigcup \boldsymbol{\alpha}^{\prime}\right) \cap P_{B}=\varnothing$ and $\left(\bigcup \boldsymbol{\beta}^{\prime}\right) \cap P_{A}=\varnothing$.

Figure 4: Balanced diagrams before and after a surface decomposition
There is a unique holomorphic structure on Σ^{\prime} that makes the map p holomorphic. Since p is a local diffeomorphism in $\operatorname{int}\left(\Sigma^{\prime}\right)$ it is even conformal.

So p is $1: 1$ over $\Sigma \backslash P$, it is $2: 1$ over P, and α curves are lifted to P_{A} and β curves to P_{B}.

Proposition 5.2 Let (M, γ) be a balanced sutured manifold and

$$
(M, \gamma) \rightsquigarrow{ }^{S}\left(M^{\prime}, \gamma^{\prime}\right)
$$

a surface decomposition. If $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, P)$ is a surface diagram adapted to S and if $D(P)=\left(\Sigma^{\prime}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}, P_{A}, P_{B}, p\right)$ then $\left(\Sigma^{\prime}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}\right)$ is a balanced diagram defining $\left(M^{\prime}, \gamma^{\prime}\right)$.

Proof Let $\left(M_{1}, \gamma_{1}\right)$ be the sutured manifold defined by the diagram $\left(\Sigma^{\prime}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}\right)$. We are going to construct an orientation preserving homeomorphism $h:\left(M_{1}, \gamma_{1}\right) \rightarrow$ ($M^{\prime}, \gamma^{\prime}$) that takes $R_{+}\left(\gamma_{1}\right)$ to $R_{+}\left(\gamma^{\prime}\right)$. Figure 5 is a schematic illustration of the proof.

Let N_{A} and N_{B} be regular neighborhoods of P_{A} and P_{B} in Σ^{\prime} so small that $\alpha^{\prime} \cap N_{B}=$ \varnothing and $\beta^{\prime} \cap N_{\boldsymbol{A}}=\varnothing$ for every $\alpha^{\prime} \in \boldsymbol{\alpha}^{\prime}$ and $\beta^{\prime} \in \boldsymbol{\beta}^{\prime}$. Furthermore, let $N=N_{\boldsymbol{A}} \cup N_{\boldsymbol{B}}$. Define $\lambda: \Sigma^{\prime} \rightarrow I$ to be a smooth function such that $\lambda(x)=1$ for $x \in \Sigma^{\prime} \backslash N$ and $\lambda(x)=1 / 2$ for $x \in P_{A} \cup P_{B}$. Moreover, let $\mu: \Sigma^{\prime} \rightarrow I$ be a smooth function such that $\mu(x)=1-\lambda(x)$ for $x \in N_{B}$ and $\mu(x)=0$ for $x \in \Sigma^{\prime} \backslash N_{B}$.

The homeomorphism h is constructed as follows. For $(x, t) \in \Sigma^{\prime} \times I$ let

$$
h(x, t)=(p(x), \mu(x)+\lambda(x) t) .
$$

Since for every $x \in \Sigma^{\prime}$ and $t \in I$ the inequality $0 \leq \mu(x)+\lambda(x) t \leq 1$ holds the map h takes $\Sigma^{\prime} \times I$ into $\Sigma \times I \subset(M, \gamma)$. Choose an $\alpha^{\prime} \in \boldsymbol{\alpha}^{\prime}$ and let $\alpha=p\left(\alpha^{\prime}\right) \in \boldsymbol{\alpha}$. Let $D_{\alpha^{\prime}}$ be the 2-handle attached to $\Sigma^{\prime} \times I$ along $\alpha^{\prime} \times\{0\}$ and D_{α} the 2-handle attached to $\Sigma \times I$ along $\alpha \times\{0\}$. Since $\alpha^{\prime} \cap N_{B}=\varnothing$ and because $\mu(x)+\lambda(x) \cdot 0=0$ for $x \in \Sigma^{\prime} \backslash N_{B}$ we see that $h\left(\alpha^{\prime} \times\{0\}\right)=\alpha \times\{0\}$. Thus h naturally extends to a map from $\left(\Sigma^{\prime} \times I\right) \cup D_{\alpha^{\prime}}$ to $(\Sigma \times I) \cup D_{\alpha}$. Similarly, for $\beta^{\prime} \in \beta^{\prime}$ we have $\beta^{\prime} \cap N_{A}=\varnothing$. Furthermore, $\mu(x)+\lambda(x) \cdot 1=1$ for $x \in \Sigma^{\prime} \backslash N_{A}$. Thus h also extends to the 2-handles attached along the β-curves. So now we have a local homeomorphism from $\left(M_{1}, \gamma_{1}\right)$ into (M, γ).

Recall that $S \subset(M, \gamma)$ is equivalent to the surface obtained by smoothing

$$
(P \times\{1 / 2\}) \cup(A \times[1 / 2,1]) \cup(B \times[0,1 / 2]) \subset \Sigma \times I .
$$

Since $h\left(N_{B} \times\{0\}\right) \cup h\left(N_{A} \times\{1\}\right)$ is a smoothing of the above surface we can assume that it is in fact equal to S. Indeed, for $x \in P_{A}$ we have that $\mu(x)+\lambda(x) \cdot 1=1 / 2$ and for $x \in P_{B}$ the equality $\mu(x)+\lambda(x) \cdot 0=1-\lambda(x)=1 / 2$ holds. Moreover, $p\left(\partial N_{A} \backslash \partial \Sigma^{\prime}\right)=A^{\prime}$ is a curve parallel to A, thus for $x \in \partial N_{A} \backslash \partial \Sigma^{\prime}$ we have $h(x, 1) \in$ $A^{\prime} \times\{1\}$. Similarly, $h(x, 0) \in B^{\prime} \times\{0\}$ for $x \in \partial N_{B} \backslash \partial \Sigma^{\prime}$, where B^{\prime} is a curve parallel and close to B.

Let $E_{A} \subset \Sigma \times I$ be the set of points (y, s) such that $y=p(x)$ for some $x \in N_{A} \backslash P_{A}$ and $s \geq \mu(x)+\lambda(x)$. Define $E_{B} \subset \Sigma \times I$ to be the set of those points (y, s) such that $y=p(x)$ for some $x \in N_{B} \backslash P_{B}$ and $s \leq \mu(x)$. Now we are going to show that the map

$$
h \mid\left(\Sigma^{\prime} \times I \backslash\left(N_{A} \times\{1\} \cup N_{B} \times\{0\}\right)\right) \rightarrow(\Sigma \times I) \backslash\left(S \cup E_{A} \cup E_{B}\right)
$$

Figure 5: The left hand side shows the homeomorphism h. On the right we can see the functions λ and μ.
is a homeomorphism by constructing its continuous inverse. Let

$$
(y, s) \in(\Sigma \times I) \backslash\left(S \cup E_{A} \cup E_{B}\right)
$$

If $y \in \Sigma \backslash p(N)$ then $h^{-1}(y, s)=\left(p^{-1}(y), s\right)$. If $y \in P$ and $s<1 / 2$ then $h^{-1}(y, s)=$ $\left(p^{-1}(y) \cap P_{A}, 2 s\right)$ and for $s>1 / 2$ we have $h^{-1}(y, s)=\left(p^{-1}(y) \cap P_{B}, 2 s-1\right)$. In the case when $y \in p\left(N_{A} \backslash P_{A}\right)$ and $s<\mu(x)+\lambda(x)$ we let $h^{-1}(y, s)=(x, t)$, where $x=p^{-1}(y)$ and $t=(s-\mu(x)) / \lambda(x)<1$. Note that here $\mu(x)=0$, and thus $t \geq 0$. Finally, for $y \in p\left(N_{B} \backslash P_{B}\right)$ and $s>\mu(x)$ define $h(y, s)=(x, t)$, where $x=p^{-1}(y)$ and $t=(s-\mu(x)) / \lambda(x)>0$. Here $t \leq 1$ because $s \leq 1$ and $\mu(x)=1-\lambda(x)$.

Recall that we defined the surfaces S_{+}^{\prime} and S_{-}^{\prime} in Definition 2.7. Since S is oriented coherently with $P \times\{1 / 2\}$ thickening $S_{+}^{\prime} \cap R_{-}(\gamma)$ in ∂M^{\prime} can be achieved by cutting off its neighborhood E_{B} and taking $B \times[0,1 / 2] \subset \partial E_{B}$ to belong to γ^{\prime}. Similarly, E_{A} is a neighborhood of $S_{-}^{\prime} \cap R_{+}(\gamma)$ in M^{\prime}, and cutting it off from M^{\prime} we can add $A \times[1 / 2,1]$ to γ^{\prime}. Thus we can identify M^{\prime} with the metric completion of $M \backslash\left(S \cup E_{A} \cup E_{B}\right)$ and γ^{\prime} with $\left(\gamma \cap M^{\prime}\right) \cup(A \times[1 / 2,1]) \cup(B \times[0,1 / 2])$.

What remains is to show that $h\left(\gamma_{1}\right)=\gamma^{\prime}$. If $x \in\left(\partial \Sigma^{\prime}\right) \backslash\left(P_{A} \cup P_{B}\right)$ then for any $t \in I$ we have

$$
h(x, t)=(p(x), \mu(x)+\lambda(x) t) \in \gamma \cap M^{\prime} \subset \gamma^{\prime}
$$

because $p(x) \in \partial \Sigma$. On the other hand, for $x \in \partial \Sigma^{\prime} \cap P_{A}$ and $t \in I$ we have $h(x, t) \in B \times[0,1 / 2]$, which is part of γ^{\prime} by the above construction. The case $x \in \partial \Sigma^{\prime} \cap P_{B}$ is similar.

Remark 5.3 It is not hard to show that the homeomorphism h constructed in the above proof is a actually a diffeomorphism.

Definition 5.4 Let ($\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, P$) be a surface diagram. We call an intersection point $\mathbf{x} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$ outer if $\mathbf{x} \cap P=\varnothing$. We denote by O_{P} the set of outer intersection points. Then $I_{P}=\left(\mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}\right) \backslash O_{P}$ is called the set of inner intersection points.

Lemma 5.5 Let $(M, \gamma) \rightsquigarrow{ }^{S}\left(M^{\prime}, \gamma^{\prime}\right)$ be a surface decomposition and suppose that $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, P)$ is a surface diagram adapted to S. Let $\mathbf{x} \in \mathbb{T}_{\boldsymbol{\alpha}} \cap \mathbb{T}_{\beta}$. Then $\mathbf{x} \in O_{P}$ if and only if $\mathfrak{s}(\mathbf{x}) \in O_{S}$. Furthermore, if $D(P)=\left(\Sigma^{\prime}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}, P_{A}, P_{B}, p\right)$ then p gives a bijection between $\mathbb{T}_{\alpha^{\prime}} \cap \mathbb{T}_{\beta^{\prime}}$ and O_{P}.

Proof Let f be a Morse function on M compatible with the diagram $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$. If $\mathbf{x} \in$ O_{P} then the multi-trajectory $\gamma_{\mathbf{x}}$ (see Definition 3.3) is disjoint from S. Consequently, the regular neighborhood $N\left(\gamma_{\mathbf{x}}\right)$ can be chosen to be disjoint from S. Thus $\mathfrak{s}(\mathbf{x})$ can be represented by a unit vector field v that agrees with $\operatorname{grad}(f) /\|\operatorname{grad}(f)\|$ in a neighborhood of S. Since the orientation of S is compatible with the orientation of $P \subset \Sigma$, even after smoothing the corners of $(P \times\{1 / 2\}) \cup(A \times[1 / 2,1]) \cup(B \times[0,1 / 2])$ we have that v is nowhere equal to $-v_{S}$. So we see that $\mathfrak{s}(\mathbf{x}) \in O_{S}$.

Figure 6: This is a schematic two-dimensional picture illustrating the proof of Lemma 5.5.

Now suppose that $\mathbf{x} \in I_{P}$. Let $\gamma_{\mathbf{x}}$ be the multi-trajectory associated to \mathbf{x}. Since S is open its tangent bundle $T S$ is trivial. Thus there is a trivialization $\tau=\left(\tau_{1}, \tau_{2}, \tau_{3}\right)$ of $T M \mid\left(S \cup N\left(\gamma_{\mathbf{x}}\right)\right)$ such that $\tau_{3} \mid S=v_{S}$ and $\left(\tau_{1}\left|S, \tau_{2}\right| S\right)$ is a trivialization of $T S$. The Spin ${ }^{c}$ structure $\mathfrak{s}(\mathbf{x})$ can be represented by a unit vector field v such that $v \mid\left(M \backslash N\left(\gamma_{\mathbf{x}}\right)\right)$ agrees with

$$
g=\frac{\operatorname{grad}(f) \mid\left(M \backslash N\left(\gamma_{\mathbf{x}}\right)\right)}{\left\|\operatorname{grad}(f) \mid\left(M \backslash N\left(\gamma_{\mathbf{x}}\right)\right)\right\|} .
$$

If v was outer then for any ball $B^{3} \subset M \backslash S$ the vector field $v \mid\left(M \backslash B^{3}\right)$ would be homotopic through unit vector fields rel ∂M to a field v^{\prime} such that $v^{\prime} \mid S$ is nowhere
equal to $-v_{S}$. So to prove that $\mathfrak{s}(\mathbf{x}) \notin O_{S}$ it is sufficient to show that $v \mid S$ is not homotopic through unit vector fields rel ∂S to a vector field v^{\prime} on S that is nowhere equal to $-v_{S}$. In the trivialization τ we can think of $v \mid\left(S \cup N\left(\gamma_{\mathbf{x}}\right)\right)$ as a map from $S \cup N\left(\gamma_{\mathbf{x}}\right)$ to S^{2} and $-v_{S}$ corresponds to the South Pole $s \in S^{2}$. If we put S in generic position $v_{0}=v \mid \partial M$ is nowhere equal to $-v_{S}$. Thus v maps ∂S into $S^{2} \backslash\{s\}$.

Let $x \in \mathbf{x}$ and let γ_{x} be the component of $\gamma_{\mathbf{x}}$ containing x. Then $\gamma_{x} \cap S=\varnothing$ if $x \notin P$ and $\gamma_{x} \cap S=\{x\}$ if $x \in P$. So suppose that $x \in P$. We denote $N\left(\gamma_{x}\right)$ by B and let B_{+}and B_{-}be the closures of the two components of $B \backslash S$; an index one critical point of f lies in B_{-}and an index two critical point in B_{+}. Moreover, let $D_{ \pm}=\partial B_{ \pm} \backslash S$. The vector field $\operatorname{grad}(f) \mid B$ is a map from B to \mathbb{R}^{3} in the trivialization τ. Let

$$
b_{ \pm}=\frac{\operatorname{grad}(f) \mid \partial B_{ \pm}}{\left\|\operatorname{grad}(f) \mid \partial B_{ \pm}\right\|}
$$

(see Figure 6). Since $B_{ \pm}$contains an index ± 1 singularity of $\operatorname{grad}(f)$ we see that $\# b_{ \pm}^{-1}(s)= \pm 1$. Here $\#$ denotes the algebraic number of points in a given set. Since $\operatorname{grad}(f) \mid(S \cap B)$ is equal to v_{S} we even get that $\#\left(b_{ \pm}^{-1}(s) \cap D_{ \pm}\right)= \pm 1$. Let $v_{ \pm}=$ $v \mid \partial B_{ \pm}$. Then $\# v_{ \pm}^{-1}(s)=0$ because v is nowhere zero. The co-orientation of S is given by $\operatorname{grad}(f)$, so $S \cap B \subset S$ is oriented coherently with ∂B_{-}. Moreover, $v\left|D_{-}=b_{-}\right| D_{-}$, so we see that $\#\left(v_{-}^{-1}(s) \cap S\right)=1$. We have seen that $g|(S \backslash P)=v|(S \backslash P)$ is nowhere equal to $-v_{S}$. So we conclude that $\#(v \mid S)^{-1}(s)=|\mathbf{x} \cap P|$. Thus if $\mathbf{x} \in I_{P}$ then $v \mid S$ is not homotopic to a map $S \rightarrow S^{2} \backslash\{s\}$ through a homotopy fixing ∂S. This means that $\mathfrak{s}(\mathbf{x}) \notin O_{S}$.

The last part of the statement follows from the fact that p is a diffeomorphism between $\Sigma^{\prime} \backslash\left(P_{A} \cup P_{B}\right)$ and $\Sigma \backslash P$, furthermore $\left(\bigcup \boldsymbol{\alpha}^{\prime}\right) \cap P_{B}=\varnothing$ and $\left(\bigcup \boldsymbol{\beta}^{\prime}\right) \cap P_{A}=\varnothing$.

Remark 5.6 We can slightly simplify the proof of Lemma 5.5 when $O_{P} \neq \varnothing$. Suppose that $\mathbf{x} \in I_{P}$ and let $\mathbf{y} \in O_{P}$ be an arbitrary intersection point. Using [7, Lemma 4.7] we get that $\mathfrak{s}(\mathbf{x})-\mathfrak{s}(\mathbf{y})=P D\left[\gamma_{\mathbf{x}}-\gamma_{\mathbf{y}}\right]$. Since the co-orientation of $P \subset S$ is given by $\operatorname{grad}(f)$ we get that

$$
\langle\mathfrak{s}(\mathbf{x})-\mathfrak{s}(\mathbf{y}),[S]\rangle=\left|\gamma_{\mathbf{x}} \cap S\right|-\left|\gamma_{\mathbf{y}} \cap S\right|=|\mathbf{x} \cap P|-|\mathbf{y} \cap P| \neq 0
$$

If $\mathfrak{s}(\mathbf{x})$ was outer then both $\mathfrak{s}(\mathbf{x})$ and $\mathfrak{s}(\mathbf{y})$ could be represented by unit vector fields that are homotopic over S rel ∂S since $(S T M \mid S) \backslash\left(-v_{S}\right)$ is a bundle with contractible fibers. And that would imply that $\langle\mathfrak{s}(\mathbf{x})-\mathfrak{s}(\mathbf{y}),[S]\rangle=0$. Thus $\mathfrak{s}(\mathbf{x})$ is not outer.

Notation 5.7 We will also denote by O_{P} and I_{P} the subgroups of $C F(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ generated by the outer and inner intersection points, respectively.

Corollary 5.8 For a surface diagram $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, P)$ such that $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is admissible the chain complex $(C F(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}), \partial)$ is the direct sum of the subcomplexes $\left(O_{P}, \partial \mid O_{P}\right)$ and $\left(I_{P}, \partial \mid I_{P}\right)$.

6 An algorithm providing a nice surface diagram

In this section we generalize the results of Sarkar and Wang [16] to sutured Floer homology and surface diagrams. Our argument is an elaboration of the Sarkar-Wang algorithm. The basic approach is the same, but there are some important differences. The definition of distance had to be modified to work in this generality. Additional technical difficulties arise because when we would like to make a surface diagram nice we have to assure that the property $A \cap B=\varnothing$ is preserved. Moreover, $\boldsymbol{\alpha}$ or $\boldsymbol{\beta}$ might not span $H_{1}(\Sigma ; \mathbb{Z})$, which makes some of the arguments more involved.

Definition 6.1 We say that the surface diagram $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, P)$ is nice if every component of $\Sigma \backslash(\bigcup \alpha \cup \bigcup \beta \cup A \cup B)$ whose closure is disjoint from $\partial \Sigma$ is a bigon or a square. In particular, a balanced diagram $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is called nice if the surface diagram ($\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, \varnothing)$ is nice.

Definition 6.2 Let $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, P)$ be a surface diagram. Then a permissible move is an isotopy or a handle slide of the α-curves in $\Sigma \backslash B$ or the β-curves in $\Sigma \backslash A$.

Lemma 6.3 Let \mathcal{S} be a surface diagram adapted to the decomposing surface $S \subset$ (M, γ). If the surface diagram \mathcal{S}^{\prime} is obtained from \mathcal{S} using permissible moves then \mathcal{S}^{\prime} is also adapted to S.

Proof This is a simple consequence of the definitions.
Theorem 6.4 Every good surface diagram $\mathcal{S}=(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, P)$ can be made nice using permissible moves. If $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ was admissible our algorithm gives an admissible diagram.

Proof Let $\mathbb{A}=(\bigcup \boldsymbol{\alpha}) \cup B$ and $\mathbb{B}=(\bigcup \boldsymbol{\beta}) \cup A$. The set of those components of $\Sigma \backslash(\mathbb{A} \cup \mathbb{B})$ whose closure is disjoint from $\partial \Sigma$ is denoted by $C(\mathcal{S})$.

First we achieve that every element of $C(\mathcal{S})$ is homeomorphic to D^{2}. Let $R(\mathcal{S})$ denote the set of those elements of $C(\mathcal{S})$ which are not homeomorphic to D^{2} and let $a(\mathcal{S})=\sum_{R \in R(\mathcal{S})}(1-\chi(R))$. Choose a component $R \in R(\mathcal{S})$. Then $H_{1}(R, \partial R) \neq 0$, thus there exists a curve $(\delta, \partial \delta) \subset(R, \partial R)$ such that $[\delta] \neq 0$ in $H_{1}(R, \partial R)$. Moreover,
we can choose δ such that either $\delta(0) \in \bigcup \boldsymbol{\alpha}$ and $\delta(1) \in \mathbb{B}$, or $\delta(0) \in \bigcup \boldsymbol{\beta}$ and $\delta(1) \in \mathbb{A}$, as follows. Since our surface diagram is good there are no closed components of A and B, and note that $A \cap B=\varnothing$. Furthermore, $\partial R \cap \mathbb{A} \neq \varnothing$ and $\partial R \cap \mathbb{B} \neq \varnothing$ since otherwise R would give a linear relation between either the α-curves or the β-curves. So if ∂R is disconnected we can even find two distinct components C and C^{\prime} of ∂R such that $C \cap \mathbb{A} \neq \varnothing$ and $C^{\prime} \cap \mathbb{B} \neq \varnothing$. Thus we can choose δ such that $\partial \delta \cap \mathbb{A} \neq \varnothing$ and $\partial \delta \cap \mathbb{B} \neq \varnothing$. If $\partial \delta \cap A \neq \varnothing$ and $\partial \delta \cap B \neq \varnothing$ then move the endpoint of δ lying on A to the neighboring α-arc. Possibly changing the orientation of δ we obtain a curve with the required properties.

Now perform a finger move of the α - or β-arc through $\delta(0)$, pushing it all the way along δ. Since $R^{\prime}=R \backslash \delta$ is connected we obtain a surface diagram \mathcal{S}^{\prime} where R is replaced by a component homeomorphic to R^{\prime}, plus an extra bigon. The homeomorphism type of every other component remains unchanged. Observe that $\chi\left(R^{\prime}\right)=\chi(R)+1$, so we have $a\left(\mathcal{S}^{\prime}\right)=a(\mathcal{S})-1$. If we repeat this process we end up in a finite number of steps with a diagram, also denoted by \mathcal{S}, where $a(\mathcal{S})=0$. Note that for every connected surface F with nonempty boundary we have $\chi(F) \leq 1$, and $\chi(F)=1$ if and only if $F \approx D^{2}$. Thus $a(\mathcal{S})=0$ implies that $R(\mathcal{S})=\varnothing$.

Next we achieve that every component $D \in C(\mathcal{S})$ is a bigon or a square. All the operations that follow preserve the property that $R(\mathcal{S})=\varnothing$.

Definition 6.5 If D is a component of $\Sigma \backslash(\mathbb{A} \cup \mathbb{B})$ then its distance $d(D)$ from $\partial \Sigma$ is defined to be the minimum of $|\varphi \cap(\bigcup \boldsymbol{\alpha} \cup \bigcup \boldsymbol{\beta})|$ taken over those curves $\varphi \subset \Sigma$ for which $\varphi(0) \in \partial \Sigma$ and $\varphi(1) \in \operatorname{int}(D)$; furthermore, $\varphi(t) \in \Sigma \backslash(A \cup B)$ for $0<t \leq 1$. If φ passes through an intersection point between an α - and a β-curve we count that with multiplicity two in $|\varphi \cap(\bigcup \boldsymbol{\alpha} \cup \bigcup \boldsymbol{\beta})|$.

If $D \in C(\mathcal{S})$ is a $2 n$-gon, then its badness is defined to be $\max \{n-2,0\}$. The distance of a surface diagram \mathcal{S} is

$$
d(\mathcal{S})=\max \{d(D): D \in C(\mathcal{S}), b(D)>0\} .
$$

For $d>0$ the distance d complexity of the surface diagram \mathcal{S} is defined to be the tuple

$$
\left(\sum_{i=1}^{m} b\left(D_{i}\right),-b\left(D_{1}\right), \ldots,-b\left(D_{m}\right)\right),
$$

where D_{1}, \ldots, D_{m} are all the elements of $C(\mathcal{S})$ with $d(D)=d$ and $b(D)>0$, enumerated such that $b\left(D_{1}\right) \geq \cdots \geq b\left(D_{m}\right)$. We order the set of distance d complexities lexicographically. Finally, let $b_{d}(\mathcal{S})=\sum_{i=1}^{m} b\left(D_{i}\right)$.

Lemma 6.6 Let \mathcal{S} be a surface diagram of distance $d(\mathcal{S})=d>0$ and $R(\mathcal{S})=\varnothing$. Then we can modify \mathcal{S} using permissible moves to get a surface diagram \mathcal{S}^{\prime} with $R\left(\mathcal{S}^{\prime}\right)=\varnothing$, distance $d\left(\mathcal{S}^{\prime}\right) \leq d(\mathcal{S})$, and $c_{d}\left(\mathcal{S}^{\prime}\right)<c_{d}(\mathcal{S})$.

Proof Let D_{1}, \ldots, D_{m} be an enumeration of the distance d bad elements of $C(\mathcal{S})$ as in Definition 6.5. Then D_{m} is a $2 n$-gon for some $n \geq 3$. Let D_{*} be a component of $\Sigma \backslash(\mathbb{A} \cup \mathbb{B})$ with $d\left(D_{*}\right)=d-1$ and having at least one common $\alpha-$ or β-edge with D_{m}. Without loss of generality we can suppose that they have a common β-edge b_{*}. Let a_{1}, \ldots, a_{n} be an enumeration of the edges of D_{m} lying in \mathbb{A} starting from b_{*} and going around ∂D_{m} counterclockwise.
Let $1 \leq i \leq n$. We denote by $R_{i}^{1}, \ldots, R_{i}^{k_{i}}$ the following distinct components of $\Sigma \backslash(\mathbb{A} \cup \mathbb{B})$. For every $1 \leq j \leq k_{i}-1$ the component R_{i}^{j} is a square of distance $d\left(R_{i}^{j}\right) \geq d$, but $R_{i}^{k_{i}}$ does not have this property. Furthermore, $a_{i} \cap R_{i}^{1} \neq \varnothing$ and $R_{i}^{j} \cap R_{i}^{j+1} \subset \mathbb{A}$ for $1 \leq j \leq k_{i}-1$. Then $R_{i}^{k_{i}}$ is either a bigon or a component of distance $d\left(R_{i}^{k_{i}}\right) \leq d$. Note that it is possible that $R_{i}^{k_{i}}=D_{m}$, in which case $R_{i}^{j}=R_{l}^{k_{i}-j}$ for some $a_{l} \subset R_{i}^{k_{i}-1} \cap R_{i}^{k_{i}}$ and every $1 \leq j \leq k_{i}-1$.
Thus if we leave D_{m} through a_{i} and move through opposite edges we visit the sequence of squares $R_{i}^{1}, \ldots, R_{i}^{k_{i}-1}$ until we reach a component $R_{i}^{k_{i}}$ which is not a square of distance $\geq d$.
Let $I=\left\{1 \leq i \leq n: R_{i}^{k_{i}} \neq D_{m}\right\}$. We claim that $I \neq \varnothing$. Indeed, otherwise take the domain \mathcal{D} that is the sum of those components of $\Sigma \backslash(\mathbb{A} \cup \mathbb{B})$ that appear as some R_{i}^{j} for $1 \leq i \leq n$ and $1 \leq j \leq k_{i}$, each taken with coefficient one. Then $\partial \mathcal{D}$ is a sum of closed components of \mathbb{B}. Since B has no closed components $\partial \mathcal{D}$ is a sum of full β-curves, contradicting the fact that the elements of $\boldsymbol{\beta}$ are linearly independent in $H_{1}(\Sigma ; \mathbb{Z})$.
First suppose that $\exists i \in I \cap\{2, \ldots, n-1\}$. Then choose a properly embedded arc $\delta \subset D_{m} \cup\left(R_{i}^{1} \cup \cdots \cup R_{i}^{k_{i}}\right)$ such that $\delta(0) \in b_{*}$ and $\delta(1) \in \operatorname{int}\left(R_{i}^{k_{i}}\right)$; furthermore, $\left|\delta \cap \partial R_{i}^{j}\right|=2$ for $1 \leq j<k_{i}$. Observe that $\delta(t) \cap \mathbb{B}=\varnothing$ for $0<t \leq 1$. Do a finger move of the b_{*} arc along δ and call the resulting surface diagram \mathcal{S}^{\prime}. The finger cuts D_{m} into two pieces called D_{m}^{1} and D_{m}^{2}, and D_{*} becomes a new component D_{*}^{\prime}.
We claim that \mathcal{S}^{\prime} satisfies the required properties. Indeed, $d\left(\mathcal{S}^{\prime}\right) \leq d(\mathcal{S})$ because δ does not enter any region of distance $<d$ except possibly $R_{i}^{k_{i}}$ for which $R_{i}^{k_{i}} \backslash \delta$ is still connected. Thus $d\left(D_{*}^{\prime}\right)<d$ and the only new bad regions that we possibly make, D_{m}^{1} and D_{m}^{2}, have a common edge with D_{*}^{\prime}. All the other new components are bigons or squares. To show that $c_{d}\left(\mathcal{S}^{\prime}\right)<c_{d}(\mathcal{S})$ we distinguish three cases. Observe that we have

$$
\begin{equation*}
b\left(D_{m}^{1}\right)+b\left(D_{m}^{2}\right)=b\left(D_{m}\right)-1 . \tag{6-1}
\end{equation*}
$$

Indeed, if D_{m}^{1} is a $2 n_{1}-$ gon and D_{m}^{2} is a $2 n_{2}-$ gon then $n_{1}>1$ and $n_{2}>1$ since $1<i<n$. Thus $b\left(D_{m}^{1}\right)=n_{1}-2$ and $b\left(D_{m}^{2}\right)=n_{2}-2$. Since the finger cuts a_{i} into two distinct arcs we have that $n_{1}+n_{2}=n+1$, ie, $\left(n_{1}-2\right)+\left(n_{2}-2\right)=(n-2)-1$. Furthermore, the finger cuts R_{i}^{j} for $1 \leq j<k_{i}$ into three squares.
Case $1 R_{i}^{k_{i}}$ is a bigon of distance $\geq d$. Then $R_{i}^{k_{i}} \neq D_{*}$ because their distances are different. Thus the finger cuts $R_{i}^{k_{i}}$ into a bigon and a square, both have badness 0 . So Equation (6-1) implies that $b_{d}\left(\mathcal{S}^{\prime}\right)=b_{d}(\mathcal{S})-1$, showing that $c_{d}\left(\mathcal{S}^{\prime}\right)<c_{d}(\mathcal{S})$.
Case $2 d\left(R_{i}^{k_{i}}\right)<d$. Then the finger cuts $R_{i}^{k_{i}}$ into a bigon and a component of distance $<d$. Thus again we have that $b_{d}\left(\mathcal{S}^{\prime}\right)=b_{d}(\mathcal{S})-1$.
Case $3 R_{i}^{k_{i}}=D_{l}$ for some $1 \leq l<m$. Then the finger cuts D_{l} into a bigon and a component D_{l}^{\prime} such that $d\left(D_{l}^{\prime}\right)=d$ and $b\left(D_{l}^{\prime}\right)=b\left(D_{l}\right)+1$. Thus $b_{d}\left(\mathcal{S}^{\prime}\right)=$ $b_{d}(\mathcal{S})$. But we still have $c_{d}\left(\mathcal{S}^{\prime}\right)<c_{d}(\mathcal{S})$ because D_{1}, \ldots, D_{l-1} remained unchanged, $-b\left(D_{l}^{\prime}\right)<-b\left(D_{l}\right)$, and every other distance d region in \mathcal{S}^{\prime} has badness $<b\left(D_{l}^{\prime}\right)$.
Now suppose that $I \cap\{2, \ldots, n-1\}=\varnothing$. Since $I \neq \varnothing$ we have $1 \in I$ or $n \in I$. We can suppose without loss of generality that $1 \in I$. Then we have two cases.

Figure 7: The handle slide of Case A is shown on the left. Subcase B2 is illustrated on the right.

Case A $n=3$; for an illustration see the left hand side of Figure 7. Then $R_{2}^{k_{2}}=D_{m}$, and thus $R_{2}^{k_{2}-1} \cap D_{m} \supset a_{3}$, so $I=\{1\}$. Let b be the \mathbb{B}-arc of ∂D_{m} lying between a_{2} and a_{3}. Then the component C of $\partial\left(R_{2}^{1} \cup \cdots \cup R_{2}^{k_{2}}\right)$ containing b is a closed curve such that $C \subset \mathbb{B}$. Since B has no closed components $C=\beta \in \beta$ is disjoint from b_{*}. Then handle slide b_{*} over β to get a new surface diagram \mathcal{S}^{\prime}. In \mathcal{S}^{\prime} the component D_{*} becomes D_{*}^{\prime} with $b\left(D_{*}^{\prime}\right)=b\left(D_{*}\right)+2$. Let b_{*}^{\prime} denote b_{*} after the
handle slide. Since $d\left(R_{2}^{j}\right) \geq d$ for $1 \leq j \leq k_{2}$ we see that $d\left(\mathcal{S}^{\prime}\right) \leq d(\mathcal{S})$; furthermore, $d\left(D_{*}^{\prime}\right)<d$. The arc b_{*}^{\prime} cuts D_{m} into a bigon and a square; moreover, it cuts each R_{2}^{j} for $1 \leq j<k_{2}-1$ into two squares. Thus we got rid of the distance d bad component D_{m}, so $b_{d}\left(\mathcal{S}^{\prime}\right)<b_{d}(\mathcal{S})$.
Case B $n>3$. Then for some $2<l \leq n$ we have $a_{l} \subset R_{2}^{k_{2}-1} \cap D_{m}$.
Subcase B1 $l<n$; for an illustration see the right hand side of Figure 7. Let

$$
\delta \subset\left(R_{1}^{1} \cup \cdots \cup R_{1}^{k_{1}}\right) \cup\left(R_{2}^{1} \cup \cdots \cup R_{2}^{k_{2}}\right)
$$

be a properly embedded arc that starts on b_{*}, enters $R_{2}^{k_{2}-1}$ through a_{l}, crosses each R_{2}^{j} for $1 \leq j<k_{2}-1$ exactly once, reenters D_{m} through a_{2}, leaves D_{m} through a_{1} and ends in $R_{1}^{k_{1}}$. Note that $R_{1}^{k_{1}} \neq D_{m}$ since $1 \in I$. Do a finger move of b_{*} along δ, we obtain a surface diagram \mathcal{S}^{\prime}. The finger cuts D_{m} into four components $D_{m}^{1}, \ldots, D_{m}^{4}$ and D_{*} becomes a component D_{*}^{\prime}. Observe that D_{m}^{3} and D_{m}^{4} are squares, $d\left(D_{*}^{\prime}\right)<d$, and both D_{m}^{1} and D_{m}^{2} have a common edge with D_{*}^{\prime}. Moreover, the only component δ enters that can be of distance $<d$ is $R_{1}^{k_{1}}$. Thus $d\left(\mathcal{S}^{\prime}\right) \leq d(\mathcal{S})$. Furthermore, $b\left(D_{m}^{1}\right)+b\left(D_{m}^{2}\right)=b\left(D_{m}\right)-1$. So we can conclude that $c_{d}\left(\mathcal{S}^{\prime}\right)<c_{d}(\mathcal{S})$ in a manner analogous to cases 1-3 above, according to the type of $R_{1}^{k_{1}}$.
Subcase B2 $l=n$. Then $a_{p} \subset R_{n-1}^{k_{n-1}-1} \cap D_{m}$ for some $2<p<n-1$. We define a properly embedded arc

$$
\delta \subset\left(R_{1}^{1} \cup \cdots \cup R_{1}^{k_{1}}\right) \cup\left(R_{2}^{1} \cup \cdots \cup R_{2}^{k_{2}}\right) \cup\left(R_{p}^{1} \cup \cdots \cup R_{p}^{k_{p}}\right)
$$

as follows (see Figure 8). The curve δ starts on b_{*}, enters R_{p}^{1} through a_{p}, reenters D_{m} through a_{n-1}, goes into $R_{n}^{1}=R_{2}^{k_{2}-1}$ through a_{n}, reenters D_{m} through a_{2}, leaves across a_{1}, and ends in $R_{1}^{k_{1}}$. Furthermore, $\delta \cap R_{i}^{j}$ consists of a single arc for $i \in\{1,2, p\}$ and $1 \leq j<k_{i}$. Note that all these squares R_{i}^{j} are pairwise distinct, so δ can be chosen to be embedded. Do a finger move of b_{*} along δ to obtain a surface diagram \mathcal{S}^{\prime}. The component D_{*} becomes D_{*}^{\prime} and the finger cuts D_{m} into six pieces $D_{m}^{1}, \ldots, D_{m}^{6}$. Observe that $D_{m}^{1}, D_{m}^{2}, D_{m}^{5}$, and D_{m}^{6} are all squares; moreover, both D_{m}^{3} and D_{m}^{4} have a common edge with D_{*}^{\prime}. Since $d\left(D_{*}^{\prime}\right)<d$ we have $d\left(D_{m}^{3}\right) \leq d$ and $d\left(D_{m}^{4}\right) \leq d$. Furthermore, $b\left(D_{m}^{3}\right)+b\left(D_{m}^{4}\right)=b\left(D_{m}\right)-1$. Thus we get, similarly to Subcase B1, that \mathcal{S}^{\prime} has the required properties.

Applying Lemma 6.6 to \mathcal{S} a finite number of times we get a surface diagram $\mathcal{S}^{\prime}=$ ($\Sigma, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}, P$) with $d\left(\mathcal{S}^{\prime}\right)=0$, which means that \mathcal{S}^{\prime} is nice. All that remains to show is that $\left(\Sigma, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}\right)$ is admissible if $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ was admissible.
The proof of the fact that isotopies of the α - and β-curves do not spoil admissibility is a local computation that is analogous to the one found in [16, Section 4.3]. Handleslides

Figure 8: The finger move of Subcase B2
only happen in Case A of Lemma 6.6. The local computation of [16, Section 4.3] happens in $\mathcal{D}=R_{2}^{1} \cup \cdots \cup R_{2}^{k_{2}}$, which satisfies $\partial \mathcal{D} \cap \mathbb{B} \subset \bigcup \boldsymbol{\beta}$ because both b_{*} and b belong to a β-curve. The computation does not depend on whether an arc of $\partial \mathcal{D} \cap \mathbb{A}$ belongs to $\bigcup \alpha$ or B, so the same proof works here too.

This concludes the proof of Theorem 6.4.

7 Holomorphic disks in nice surface diagrams

In this section we give a complete description of Maslov index one holomorphic disks in nice balanced diagrams. Using that result we prove Theorem 1.3. First we state a generalization of [8, Corollary 4.3].

Definition 7.1 Let $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ be a balanced diagram and let $\mathbf{x}, \mathbf{y} \in \mathbb{T}_{\boldsymbol{\alpha}} \cap \mathbb{T}_{\beta}$. For $\mathcal{D} \in D(\mathbf{x}, \mathbf{y})$ we define $\Delta(\mathcal{D})$ as follows. Let ϕ be a homotopy class of Whitney disks such that $D(\phi)=\mathcal{D}$. Then $\Delta(\mathcal{D})$ is the algebraic intersection number of ϕ and the diagonal in $\operatorname{Sym}^{d}(\Sigma)$.

Suppose that $\mathcal{D}=\sum_{i=1}^{m} a_{i} \mathcal{D}_{i}$; see Definition 2.13. If $p \in(\bigcup \boldsymbol{\alpha}) \cap(\cup \boldsymbol{\beta})$ and $\mathcal{D}_{i_{1}}, \ldots, \mathcal{D}_{i_{4}}$ are the four components that meet at p then we define

$$
n_{p}(\mathcal{D})=\frac{1}{4}\left(a_{i_{1}}+\cdots+a_{i_{4}}\right)
$$

Furthermore, if $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{d}\right)$ then let $n_{\mathbf{x}}(\mathcal{D})=\sum_{i=1}^{d} n_{x_{i}}(\mathcal{D})$ and $n_{\mathbf{y}}(\mathcal{D})=\sum_{i=1}^{d} n_{y_{i}}(\mathcal{D})$.
To define the Euler measure $e(\mathcal{D})$ of \mathcal{D} choose a metric of constant curvature 1,0 , or -1 on Σ such that $\partial \mathcal{D}$ is geodesic and such that the corners of \mathcal{D} are right angles. Then $e(\mathcal{D})$ is $1 / 2 \pi$ times the area of \mathcal{D}.

Remark 7.2 The Euler measure is additive under disjoint unions and gluing of components along boundaries. Moreover, the Euler measurer of a $2 n-$ gon is $1-n / 2$.

Proposition 7.3 If $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is a balanced diagram, $\mathbf{x}, \mathbf{y} \in \mathbb{T}_{\boldsymbol{\alpha}} \cap \mathbb{T}_{\boldsymbol{\beta}}$, and $\mathcal{D} \in D(\mathbf{x}, \mathbf{y})$ is a positive domain then

$$
\mu(\mathcal{D})=e(\mathcal{D})+n_{\mathbf{x}}(\mathcal{D})+n_{\mathbf{y}}(\mathcal{D}) ;
$$

furthermore, $\quad \Delta(\mathcal{D})=n_{\mathbf{x}}(\mathcal{D})+n_{\mathbf{y}}(\mathcal{D})-e(\mathcal{D})$.
Proof Observe that the proof of [8, Corollary 4.3] does not use the fact that the number of elements of $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ equals the genus of Σ.

Theorem 7.4 Suppose that $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is a nice balanced diagram, $\mathbf{x}, \mathbf{y} \in \mathbb{T}_{\boldsymbol{\alpha}} \cap \mathbb{T}_{\beta}$, and $\mathcal{D} \in D(\mathbf{x}, \mathbf{y})$ is a positive domain with $\mu(\mathcal{D})=1$. Then for a generic almost complex structure, $\widehat{\mathcal{M}}(\mathcal{D})$ consists of a single element which is represented by an embedding of a disk with two or four marked points into Σ.

Proof In light of Proposition 7.3 the proof is completely analogous to the proofs of Theorems 3.2 and 3.3 of [16].

Proposition 7.5 If the surface diagram $\mathcal{S}=(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, P)$ is nice and $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is admissible then the balanced diagram $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is also nice.

Proof As before, let $C(\mathcal{S})$ denote the set of those components of $\Sigma \backslash(\mathbb{A} \cup \mathbb{B})$ whose closure is disjoint from $\partial \Sigma$. Since \mathcal{S} is nice each component $R \in C(\mathcal{S})$ is a bigon or a square, and thus its Euler measure $e(R) \geq 0$. Let $\mathcal{S}^{\prime}=(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, \varnothing)$. Then every component $R^{\prime} \in C\left(\mathcal{S}^{\prime}\right)$ is a sum of elements of $C(\mathcal{S})$, each taken with multiplicity one. Thus $e\left(R^{\prime}\right) \geq 0$, which implies that R^{\prime} is a bigon, a square, an annulus, or a disk. It cannot be an annulus or a disk because that would give a nontrivial positive periodic domain in ($\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$.

Proposition 7.6 Let $\mathcal{S}=(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, P)$ be a good, nice, and admissible surface diagram and let $D(P)=\left(\Sigma^{\prime}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}, P_{A}, P_{B}, p\right)$. Then the balanced diagram $\left(\Sigma^{\prime}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}\right)$ is admissible and

$$
C F\left(\Sigma^{\prime}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}\right) \approx\left(O_{P}, \partial \mid O_{P}\right) .
$$

Proof Suppose that Q^{\prime} is a periodic domain in $\left(\Sigma^{\prime}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}\right)$ with either no positive or no negative multiplicities. Then $Q=p\left(Q^{\prime}\right)$ is a periodic domain in $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ since $p\left(\partial Q^{\prime}\right)=\partial Q$ will be a linear combination of full α - and β-curves. Furthermore, Q has either no positive or no negative multiplicities, thus by the admissibility of ($\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}$) we get that $Q=0$. So Q^{\prime} is also zero since all of its coefficients have the same sign.

According to Lemma 5.5 the map p induces a bijection between $\mathbb{T}_{\alpha^{\prime}} \cap \mathbb{T}_{\beta^{\prime}}$ and O_{P}, which we denote by p_{*}. We claim that p_{*} is an isomorphism of chain complexes.

Let $\mathbf{x}^{\prime}, \mathbf{y}^{\prime} \in \mathbb{T}_{\alpha^{\prime}} \cap \mathbb{T}_{\beta^{\prime}}$ and let $\mathbf{x}=p_{*}\left(\mathbf{x}^{\prime}\right)$ and $\mathbf{y}=p_{*}\left(\mathbf{y}^{\prime}\right)$. Then $\mathbf{x}, \mathbf{y} \in O_{P}$. Take a positive domain $\mathcal{D}^{\prime} \in D\left(\mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right)$ such that $\mu\left(\mathcal{D}^{\prime}\right)=1$ and let $\mathcal{D}=p\left(\mathcal{D}^{\prime}\right)$. Observe that $n_{\mathbf{x}}(\mathcal{D})=n_{\mathbf{x}}\left(\mathcal{D}^{\prime}\right), n_{\mathbf{y}}(\mathcal{D})=n_{\mathbf{y}}\left(\mathcal{D}^{\prime}\right)$, and $e(\mathcal{D})=e\left(\mathcal{D}^{\prime}\right)$. Then \mathcal{D} is a positive domain with $\mu(\mathcal{D})=1$ due to Proposition 7.3. Thus p induces a map p_{0} from
to

$$
\begin{aligned}
L^{\prime} & =\left\{\mathcal{D}^{\prime} \in D\left(\mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right): \mathcal{D}^{\prime} \geq 0 \text { and } \mu\left(\mathcal{D}^{\prime}\right)=1\right\} \\
L & =\{\mathcal{D} \in D(\mathbf{x}, \mathbf{y}): \mathcal{D} \geq 0 \text { and } \mu(\mathcal{D})=1\} .
\end{aligned}
$$

We claim that p_{0} is a bijection by constructing its inverse r_{0}.
Let $\mathcal{A}=(\bigcup \boldsymbol{\alpha}) \cup A$ and $\mathcal{B}=(\bigcup \boldsymbol{\beta}) \cup B$. Suppose that $\mathcal{D} \in L$. Then \mathcal{D} is an embedded square or bigon according to Theorem 7.4. Let C be a component of $\mathcal{D} \cap P$. We claim that either $\partial C \subset \mathcal{A}$ or $\partial C \subset \mathcal{B}$. Indeed, C is a sum of elements of $C(\mathcal{S})$ (recall that $C(\mathcal{S})$ was defined in the proof of Theorem 6.4), which are all bigons and squares. Thus the Euler measure $e(C) \geq 0$. The component C cannot be an annulus or a disk since A and B have no closed components and $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is admissible. Thus C is either a bigon or a square. Since $\mathbf{x}, \mathbf{y} \in O_{P}$ and because \mathcal{D} is an embedded bigon or square no corner of C can be an intersection of an α - and a β-edge of ∂C. Thus if C is a bigon it can either have an α - and an A-edge, or a β - and a B-edge. On the other hand, if C is a square it can have two opposite α - and two opposite A-edges, or two opposite β - and two opposite B-edges. Note that in all these cases if $\partial C \subset \mathcal{A}$ then $\partial C \cap A \neq \varnothing$ and if $\partial C \subset \mathcal{B}$ then $\partial C \cap B \neq \varnothing$.

Now we define a map $h=h_{\mathcal{D}}: \mathcal{D} \rightarrow \Sigma^{\prime}$ as follows. Let $x \in \mathcal{D}$. If $x \in \mathcal{D} \backslash P$ then let $h(x)=p^{-1}(x)$. If x lies in a component C of $\mathcal{D} \cap P$ such that $\partial C \subset \mathcal{A}$ then let $h(x)=p^{-1}(x) \cap P_{A}$; finally, let $h(x)=p^{-1}(x) \cap P_{B}$ if $\partial C \subset \mathcal{B}$. The map h is continuous because if $x \in A$ (or $x \in B$) and the sequence $\left(x_{n}\right) \subset \mathcal{D} \backslash P$ converges
to x then the sequence $\left(p^{-1}\left(x_{n}\right)\right)$ converges to $p^{-1}(x) \cap P_{A}$ (or $\left.p^{-1}(x) \cap P_{B}\right)$. See Figure 4. The map p is conformal, thus h is holomorphic. Furthermore, $p \circ h=\mathrm{id}_{\mathcal{D}}$ and thus h is an embedding. So h is a conformal equivalence between \mathcal{D} and $h(\mathcal{D})$, which implies that $h(\mathcal{D}) \in L^{\prime}$. We define $r_{0}(\mathcal{D})$ to be $h(\mathcal{D})$. Then it is clear that $p_{0} \circ r_{0}=\mathrm{id}_{L}$.

Now we prove that $r_{0} \circ p_{0}=\operatorname{id}_{L^{\prime}}$. Let $\mathcal{D}^{\prime} \in L^{\prime}$ and let $\mathcal{D}=p_{0}\left(\mathcal{D}^{\prime}\right)$; furthermore, $h=h_{\mathcal{D}}$. Since $\mathcal{D}^{\prime} \geq 0$ and \mathcal{D} has only 0 and 1 multiplicities we see that \mathcal{D}^{\prime} also has only 0 and 1 multiplicities. Since p is conformal the map $p \mid \mathcal{D}^{\prime}: \mathcal{D}^{\prime} \rightarrow \mathcal{D}$ is a conformal equivalence. Let

$$
h^{\prime}=\left(p \mid \mathcal{D}^{\prime}\right)^{-1}: \mathcal{D} \rightarrow \mathcal{D}^{\prime}
$$

It suffices to show that $h=h^{\prime}$ because this would imply that

$$
r_{0}(\mathcal{D})=h(\mathcal{D})=h^{\prime}(\mathcal{D})=\mathcal{D}^{\prime} .
$$

Since $p:\left(\Sigma^{\prime} \backslash P\right) \rightarrow(\Sigma \backslash P)$ is a conformal equivalence we get that $h \mid(\mathcal{D} \backslash P)=$ $h^{\prime} \mid(\mathcal{D} \backslash P)$. Let C be a component of $\mathcal{D} \cap P$. Without loss of generality we can suppose that $\partial C \subset \mathcal{A}$, and thus $\partial C \cap A \neq \varnothing$. Let $x \in \partial C \cap A$. Then $h^{\prime}(C)$ is connected, so either $h^{\prime}(C) \subset P_{A}$ or $h^{\prime}(C) \subset P_{B}$. But $h^{\prime}(C) \subset P_{B}$ cannot happen. Indeed, then we had

$$
h^{\prime}(x) \in p^{-1}(A) \cap P_{B} \subset \partial \Sigma^{\prime} .
$$

Moreover, the multiplicity of \mathcal{D}^{\prime} at $h^{\prime}(x)$ is one, but \mathcal{D}^{\prime} has multiplicity zero along $\partial \Sigma^{\prime}$, a contradiction. So $h^{\prime}(C) \subset P_{A}$, which means that $h\left|C=h^{\prime}\right| C$.

Thus p_{0} is indeed a bijection between L^{\prime} and L. We have seen that if $\mathcal{D}^{\prime} \in L^{\prime}$ and $\mathcal{D}=p_{0}\left(\mathcal{D}^{\prime}\right)$ then both \mathcal{D} and \mathcal{D}^{\prime} are either embedded bigons or embedded squares; moreover, $h_{\mathcal{D}}$ is a conformal equivalence between them. In both cases $\widehat{\mathcal{M}}(\mathcal{D})$ and $\widehat{\mathcal{M}}\left(\mathcal{D}^{\prime}\right)$ have a single element.

This implies that p_{*} is an isomorphism between the chain complexes ($\Sigma^{\prime}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}$) and $\left(O_{P}, \partial \mid O_{P}\right)$.

Proof of Theorem 1.3 According to Lemma 4.5 it is sufficient to prove the theorem for good decomposing surfaces. Because of Proposition 4.4 for each good decomposing surface we can find a good surface diagram $\mathcal{S}=(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, P)$ adapted to it. This surface diagram can be made admissible using isotopies according to Proposition 4.8. According to Theorem 6.4 we can achieve that \mathcal{S} is nice using permissible moves, and it still defines (M, γ) because of Lemma 6.3. Now Proposition 5.2 says that if $D(P)=\left(\Sigma^{\prime}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}, P_{A}, P_{B}, p\right)$ then $\left(\Sigma^{\prime}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}\right)$ is a balanced diagram defining
$\left(M^{\prime}, \gamma^{\prime}\right)$. From Proposition 7.6 we see that ($\Sigma^{\prime}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}$) is admissible; furthermore,

$$
\operatorname{SFH}\left(M^{\prime}, \gamma^{\prime}\right)=\operatorname{SFH}\left(\Sigma^{\prime}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}\right) \approx H\left(O_{P}, \partial \mid O_{P}\right) .
$$

Finally, Lemma 5.5 implies that $\left(O_{P}, \partial \mid O_{P}\right)$ is the subcomplex of $C F(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ generated by those $\mathbf{x} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$ for which $\mathfrak{s}(\mathbf{x}) \in O_{S}$. So

$$
H\left(O_{P}, \partial \mid O_{P}\right) \approx \bigoplus_{\mathfrak{s} \in O_{S}} \operatorname{SFH}(M, \gamma, \mathfrak{s})
$$

which concludes the proof.

8 Applications

First we are going to remind the reader of Definition 4.11 and Theorem 4.2 of Gabai [2]. See also Theorem 4.19 of Scharlemann [17].

Definition 8.1 A sutured manifold hierarchy is a sequence of decompositions

$$
\left(M_{0}, \gamma_{0}\right) \rightsquigarrow S_{1}\left(M_{1}, \gamma_{1}\right) \rightsquigarrow{ }^{S_{2}} \ldots \rightsquigarrow S_{n}\left(M_{n}, \gamma_{n}\right),
$$

where $\left(M_{n}, \gamma_{n}\right)$ is a product sutured manifold, ie, $\left(M_{n}, \gamma_{n}\right)=(R \times I, \partial R \times I)$ and $R_{+}\left(\gamma_{n}\right)=R \times\{1\}$ for some surface R. We define the depth of $\left(M_{0}, \gamma_{0}\right)$ to be the minimum m for which there is a hierarchy where exactly m of S_{1}, \ldots, S_{n} are not disjoint unions of horizontal surfaces (see Definition 9.3).

Theorem 8.2 Let (M, γ) be a connected taut sutured manifold (see Definition 2.6), where M is not a rational homology sphere containing no essential tori. Then (M, γ) has a sutured manifold hierarchy such that each S_{i} is connected, $S_{i} \cap \partial M_{i-1} \neq \varnothing$ if $\partial M_{i-1} \neq \varnothing$, and for every component V of $R\left(\gamma_{i}\right)$ the intersection $S_{i+1} \cap V$ is a union of parallel oriented nonseparating simple closed curves or arcs.

Proof of Theorem 1.4 According to Theorem 8.2 every taut balanced sutured manifold $(M, \gamma)=\left(M_{0}, \gamma_{0}\right)$ admits a sutured manifold hierarchy

$$
\left(M_{0}, \gamma_{0}\right) \rightsquigarrow S_{1}\left(M_{1}, \gamma_{1}\right) \rightsquigarrow S^{S_{2}} \ldots \rightsquigarrow S_{n}\left(M_{n}, \gamma_{n}\right) .
$$

Note that by definition M is open. So every surface S_{i} in the hierarchy satisfies the requirements of Theorem 1.3. Thus for every $1 \leq i \leq n$ we get that

$$
S F H\left(M_{i}, \gamma_{i}\right) \leq S F H\left(M_{i-1}, \gamma_{i-1}\right) .
$$

Finally, since $\left(M_{n}, \gamma_{n}\right)$ is a product it has a balanced diagram with $\boldsymbol{\alpha}=\varnothing$ and $\boldsymbol{\beta}=\varnothing$, and thus $\operatorname{SFH}\left(M_{n}, \gamma_{n}\right) \approx \mathbb{Z}$ (also see [7, Proposition 9.4]). So we conclude that $\mathbb{Z} \approx \operatorname{SFH}\left(M_{n}, \gamma_{n}\right) \leq \operatorname{SFH}\left(M_{0}, \gamma_{0}\right)$.

Proof of Theorem 1.5 Let $Y(K)$ be the balanced sutured manifold (M, γ), where M is the knot complement $Y \backslash N(K)$ and $s(\gamma)$ consists of a meridian of K and a parallel copy of it oriented in the opposite direction; see Definition 2.4. Let ξ be a tangent vector field along $\partial N(K)$ pointing in the meridional direction. Then ξ lies in v_{0}^{\perp}, and thus gives a canonical trivialization t_{0} of v_{0}^{\perp}. Observe that there is a surface decomposition

$$
Y(K) \leadsto{ }^{S} Y(S)
$$

Since $Y(S)$ is strongly balanced we can apply Theorem 3.11 to get that

$$
S F H(Y(S))=\bigoplus_{\substack{\mathfrak{s} \in \operatorname{Spin}^{c}(Y(K)): \\\left\langle c_{1}\left(\mathfrak{s}, t_{0}\right),[S]\right\rangle=c\left(S, t_{0}\right)}} S F H(Y(K), \mathfrak{s})
$$

Recall that

$$
c\left(S, t_{0}\right)=\chi(S)+I(S)-r\left(S, t_{0}\right)
$$

Since $\partial S \subset \partial N(K)$ is a longitude of K we see that the rotation of $p\left(v_{S}\right)$ with respect to ξ is zero. Furthermore, $\chi(S)=1-2 g(S)$ and $I(S)=-1$ by part (1) of Lemma 3.9, thus $c\left(S, t_{0}\right)=-2 g(S)$. So we get that

$$
S F H(Y(S))=\bigoplus_{\substack{\mathfrak{s} \in \operatorname{Spin}^{c}(Y(K)): \\\left\langle c_{1}\left(\mathfrak{s}, t_{0}\right),[S]\right\rangle=-2 g(S)}} S F H(Y(K), \mathfrak{s})
$$

which in turn is isomorphic to $\widehat{H F K}(Y, K,[S],-g(S)) \approx \widehat{H F K}(Y, K,[S], g(S))$; see [11]. Note that we get $\widehat{H F K}(Y, K,[S], g(S))$ if we decompose along $-S$ instead of S.

Using our machinery we give a simpler proof of the fact that knot Floer homology detects the genus of a knot, which was first proved in [13].

Corollary 8.3 Let K be a null-homologous knot in a rational homology 3-sphere Y whose Seifert genus is $g(K)$. Then
moreover,

$$
\widehat{H F K}(K, g(K)) \neq 0
$$

Proof First suppose that $Y \backslash N(K)$ is irreducible. Let S be a Seifert surface of K. Then $Y(S)$ is taut if and only if $g(S)=g(K)$. Thus, according to Theorem 1.4, if $g(S)=g(K)$ then $\mathbb{Z} \leq S F H(Y(S))$ and because of [7, Proposition 9.18] we have that $S F H(Y(S))=0$ if $g(S)>g(K)$. Since for every $i \geq g(K)$ we can find a Seifert surface S such that $g(S)=i$, together with Theorem 1.5 we are done for the case when $Y \backslash N(K)$ is irreducible.

Now suppose that $Y(K)$ can be written as a connected sum $(M, \gamma) \# Y_{1}$, where (M, γ) is irreducible and Y_{1} is a rational homology 3 -sphere. Since we can find a minimal genus Seifert surface S lying entirely in (M, γ) (otherwise we can do cut-andpaste along the connected sum sphere) we can apply the connected sum formula [7, Proposition 9.15] to get that $\operatorname{SFH}(Y(S)) \approx S F H(M, \gamma) \otimes \widehat{H F}\left(Y_{1}\right)$ over \mathbb{Q}. Since rk $\widehat{H F}\left(Y_{1}\right) \neq 0$ [14, Proposition 5.1], we can finish the proof as in the previous case.

Next we are going to give a new proof of [12, Theorem 1.1]. Let L be a link in S^{3}, then

$$
x: H_{2}\left(S^{3}, L ; \mathbb{R}\right) \rightarrow \mathbb{R}
$$

denotes the Thurston semi-norm. Link Floer homology provides a function

$$
y: H^{1}\left(S^{3} \backslash L ; \mathbb{R}\right) \rightarrow \mathbb{R}
$$

defined by

$$
y(h)=\max _{\substack{\left.\left\{\mathfrak{s} \in H_{1}(L ; \mathbb{Z}): \\ H F L \\ H, s, \mathfrak{s}\right) \neq 0\right\}}}|\langle\mathfrak{s}, h\rangle| .
$$

Theorem 8.4 For a link $L \subset S^{3}$ with no trivial components and every $h \in H^{1}\left(S^{3} \backslash L\right)$ we have that

$$
2 y(h)=x(P D[h])+\sum_{i=1}^{l}\left|\left\langle h, \mu_{i}\right\rangle\right|
$$

where μ_{i} is the meridian of the $i^{\text {th }}$ component L_{i} of L.
Proof Let ξ be a unit vector field along $\partial N(L)$ that points in the direction of the meridian μ_{i} along $\partial N\left(L_{i}\right)$. Consider the balanced sutured manifold $(M, \gamma)=S^{3}(L)$, then ξ is a section of v_{0}^{\perp}, and consequently it defines a canonical trivialization t_{0} of v_{0}^{\perp}. Let R be a Thurston norm minimizing representative of $P D[h]$ having no S^{2} components. Note that R has no D^{2} components because no component of L is trivial.

We claim that $r\left(R, t_{0}\right)=0$. Indeed, $K_{i}=R \cap \partial N\left(L_{i}\right)$ is a torus link. We can arrange that K_{i} and ξ make a constant angle and that R is perpendicular to $\partial N\left(L_{i}\right)$ along K_{i}. Then $\nu_{i}=v_{R} \mid K_{i}$ is the positive unit normal field of K_{i} in $\partial N\left(L_{i}\right)$ and $\left\langle v_{i}, \xi\right\rangle_{q}$ is some constant c_{i} for every $q \in K_{i}$; see Figure 9 . First suppose that $c_{i}=0$. Then K_{i} is a meridian of L_{i} and we can suppose that $K_{i} \subset R(\gamma)$. Thus $p\left(v_{R}\right) \mid K_{i}$ is always perpendicular to ξ. Now suppose that $c_{i} \neq 0$. We define the function

$$
a_{i}(q)=\left\langle p\left(v_{R}\right) /\left\|p\left(v_{R}\right)\right\|, \xi\right\rangle_{q}
$$

Figure 9: A portion of the torus $\partial N\left(L_{i}\right)$, together with the trivialization ξ of v_{0}^{\perp} and ν_{i}
for $q \in K_{i}$. Then $a_{i}(q)=\operatorname{sgn}\left(c_{i}\right)$ for $q \in K_{i} \cap s(\gamma)$ and $a_{i}(q)=c_{i}$ for every $q \in K_{i} \cap R(\gamma)$ such that v_{0} is perpendicular to $R(\gamma)$. Moreover, the range of a_{i} is $\left[c_{i}, \operatorname{sgn}\left(c_{i}\right)\right]$; see Figure 9 . So in both cases the rotation of $p\left(v_{R}\right) \mid K_{i}$ in the trivialization t_{0} is zero as we go around K_{i}.

Furthermore, we can achieve that

$$
|\partial R \cap s(\gamma)|=2 \sum_{i=1}^{l}\left|\left\langle h, \mu_{i}\right\rangle\right| .
$$

Since R is norm minimizing and has no S^{2} and D^{2} components $\chi(R)=-x(P D[h])$. So using part (1) of Lemma 3.9 we get that

$$
c\left(R, t_{0}\right)=-x(P D[h])-\sum_{i=1}^{l}\left|\left\langle h, \mu_{i}\right\rangle\right| .
$$

Note that $c\left(R, t_{0}\right) \leq 0$.
Now observe that $S^{3}(R)$ can be obtained from $S^{3}(L)$ by decomposing along R. Since R is norm minimizing $S^{3}(R)$ is a connected sum of taut balanced sutured manifolds, thus combining Theorem 1.4 with the connected sum formula [7, Proposition 9.15] we get that $\mathrm{rk} \operatorname{SFH}\left(S^{3}(R)\right) \neq 0$. So if we apply Theorem 3.11 to the decomposition

$$
S^{3}(L) \rightsquigarrow{ }^{R} S^{3}(R)
$$

we see that there is an $\mathfrak{s}_{0} \in \operatorname{Spin}^{c}\left(S^{3}(L)\right)$ such that $\mathfrak{s}_{0} \in O_{R}$, hence $\left\langle c_{1}\left(\mathfrak{s}_{0}, t_{0}\right), h\right\rangle=$ $c\left(R, t_{0}\right)$ and $\widehat{H F L}\left(L, \mathfrak{s}_{0}\right) \approx \operatorname{SFH}\left(S^{3}(L), \mathfrak{s}_{0}\right) \otimes \mathbb{Z}_{2} \neq 0$; see [7, Proposition 9.2]. Thus

$$
2 y(h)=\max _{\substack{\left\{\mathfrak{s} \in H_{1}(L ; \mathbb{Z}): \\ H F L(L, \mathfrak{s}) \neq 0\right\}}}\left|\left\langle c_{1}\left(\mathfrak{s}, t_{0}\right), h\right\rangle\right| \geq x(P D[h])+\sum_{i=1}^{l}\left|\left\langle h, \mu_{i}\right\rangle\right| .
$$

To prove that we have an equality let \mathfrak{s} be a Spin^{c} structure on $S^{3}(L)$ for which

$$
\left|\left\langle c_{1}\left(\mathfrak{s}, t_{0}\right), h\right\rangle\right|>x(P D[h])+\sum_{i=1}^{l}\left|\left\langle h, \mu_{i}\right\rangle\right|=-c\left(R, t_{0}\right) .
$$

Denote the components of R by R_{1}, \ldots, R_{k} and let $h_{j}=\left[R_{j}\right]$. Since

$$
\sum_{j=1}^{k}\left|\left\langle c_{1}\left(\mathfrak{s}, t_{0}\right), h_{j}\right\rangle\right| \geq\left|\left\langle c_{1}\left(\mathfrak{s}, t_{0}\right), h\right\rangle\right|>-c\left(R, t_{0}\right)=-\sum_{j=1}^{k} c\left(R_{j}, t_{0}\right)
$$

there is a j for which $\left|\left\langle c_{1}\left(\mathfrak{s}, t_{0}\right), h_{j}\right\rangle\right|>-c\left(R_{j}, t_{0}\right)$. Thus

$$
\left|\left\langle c_{1}\left(\mathfrak{s}, t_{0}\right), h_{j}\right\rangle\right|+c\left(R_{j}, t_{0}\right)=2 d>0 .
$$

The above sum is even since $\left\langle c_{1}\left(\mathfrak{s}_{0}, t_{0}\right), h_{j}\right\rangle=c\left(R_{j}, t_{0}\right)$ and

$$
\left\langle c_{1}\left(\mathfrak{s}, t_{0}\right)-c_{1}\left(\mathfrak{s}_{0}, t_{0}\right), h_{j}\right\rangle=\left\langle 2\left(\mathfrak{s}-\mathfrak{s}_{0}\right), h_{j}\right\rangle .
$$

Let R_{j}^{d} be a Seifert surface of L obtained from R_{j} by d stabilizations and oriented such that $\left\langle c_{1}\left(\mathfrak{s}, t_{0}\right),\left[R_{j}^{d}\right]\right\rangle<0$. Observe that $\left[R_{j}^{d}\right]= \pm h_{j}$, thus

$$
\left\langle c_{1}\left(\mathfrak{s}, t_{0}\right),\left[R_{j}^{d}\right]\right\rangle=c\left(R_{j}, t_{0}\right)-2 d=c\left(R_{j}^{d}, t_{0}\right),
$$

which implies that $\mathfrak{s} \in O_{R_{j}^{d}}$. Now $R\left(S^{3}\left(R_{j}^{d}\right)\right)$ is not Thurston norm minimizing, thus according to [7, Proposition 9.19] we have that $\operatorname{SFH}\left(S^{3}\left(R_{j}^{d}\right)\right)=0$. So if we apply Theorem 3.11 again we see that

$$
\widehat{H F L}(L, \mathfrak{s}) \approx \operatorname{SFH}\left(S^{3}(L), \mathfrak{s}\right) \otimes \mathbb{Z}_{2} \leq \operatorname{SFH}\left(S^{3}\left(R_{j}^{d}\right)\right) \otimes \mathbb{Z}_{2}=0
$$

for such an \mathfrak{s}.
Remark 8.5 Suppose that Y is an oriented 3-manifold and $L \subset Y$ is a link such that $Y \backslash N(L)$ is irreducible. Let $x: H_{2}(Y, L ; \mathbb{R}) \rightarrow \mathbb{R}$ be the Thurston semi-norm and for $h \in H_{2}(Y, L ; \mathbb{R})$ let

$$
z(h)=\max _{\substack{\left\{\mathfrak{s} \in \operatorname{Spin}^{c}(Y, L): \\ H F L(Y, L, \mathfrak{s}) \neq 0\right\}}}\left|\left\langle c_{1}(\mathfrak{s}), h\right\rangle\right| .
$$

Then an analogous proof as above gives that

$$
z(h)=x(h)+\sum_{i=1}^{l}\left|\left\langle h, \mu_{i}\right\rangle\right|
$$

where μ_{i} is the meridian of the $i^{\text {th }}$ component of L.

The following proposition generalizes the horizontal decomposition formula [9, Theorem 3.4].

Proposition 8.6 Let (M, γ) be a balanced sutured manifold. Suppose that

$$
(M, \gamma) \rightsquigarrow{ }^{S}\left(M^{\prime}, \gamma^{\prime}\right)
$$

is a decomposition such that S is connected satisfies the requirements of Theorem 1.3, ($M^{\prime}, \gamma^{\prime}$) is taut, and $[S]=0$ in $H_{2}(M, \partial M)$. The surface S separates $\left(M^{\prime}, \gamma^{\prime}\right)$ into two parts denoted by $\left(M_{1}, \gamma_{1}\right)$ and $\left(M_{2}, \gamma_{2}\right)$. Then

$$
\operatorname{SFH}(M, \gamma) \approx \operatorname{SFH}\left(M^{\prime}, \gamma^{\prime}\right) \approx \operatorname{SFH}\left(M_{1}, \gamma_{1}\right) \otimes \operatorname{SFH}\left(M_{2}, \gamma_{2}\right)
$$

over any field \mathbb{F}.
Proof Since $\left(M^{\prime}, \gamma^{\prime}\right)$ is taut we can apply Theorem 1.4 to conclude that

$$
\operatorname{SFH}\left(M^{\prime}, \gamma^{\prime}\right) \neq 0
$$

Together with Theorem 1.3 this implies that $O_{S} \neq \varnothing$. Fix an element $\mathfrak{s}_{0} \in O_{S}$. Then for every Spin^{c} structure $\mathfrak{s} \in \operatorname{Spin}^{c}(M, \gamma)$ the equality

$$
\left\langle\mathfrak{s}-\mathfrak{s}_{0},[S]\right\rangle=0
$$

holds since $[S]=0$. Thus $\mathfrak{s} \in O_{S}$; see the proof of Lemma 3.10 and Remark 5.6. So we get that $O_{S}=\operatorname{Spin}^{c}(M, \gamma)$, and thus $\operatorname{SFH}\left(M^{\prime}, \gamma^{\prime}\right) \approx \operatorname{SFH}(M, \gamma)$.
Now we sketch an alternative proof. Let $\mathcal{S}=(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, P)$ be a surface diagram adapted to S. Then $D(P)=\left(\Sigma^{\prime}, \boldsymbol{\alpha}^{\prime}, \boldsymbol{\beta}^{\prime}, P_{A}, P_{B}, p\right)$ (see Definition 5.1) can be written as the disjoint union of two balanced diagrams $\left(\Sigma_{1}, \boldsymbol{\alpha}_{1}, \boldsymbol{\beta}_{1}\right)$ and $\left(\Sigma_{2}, \boldsymbol{\alpha}_{2}, \boldsymbol{\beta}_{2}\right)$ such that $P_{A} \subset \Sigma_{1}$ and $P_{B} \subset \Sigma_{2}$. Let $\beta_{1} \in \beta_{1}$ and $\alpha_{2} \in \alpha_{2}$ be arbitrary curves. Since $\beta_{1} \cap P_{A}=\varnothing$ and $\alpha_{2} \cap P_{B}=\varnothing$ we get that $p\left(\beta_{1}\right) \cap P=\varnothing$ and $p\left(\alpha_{2}\right) \cap P=\varnothing$. Furthermore, $p\left(\beta_{1}\right) \cap p\left(\alpha_{2}\right)=\varnothing$. Thus for the surface diagram \mathcal{S} the set of inner intersection points $I_{P}=\varnothing$. So Theorem 1.3 gives that $\operatorname{SFH}(M, \gamma) \approx \operatorname{SFH}\left(M^{\prime}, \gamma^{\prime}\right)$.
Note that $\left(\Sigma_{i}, \boldsymbol{\alpha}_{i}, \boldsymbol{\beta}_{i}\right)$ is a balanced diagram of $\left(M_{i}, \gamma_{i}\right)$ for $i=1,2$; moreover,

$$
C F(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}) \approx C F\left(\Sigma_{1}, \boldsymbol{\alpha}_{1}, \boldsymbol{\beta}_{1}\right) \otimes C F\left(\Sigma_{2}, \boldsymbol{\alpha}_{2}, \boldsymbol{\beta}_{2}\right)
$$

As a corollary of this we give a simple proof of [10, Theorem 1.1]. The following definition can be found in [3]:

Definition 8.7 The oriented surface $R \subset S^{3}$ is a Murasugi sum of the compact oriented surfaces R_{1} and R_{2} in S^{3} if the following conditions are satisfied. First, $R=R_{1} \cup_{E} R_{2}$, where E is a $2 n$-gon. Furthermore, there are balls B_{1} and B_{2} in
S^{3} such that $R_{1} \subset B_{1}$ and $R_{2} \subset B_{2}$, the intersection $B_{1} \cap B_{2}=H$ is a two-sphere, $B_{1} \cup B_{2}=S^{3}$, and $R_{1} \cap H=R_{2} \cap H=E$. We also say that the knot ∂R is a Murasugi sum of the knots ∂R_{1} and ∂R_{2}.

Corollary 8.8 Suppose that the knot $K \subset S^{3}$ is the Murasugi sum of the knots K_{1} and K_{2} along some minimal genus Seifert surfaces. Then

$$
\widehat{H F K}(K, g(K)) \approx \widehat{H F K}\left(K_{1}, g\left(K_{1}\right)\right) \otimes \widehat{H F K}\left(K_{2}, g\left(K_{2}\right)\right)
$$

over any field \mathbb{F}.
Proof Let R_{1} and R_{2} be minimal genus Seifert surfaces of K_{1} and K_{2}, respectively. The Murasugi sum of R_{1} and R_{2} is a minimal genus Seifert surface R of K; see Gabai [3]. By the definition of the Murasugi sum there is an embedded 2-sphere $H \subset S^{3}$ that separates R_{1} and R_{2} and such that $R_{1} \cap H=R_{2} \cap H$ is a $2 n-$ gon E for some $n>0$. Thus in the balanced sutured manifold $S^{3}(R)$ the disk $D=H \backslash \operatorname{int}(E)$ is a separating decomposing surface that satisfies the requirements of Theorem 1.3. Decomposition along D gives the disjoint union of $S^{3}\left(R_{1}\right)$ and $S^{3}\left(R_{2}\right)$, which is taut. Thus, according to Proposition 8.6,

$$
S F H\left(S^{3}(R)\right) \approx S F H\left(S^{3}\left(R_{1}\right)\right) \otimes S F H\left(S^{3}\left(R_{2}\right)\right)
$$

over \mathbb{F}. Using Theorem 1.5 we get the required formula.

Lemma 8.9 Suppose that (M, γ) is a balanced sutured manifold such that

$$
H_{2}(M ; \mathbb{Z})=0
$$

Let $S \subset(M, \gamma)$ be a product annulus (see Definition 2.9) such that at least one component of ∂S is nonzero in $H_{1}(R(\gamma) ; \mathbb{Z})$ or both components of ∂S are boundarycoherent in $R(\gamma)$. If S gives a surface decomposition $(M, \gamma) \leadsto \mapsto^{S}\left(M^{\prime}, \gamma^{\prime}\right)$ then

$$
S F H\left(M^{\prime}, \gamma^{\prime}\right) \approx S F H(M, \gamma)
$$

Proof With at least one orientation of S both components of ∂S are boundarycoherent in $R(\gamma)$. On the other hand, $\left(M^{\prime}, \gamma^{\prime}\right)$ does not depend on the orientation of S. Thus we can suppose that both components of ∂S are boundary-coherent.

Since S is connected and ∂S intersects both $R_{+}(\gamma)$ and $R_{-}(\gamma)$ we can apply Proposition 4.4 to get a surface diagram $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, P)$ adapted to S. Here P is an annulus with one boundary component being A and the other one B. Thus we can isotope all the α - and β-curves to be disjoint from P, and so $I_{P}=\varnothing$ for this new diagram. The balanced diagram $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is admissible due to Proposition 2.15.

Now Lemma 5.5 implies that for every $\mathbf{x} \in \mathbb{T}_{\alpha} \cap \mathbb{T}_{\beta}$ we have $\mathbf{x} \in O_{P}$ if and only if $\mathfrak{s}(\mathbf{x}) \in O_{S}$. Consequently, $C F(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathfrak{s})=0$ for $\mathfrak{s} \in \operatorname{Spin}^{c}(M, \gamma) \backslash O_{S}$. Thus $\operatorname{SFH}(M, \gamma, \mathfrak{s})=0$ for $\mathfrak{s} \notin O_{S}$. The surface S satisfies the conditions of Theorem 1.3, and so $\operatorname{SFH}\left(M^{\prime}, \gamma^{\prime}\right) \approx \operatorname{SFH}(M, \gamma)$.

The next proposition is an analogue of the decomposition formula for separating product annuli proved in [9, Theorem 4.1] using completely different methods.

Proposition 8.10 Suppose that (M, γ) is a balanced sutured manifold such that $H_{2}(M ; \mathbb{Z})=0$. Let $S \subset(M, \gamma)$ be a product annulus such that at least one component of ∂S does not bound a disk in $R(\gamma)$. Then S gives a surface decomposition $(M, \gamma) \not \mapsto^{S}\left(M^{\prime}, \gamma^{\prime}\right)$, where $\operatorname{SFH}\left(M^{\prime}, \gamma^{\prime}\right) \leq \operatorname{SFH}(M, \gamma)$. If we also suppose that S is separating in M then $\operatorname{SFH}\left(M^{\prime}, \gamma^{\prime}\right) \approx \operatorname{SFH}(M, \gamma)$.

Figure 10: A product annulus

Proof Let $C_{ \pm}=\partial S \cap R_{ \pm}(\gamma)$ and suppose that C_{+}does not bound a disk in $R_{+}(\gamma)$; see Figure 10. According to Lemma 8.9 we only have to consider the case when both [C_{+}] and [C_{-}] are zero in $H_{1}(R(\gamma) ; \mathbb{Z})$. Since ($\left.M^{\prime}, \gamma^{\prime}\right)$ does not depend on the orientation of S we can suppose that S is oriented such that C_{-}is boundary-coherent in $R_{-}(\gamma)$. If C_{+}is also boundary-coherent in $R_{+}(\gamma)$ then we are again done due to Lemma 8.9. Thus suppose that C_{+}is not boundary-coherent.

The idea of the following argument was communicated to me by Yi Ni. Let T denote the interior of C_{+}in $R_{+}(\gamma)$; then C_{+}and ∂T are oriented oppositely; see Definition 1.2. Let C_{+}^{\prime} be a curve lying in $\operatorname{int}(S)$ parallel and close to C_{+}and choose a surface T^{\prime} parallel to T such that $\operatorname{int}\left(T^{\prime}\right) \subset \operatorname{int}(M \backslash S)$ and $\partial T=C_{+}^{\prime}$. Let S_{0} be the component of $S \backslash C_{+}^{\prime}$ containing C_{-}. We define S^{\prime} to be the surface $S_{0} \cup T^{\prime}$. Note that the
orientations of S_{0} and T^{\prime} match along C_{+}^{\prime}, so S^{\prime} has a natural orientation. Let (M_{0}, γ_{0}) be the manifold obtained after decomposing (M, γ) along S^{\prime}. Observe that $\partial S^{\prime}=C_{-}$is boundary-coherent in $R_{-}(\gamma)$, thus we can apply Theorem 1.3 to S^{\prime} and get that $\operatorname{SFH}\left(M_{0}, \gamma_{0}\right) \leq \operatorname{SFH}(M, \gamma)$. If we also suppose that S is separating then S^{\prime} is separating and so we have an equality due to Proposition 8.6. Decomposing (M_{0}, γ_{0}) along the annulus $S \backslash S_{0}$ we get a sutured manifold homeomorphic to the disjoint union of ($M^{\prime}, \gamma^{\prime}$) and $(T \times I, \partial T \times I)$. Since $T \neq D^{2}$ we can remove the $(T \times I, \partial T \times I)$ part of $\left(M_{0}, \gamma_{0}\right)$ by a series of decompositions along product disks and product annuli having no separating boundary components. Thus $\operatorname{SFH}\left(M^{\prime}, \gamma^{\prime}\right) \approx \operatorname{SFH}\left(M_{0}, \gamma_{0}\right)$ by [7, Lemma 9.13] and Lemma 8.9.

9 Fibred knots

Ghiggini [6] (for the genus one case) and Ni [9] recently proved a conjecture of Ozsváth and Szabó that knot Floer homology detects fibred knots. We use the methods developed in this paper to simplify their proof by avoiding the introduction of contact structures. Moreover, we give a relationship between knot Floer homology and the existence of depth two taut foliations on the knot complement.

Definition 9.1 Let (M, γ) be a balanced sutured manifold. Then (M, γ) is called a homology product if $H_{1}\left(M, R_{+}(\gamma) ; \mathbb{Z}\right)=0$ and $H_{1}\left(M, R_{-}(\gamma) ; \mathbb{Z}\right)=0$. Similarly, (M, γ) is said to be a rational homology product if $H_{1}\left(M, R_{+}(\gamma) ; \mathbb{Q}\right)=0$ and $H_{1}\left(M, R_{-}(\gamma) ; \mathbb{Q}\right)=0$.

Remark 9.2 It follows from the universal coefficient theorem that every homology product is also a rational homology product.

Definition 9.3 Let (M, γ) be a balanced sutured manifold. A decomposing surface $S \subset M$ is called a horizontal surface if
(i) S is open,
(ii) $\partial S \subset \gamma$ and $|\partial S|=|s(\gamma)|$,
(iii) $[S]=\left[R_{+}(\gamma)\right]$ in $H_{2}(M, \gamma)$,
(iv) $\chi(S)=\chi\left(R_{+}(\gamma)\right)$.

We say that (M, γ) is horizontally prime if every horizontal surface in (M, γ) is parallel to either $R_{+}(\gamma)$ or $R_{-}(\gamma)$.

Lemma 9.4 Suppose that (M, γ) is a balanced sutured manifold and let

$$
(M, \gamma) \rightsquigarrow S^{S}\left(M^{\prime}, \gamma^{\prime}\right)
$$

be a surface decomposition. Then the following holds.
(1) If (M, γ) is a rational homology product then $H_{2}\left(M, R_{ \pm}(\gamma) ; \mathbb{Q}\right)=0$, and both $H_{2}(M ; \mathbb{Q})$ and $H_{2}(M ; \mathbb{Z})$ vanish.
(2) If S is either a product disk or a product annulus then $\left(M^{\prime}, \gamma^{\prime}\right)$ is a rational homology product if and only if (M, γ) is.
(3) If $R_{+}(\gamma)$ is connected, S is a connected horizontal surface, and (M, γ) is a rational homology product then $\left(M^{\prime}, \gamma^{\prime}\right)$ is also a rational homology product.

Proof Let $R_{ \pm}=R_{ \pm}(\gamma)$ and $R_{ \pm}^{\prime}=R_{ \pm}\left(\gamma^{\prime}\right)$. Then using Alexander-Poincaré duality we get that

$$
H_{2}\left(M, R_{+} ; \mathbb{Q}\right) \approx H^{1}\left(M, R_{-} ; \mathbb{Q}\right) \approx H_{1}\left(M, R_{-} ; \mathbb{Q}\right)=0
$$

A similar argument shows that $H_{2}\left(M, R_{-} ; \mathbb{Q}\right)=0$.
Look at the following segment of the long exact sequence of the pair $\left(M, R_{+}\right)$:

$$
H_{2}\left(R_{+} ; \mathbb{Q}\right) \rightarrow H_{2}(M ; \mathbb{Q}) \rightarrow H_{2}\left(M, R_{+} ; \mathbb{Q}\right)=0
$$

Since R_{+}has no closed components $H_{2}\left(R_{+} ; \mathbb{Q}\right)=0$, so $H_{2}(M ; \mathbb{Q})=0$. From Poincaré duality and the universal coefficient theorem

$$
H_{2}(M ; \mathbb{Z}) \approx H^{1}(M, \partial M ; \mathbb{Z}) \approx \operatorname{Hom}\left(H_{1}(M, \partial M ; \mathbb{Z}), \mathbb{Z}\right) \oplus \operatorname{Tor}\left(H_{0}(M, \partial M ; \mathbb{Z})\right)
$$

which implies that $H_{2}(M ; \mathbb{Z})$ is torsion free. Thus $H_{2}(M ; \mathbb{Z})=0$. This proves (1).
Now suppose that S is a product disk or a product annulus. Consider the relative Mayer-Vietoris sequence associated to the pairs ($M^{\prime}, R_{+}^{\prime}$) and ($N(S), R_{+} \cap N(S)$). From the segment

$$
\begin{aligned}
& 0=H_{1}\left(M^{\prime} \cap N(S), R_{+}^{\prime} \cap N(S) ; \mathbb{Q}\right) \\
& \rightarrow H_{1}\left(M^{\prime}, R_{+}^{\prime} ; \mathbb{Q}\right) \oplus H_{1}\left(N(S), R_{+} \cap N(S) ; \mathbb{Q}\right) \\
& \quad \rightarrow H_{1}\left(M, R_{+} ; \mathbb{Q}\right) \rightarrow H_{0}\left(M^{\prime} \cap N(S), R_{+}^{\prime} \cap N(S) ; \mathbb{Q}\right)=0
\end{aligned}
$$

and since $H_{1}\left(N(S), R_{+} \cap N(S) ; \mathbb{Q}\right)=0$ we get that $H_{1}\left(M^{\prime}, R_{+}^{\prime} ; \mathbb{Q}\right)=0$ if and only if $H_{1}\left(M, R_{+} ; \mathbb{Q}\right)=0$. We can similarly show that $H_{1}\left(M^{\prime}, R_{-}^{\prime} ; \mathbb{Q}\right)=0$ if and only if $H_{1}\left(M, R_{-} ; \mathbb{Q}\right)=0$. This proves (2).

Finally, let S be a connected horizontal surface in the balanced sutured manifold (M, γ) with R_{+}connected. We denote by $\left(M_{1}, \gamma_{1}\right)$ and $\left(M_{2}, \gamma_{2}\right)$ the two components of
($M^{\prime}, \gamma^{\prime}$), indexed such that $R_{+} \subset M_{1}$ and $R_{-} \subset M_{2}$. The sutured manifold (M, γ) is a homology product and we have already seen that this implies that $H_{2}(M ; \mathbb{Q})=0$. So from the Mayer-Vietoris sequence

$$
0=H_{2}(S ; \mathbb{Q}) \rightarrow H_{2}\left(M_{1} ; \mathbb{Q}\right) \oplus H_{2}\left(M_{2} ; \mathbb{Q}\right) \rightarrow H_{2}(M ; \mathbb{Q})=0
$$

we obtain that $H_{2}\left(M_{i} ; \mathbb{Q}\right)=0$ for $i=1,2$. Another segment of the same exact sequence is

$$
0 \rightarrow H_{1}(S ; \mathbb{Q}) \rightarrow H_{1}\left(M_{1} ; \mathbb{Q}\right) \oplus H_{1}\left(M_{2} ; \mathbb{Q}\right) \rightarrow H_{1}(M ; \mathbb{Q}) \rightarrow \tilde{H}_{0}(S ; \mathbb{Q})=0
$$

thus $\quad \operatorname{dim} H_{1}\left(M_{1} ; \mathbb{Q}\right)+\operatorname{dim} H_{1}\left(M_{2} ; \mathbb{Q}\right)=\operatorname{dim} H_{1}(S ; \mathbb{Q})+\operatorname{dim} H_{1}(M ; \mathbb{Q})$.
From the long exact sequence of the pair $\left(M, R_{ \pm}\right)$we see that

$$
0=H_{2}\left(M, R_{ \pm} ; \mathbb{Q}\right) \rightarrow H_{1}\left(R_{ \pm} ; \mathbb{Q}\right) \rightarrow H_{1}(M ; \mathbb{Q}) \rightarrow 0
$$

and so $\operatorname{dim} H_{1}(M ; \mathbb{Q})=\operatorname{dim} H_{1}\left(R_{ \pm} ; \mathbb{Q}\right)$. Since S is horizontal $\chi(S)=\chi\left(R_{+}\right)$. Moreover, R_{+}and S are both connected, thus $\operatorname{dim} H_{1}\left(R_{ \pm} ; \mathbb{Q}\right)=\operatorname{dim} H_{1}(S ; \mathbb{Q})$. Consequently,

$$
\begin{equation*}
\operatorname{dim} H_{1}\left(M_{1} ; \mathbb{Q}\right)+\operatorname{dim} H_{1}\left(M_{2} ; \mathbb{Q}\right)=2 \operatorname{dim} H_{1}(S ; \mathbb{Q}) \tag{9-1}
\end{equation*}
$$

From the long exact sequence of the triple $\left(M, M_{2}, R_{-}\right)$consider

$$
0=H_{1}\left(M, R_{-} ; \mathbb{Q}\right) \rightarrow H_{1}\left(M, M_{2} ; \mathbb{Q}\right) \rightarrow H_{0}\left(M_{2}, R_{-} ; \mathbb{Q}\right)
$$

Here $H_{0}\left(M_{2}, R_{-} ; \mathbb{Q}\right)=0$ because $\left(M_{2}, \gamma_{2}\right)$ is balanced. So, using excision, we get that $H_{1}\left(M_{1}, S ; \mathbb{Q}\right) \approx H_{1}\left(M, M_{2} ; \mathbb{Q}\right)=0$. Now the exact sequence
$0=H_{2}\left(M_{1} ; \mathbb{Q}\right) \rightarrow H_{2}\left(M_{1}, S ; \mathbb{Q}\right) \rightarrow H_{1}(S ; \mathbb{Q}) \rightarrow H_{1}\left(M_{1} ; \mathbb{Q}\right) \rightarrow H_{1}\left(M_{1}, S ; \mathbb{Q}\right)=0$ implies that $\operatorname{dim} H_{1}\left(M_{1} ; \mathbb{Q}\right) \leq \operatorname{dim} H_{1}(S ; \mathbb{Q})$. Using a similar argument we get that $\operatorname{dim} H_{1}\left(M_{2} ; \mathbb{Q}\right) \leq \operatorname{dim} H_{1}(S ; \mathbb{Q})$. Together with Equation (9-1) we see that

$$
\operatorname{dim} H_{1}\left(M_{i} ; \mathbb{Q}\right)=\operatorname{dim} H_{1}(S ; \mathbb{Q})
$$

for $i=1,2$. So the map $H_{1}(S ; \mathbb{Q}) \rightarrow H_{1}\left(M_{1} ; \mathbb{Q}\right)$ is an isomorphism and we can conclude that $H_{2}\left(M_{1}, S ; \mathbb{Q}\right)=0$. Using Alexander-Poincaré duality we get that

$$
H_{1}\left(M_{1}, R_{+} ; \mathbb{Q}\right) \approx H^{1}\left(M_{1}, R_{+} ; \mathbb{Q}\right) \approx H_{2}\left(M_{1}, S ; \mathbb{Q}\right)=0
$$

Together with $H_{1}\left(M_{1}, S ; \mathbb{Q}\right)=0$ this implies that $\left(M_{1}, \gamma_{1}\right)$ is a rational homology product. An analogous argument shows that $\left(M_{2}, \gamma_{2}\right)$ is also a rational homology product. This proves (3).

Observe that the proof of [9, Proposition 3.1] gives the following slightly stronger result.

Lemma 9.5 Let K be a null-homologous knot in the oriented 3-manifold Y and let S be a Seifert surface of K. If

$$
\operatorname{rk} \widehat{H F K}(Y, K,[S], g(S))=1
$$

then $Y(S)$ is a homology product.

Corollary 9.6 If (M, γ) is a balanced sutured manifold with γ connected and

$$
r k S F H(M, \gamma)=1
$$

then (M, γ) is a homology product, and thus also a rational homology product.

Proof Since (M, γ) is balanced and γ is connected $R_{+}(\gamma)$ and $R_{-}(\gamma)$ are diffeomorphic. Glue $R_{+}(\gamma)$ and $R_{-}(\gamma)$ together using an arbitrary diffeomorphism, then do an arbitrary Dehn filling along the torus boundary. This way we get a 3 -manifold Y together with a null-homologous knot K (the core of the Dehn filling). Moreover, $R_{+}(\gamma)$ gives a Seifert surface S of K such that $Y(S)=(M, \gamma)$. Using Theorem 1.5

$$
\widehat{H F K}(Y, K,[S], g(S)) \approx S F H(M, \gamma) .
$$

So Lemma 9.5 implies that $Y(S)=(M, \gamma)$ is a homology product.
Theorem 9.7 Suppose that (M, γ) is a taut balanced sutured manifold that is not a product. Then $\operatorname{SFH}(M, \gamma) \geq \mathbb{Z}^{2}$.

Proof The outline of the proof is the following. First we modify (M, γ) using decompositions along product disks and product annuli, horizontal decompositions, and adding product one-handles. The goal is to make (M, γ) a rational homology product, strongly balanced, and horizontally prime. Moreover, we need a curve in $R_{+}(\gamma)$ which homologically lies outside the characteristic product region (see Definition 9.8). Then we can find decomposing surfaces S_{1} and S_{2} which give taut decompositions $(M, \gamma) \rightsquigarrow S_{i}\left(M_{i}, \gamma_{i}\right)$ for $i=1,2$ such that $O_{S_{1}} \cap O_{S_{2}}=\varnothing$. To distinguish between Spin^{c} structures we use Lemma 3.10. According to Theorem 1.4 we have $\mathbb{Z} \leq$ $\operatorname{SFH}\left(M_{i}, \gamma_{i}\right)$. From Theorem 1.3 we get that

$$
\operatorname{SFH}\left(M_{1}, \gamma_{1}\right) \oplus \operatorname{SFH}\left(M_{2}, \gamma_{2}\right) \leq \operatorname{SFH}(M, \gamma),
$$

which concludes the proof.

Throughout the proof we use the fact that if $(N, v) \rightsquigarrow^{J}\left(N^{\prime}, v^{\prime}\right)$ is a decomposition such that J is either a product disk or product annulus then (N, v) is taut if and only if $\left(N^{\prime}, v^{\prime}\right)$ is taut. This is [2, Lemma 3.12].
By adding product one-handles to (M, γ) as in Remark 3.6 we can achieve that γ is connected. This new (M, γ) is still taut and is not a product. It was shown in [7, Lemma 9.13] that adding product one-handles does not change $\operatorname{SFH}(M, \gamma)$, so it is sufficient to prove the theorem when γ is connected. In particular, both $R_{+}(\gamma)$ and $R_{-}(\gamma)$ are connected, thus (M, γ) is strongly balanced.
By Theorem 1.4 and Corollary 9.6 if the taut balanced sutured manifold (M, γ) is not a rational homology product and if γ is connected then $\operatorname{SFH}(M, \gamma) \geq \mathbb{Z}^{2}$. So in order to prove Theorem 9.7 it is sufficient to consider the case when (M, γ) is a rational homology product.
Let R_{0}, \ldots, R_{k+1} be a maximal family of pairwise disjoint and nonparallel horizontal surfaces in (M, γ) such that $R_{0}=R_{+}(\gamma)$ and $R_{k+1}=R_{-}(\gamma)$. Since γ is connected, R_{i} is open, and $\left|\partial R_{i}\right|=|s(\gamma)|$ we get that each R_{i} is connected. Decomposing (M, γ) along R_{1}, \ldots, R_{k} we get taut balanced sutured manifolds $\left(M_{i}, \gamma_{i}\right)$ for $1 \leq i \leq k+1$ such that $R_{+}\left(\gamma_{i}\right)=R_{i-1}$ and $R_{-}\left(\gamma_{i}\right)=R_{i}$. From Proposition 8.6

$$
\operatorname{SFH}(M, \gamma)=\bigotimes_{i=1}^{k+1} \operatorname{SFH}\left(M_{i}, \gamma_{i}\right)
$$

over \mathbb{Q}. Furthermore, part (3) of Lemma 9.4 implies that each $\left(M_{i}, \gamma_{i}\right)$ is a rational homology product. And $\left(M_{i}, \gamma_{i}\right)$ is not a product since R_{i-1} and R_{i} are not parallel. Thus it is enough to prove Theorem 9.7 for $(M, \gamma)=\left(M_{1}, \gamma_{1}\right)$. So we can suppose that (M, γ) is horizontally prime (see Definition 9.3). Next we recall Definition 6.1 of Ni [9]; also see Cooper and Long [1].

Definition 9.8 Suppose that (M, γ) is an irreducible sutured manifold, $R_{-}(\gamma)$ and $R_{+}(\gamma)$ are incompressible and diffeomorphic to each other. A product region of (M, γ) is a submanifold $\Phi \times I$ of M such that Φ is a compact (possibly disconnected) surface and $\Phi \times\{0\}$ and $\Phi \times\{1\}$ are incompressible subsurfaces of $R_{-}(\gamma)$ and $R_{+}(\gamma)$, respectively.
In [1, Theorem 3.4] it is proven that there is a product region $E \times I$ such that if $\Phi \times I$ is any product region of (M, γ) then there is an ambient isotopy of M which takes $\Phi \times I$ into $E \times I$. We call $E \times I$ a characteristic product region of (M, γ).

Let $E \times I$ be a characteristic product region of (M, γ). We can suppose that $\gamma \subset E \times I$. Since (M, γ) is not a product $E \times I \neq M$. Let

$$
\left(M^{\prime}, \gamma^{\prime}\right)=(M \backslash E \times I,(\partial E \times I) \backslash \gamma)
$$

Denote the components of $(\partial E \times I) \backslash \gamma$ by F_{1}, \ldots, F_{m}. Then each F_{i} is a product annulus in (M, γ). Moreover, no component of ∂F_{i} bounds a disk in $R(\gamma)$ since $E \times\{0\}$ and $E \times\{1\}$ are incompressible subsurfaces of $R(\gamma)$. After the sequence of decompositions along the product annuli F_{1}, \ldots, F_{m} we get the disjoint union of $\left(M^{\prime}, \gamma^{\prime}\right)$ and the product sutured manifold $(E \times I, \partial E \times I)$. From part (2) of Lemma 9.4 we get that $\left(M^{\prime}, \gamma^{\prime}\right)$ is also a rational homology product. Moreover, using Proposition 8.10 and the fact that

$$
S F H\left(\left(M^{\prime}, \gamma^{\prime}\right) \cup(E \times I, \partial E \times I)\right) \approx S F H\left(M^{\prime}, \gamma^{\prime}\right) \otimes \mathbb{Z} \approx \operatorname{SFH}\left(M^{\prime}, \gamma^{\prime}\right)
$$

we obtain that $\operatorname{SFH}\left(M^{\prime}, \gamma^{\prime}\right) \leq \operatorname{SFH}(M, \gamma)$. Of course $\left(M^{\prime}, \gamma^{\prime}\right)$ is not a product. Thus it is sufficient to prove that $\operatorname{SFH}\left(M^{\prime}, \gamma^{\prime}\right) \geq \mathbb{Z}^{2}$. Note that $E^{\prime} \times I=N\left(\gamma^{\prime}\right)$ is a characteristic product region of $\left(M^{\prime}, \gamma^{\prime}\right)$. Furthermore, $\left(M^{\prime}, \gamma^{\prime}\right)$ is taut, horizontally prime, and strongly balanced.

If $R_{+}\left(\gamma^{\prime}\right)$ is not planar then let $\left(M_{1}, \gamma_{1}\right)=\left(M^{\prime}, \gamma^{\prime}\right)$ and $E_{1} \times I=E^{\prime} \times I$. If $R_{+}\left(\gamma^{\prime}\right)$ is planar then $\partial R_{+}\left(\gamma^{\prime}\right)$ is disconnected since otherwise we had $\partial M^{\prime}=S^{2}$ and $\left(M^{\prime}, \gamma^{\prime}\right)$ would not be irreducible. Connect two different components of γ^{\prime} with a product one-handle T as in Remark 3.6 to obtain a sutured manifold $\left(M_{1}, \gamma_{1}\right)$. Then $E_{1} \times I=N\left(\gamma^{\prime}\right) \cup T$ is a characteristic product region of $\left(M_{1}, \gamma_{1}\right)$. According to part (2) of Lemma 9.4 the sutured manifold $\left(M_{1}, \gamma_{1}\right)$ is also a rational homology product. In both cases the map

$$
H_{1}\left(E_{1} \times\{1\} ; \mathbb{Q}\right) \rightarrow H_{1}\left(R_{+}\left(\gamma_{1}\right) ; \mathbb{Q}\right)
$$

is not surjective. Indeed, in the second case the curve ω obtained by closing the core of the handle $T \cap R_{+}\left(\gamma_{1}\right)$ in $R_{+}\left(\gamma^{\prime}\right)$ lies outside $H_{1}\left(E_{1} \times\{1\} ; \mathbb{Q}\right)$. Also, $\operatorname{SFH}\left(M_{1}, \gamma_{1}\right)=\operatorname{SFH}\left(M^{\prime}, \gamma^{\prime}\right)$ in both cases. Note that $\left(M_{1}, \gamma_{1}\right)$ is still taut, horizontally prime, and strongly balanced.

From now on let $(M, \gamma)=\left(M_{1}, \gamma_{1}\right)$ and $E \times I=E_{1} \times I$. Let $\omega_{+} \subset R_{+}(\gamma)$ be a properly embedded oriented curve such that $\left[\omega_{+}\right] \notin H_{1}(E \times\{1\} ; \mathbb{Q})$. Then $n\left[\omega_{+}\right] \notin H_{1}(E \times I ; \mathbb{Z})$ for every $n \in \mathbb{Z}$. Since (M, γ) is a rational homology product the maps

$$
i_{ \pm}: H_{1}\left(R_{ \pm}(\gamma) ; \mathbb{Q}\right) \rightarrow H_{1}(M ; \mathbb{Q})
$$

are isomorphisms; see Lemma 9.4. Thus there exists a properly embedded oriented curve $\omega_{-} \subset R_{-}(\gamma)$ such that $\left[\omega_{-}\right] \neq 0$ in $H_{1}\left(R_{-}(\gamma) ; \mathbb{Q}\right)$ and nonzero integers a, b such that $a \cdot i_{+}\left(\left[\omega_{+}\right]\right)=b \cdot i_{-}\left(\left[\omega_{-}\right]\right)$in $H_{1}(M ; \mathbb{Z})$. Choose a regular neighborhood $N\left(\omega_{+} \cup \omega_{-}\right)$of $\omega_{+} \cup \omega_{-}$in $R(\gamma)$. Then

$$
N=\gamma \cup N\left(\omega_{+} \cup \omega_{-}\right)
$$

is a subsurface of ∂M. Let x be the Thurston semi-norm on $H_{2}(M, N ; \mathbb{Z})$; see Definition 2.5. Since $H_{2}(M ; \mathbb{Z})=0$ the map

$$
\partial: H_{2}(M, N ; \mathbb{Z}) \rightarrow H_{1}(N ; \mathbb{Z})
$$

is injective. Thus there is a unique homology class $s \in H_{2}(M, N ; \mathbb{Z})$ such that $\partial s=a\left[\omega_{+}\right]-b\left[\omega_{-}\right]$. Moreover, let

$$
r=\left[R_{+}(\gamma)\right]=\left[R_{-}(\gamma)\right] \in H_{2}(M, N ; \mathbb{Z})
$$

then $\partial r=[s(\gamma)]$. We will need the following definition; see Scharlemann [17].

Definition 9.9 Suppose $\left(S_{1}, \partial S_{1}\right)$ and $\left(S_{2}, \partial S_{2}\right)$ are oriented surfaces in general position in $(M, \partial M)$. Then the double curve sum of S_{1} and S_{2} is obtained by doing oriented cut and paste along $S_{1} \cap S_{2}$ to get an oriented surface representing the cycle $S_{1}+S_{2}$. The result is an embedded oriented surface coinciding with $S_{1} \cup S_{2}$ outside a regular neighborhood of $S_{1} \cap S_{2}$.

The following claim is analogous to [9, Lemma 6.5].

Claim 9.10 For any integers $p, q \geq 0$ we have a strict inequality

$$
x(s+p r)+x(-s+q r)>(p+q) x(r)
$$

Proof Let the surfaces S_{1} and S_{2} be norm minimizing representatives of $s+p r$ and $-s+q r$, respectively. Since M is irreducible and $R(\gamma)$ is incompressible we can assume that S_{1} and S_{2} have no S^{2} or D^{2} components. Thus $\chi\left(S_{1}\right)=-x\left(S_{1}\right)$ and $\chi\left(S_{2}\right)=-x\left(S_{2}\right)$. Furthermore, we can suppose that S_{1} and S_{2} are transversal, $\left(S_{1} \cup S_{2}\right) \cap \gamma$ consists of $p+q$ parallel copies of $s(\gamma)$, and $S_{1} \cap R(\gamma)=S_{2} \cap R(\gamma)$ consists of a parallel copies of ω_{+}and b parallel copies of ω_{-}. Since M is irreducible and S_{1} and S_{2} are incompressible we can achieve that $\left(S_{1} \cup S_{2}\right) \backslash\left(S_{1} \cap S_{2}\right)$ has no disk components. Let P denote the double curve sum of S_{1} and S_{2}; see Definition 9.9. Then $[P]=(p+q) r$ and P has no S^{2} or D^{2} components. Moreover, for any double curve sum $\chi(P)=\chi\left(S_{1}\right)+\chi\left(S_{2}\right)$. Thus $x(P)=x\left(S_{1}\right)+x\left(S_{2}\right)$. Also note that $P \cap R(\gamma)=\varnothing$ and $P \cap \gamma$ consists of $p+q$ parallel copies of $s(\gamma)$.
Suppose that T is a torus component of P. Then $T=\bigcup_{j=1}^{2 m} A_{j}$, where $A_{2 i-1} \subset S_{1}$ and $A_{2 i} \subset S_{2}$ are annuli for $1 \leq i \leq m$. Let $A^{1}=\bigcup_{i=1}^{m} A_{2 i-1}$ and $A^{2}=\bigcup_{i=1}^{m} A_{2 i}$, and define $S_{1}^{\prime}=\left(S_{1} \backslash A^{1}\right) \cup\left(-A^{2}\right)$ and $S_{2}^{\prime}=\left(S_{2} \backslash A^{2}\right) \cup\left(-A^{1}\right)$. With a small isotopy we can achieve that $\left|S_{1}^{\prime} \cap S_{2}^{\prime}\right|<\left|S_{1} \cap S_{2}\right|$. For $i=1$, 2 we have $\partial S_{i}^{\prime}=\partial S_{i}$, and thus [$\left.S_{i}^{\prime}\right]=\left[S_{i}\right]$ in $H_{2}(M, N)$; moreover, $x\left(S_{i}^{\prime}\right)=x\left(S_{i}\right)$. Thus we can suppose that P has no torus components.

Due to the triangle inequality we only have to exclude the case

$$
x(s+p r)+x(-s+q r)=(p+q) x(r)
$$

Thus suppose that $x(P)=(p+q) x(r)$. We define a function $\varphi: M \backslash P \rightarrow \mathbb{Z}$ by setting $\varphi(z)$ to be the algebraic intersection number of P with a path connecting z and $R_{+}(\gamma)$. This is well defined because the image of $[P]=(p+q) r$ in $H_{2}(M, \partial M)$ is zero, and thus any closed curve in M intersects P algebraically zero times.

Let $J_{i}=\operatorname{cl}\left(\varphi^{-1}(i)\right)$ for $0 \leq i \leq p+q$ and let $P_{i}=J_{i-1} \cap J_{i}$ for $1 \leq i \leq p+q$. Then $P=\coprod_{i=1}^{p+q} P_{i}$ and $\bigcup_{k=0}^{i-1} J_{i}$ is a homology between $R_{+}(\gamma)$ and P_{i} in $H_{2}(M, N)$. Thus $\left[P_{i}\right]=\left[R_{+}(\gamma)\right]=r$ and $x\left(P_{i}\right) \geq x(r)$. Since

$$
\sum_{i=1}^{p+q} x\left(P_{i}\right)=x(P)=(p+q) x(r)
$$

we must have $x\left(P_{i}\right)=x(r)$ for $1 \leq i \leq p+q$. Each P_{i} is connected since it has no S^{2} and T^{2} components, and $H_{2}(M)=0$ implies that P_{i} can have no higher genus closed components, otherwise it would not be norm minimizing in r.

So each P_{i} is a horizontal surface in (M, γ), consequently it is parallel to $R_{+}(\gamma)$ or $R_{-}(\gamma)$. Thus for some $0 \leq k \leq p+q$ the surfaces P_{1}, \ldots, P_{k} are parallel to $R_{+}(\gamma)$ and P_{k+1}, \ldots, P_{p+q} are parallel to $R_{-}(\gamma)$. Let $P_{0}=R_{+}(\gamma)$ and $P_{p+q+1}=R_{-}(\gamma)$.

We can isotope S_{1} such that $S_{1} \cap \operatorname{int}\left(J_{i}\right)$ is a collection of vertical annuli for $0 \leq$ $i \leq p+q$. Thus $S_{1} \cap \operatorname{int}\left(J_{i}\right)=C_{i} \times(0,1)$, where C_{i} is a collection of circles in P_{i}. Let $\gamma_{k}=\gamma \cap J_{k}$. Observe that there is a homeomorphism $h:(M, \gamma) \rightarrow\left(J_{k}, \gamma_{k}\right)$ such that $\left[C_{k}\right]=a\left[h\left(\omega_{+}\right)\right]$in $H_{1}\left(P_{k}\right)$. Since $a\left[h\left(\omega_{+}\right)\right] \notin H_{1}(h(E \times\{1\}))$ there is a component C_{k}^{\prime} of C_{k} such that $\left[C_{k}^{\prime}\right] \notin H_{1}(h(E \times\{1\}))$. Thus the product annulus $C_{k}^{\prime} \times I$ cannot be homotoped into $h(E \times I)$, which contradicts the fact that $h(E \times I)$ is a characteristic product region of $\left(J_{k}, \gamma_{k}\right)$.

From [17, Theorem 2.5] we see that there are decomposing surfaces S_{1} and S_{2} in (M, γ) such that
(1) $\left[S_{1}\right]=s+p r$ and $\left[S_{2}\right]=-s+q r$ in $H_{2}(M, N)$ for some integers $p, q \geq 0$,
(2) if we decompose (M, γ) along S_{i} for $i=1$, 2 we get a taut sutured manifold $\left(M_{i}, \gamma_{i}\right)$,
(3) $v_{S_{i}}$ is nowhere parallel to v_{0} along ∂S_{i} for $i=1,2$,
(4) $\partial S_{1} \cap R(\gamma)$ consists of a parallel copies of ω_{+}and b parallel copies of $-\omega_{-}$,
(5) $\partial S_{2} \cap R(\gamma)=-\partial S_{1} \cap R(\gamma)$,
(6) $\partial S_{i} \cap \gamma$ consists of parallel copies of $s(\gamma)$ and $v_{S_{i}} \mid\left(\partial S_{i} \cap \gamma\right)$ points out of M for $i=1,2$.

From (2) and Theorem 1.4 we get that

$$
\mathbb{Z} \leq S F H\left(M_{i}, \gamma_{i}\right)
$$

for $i=1,2$. Since (M, γ) is strongly balanced and S satisfies (3) we can define $c\left(S_{1}, t\right)$ and $c\left(S_{2}, t\right)$ for some trivialization t of v_{0}^{\perp}; see Definition 3.8.

Using part (2) of Lemma 3.9 and (6) we get that $I\left(S_{1}\right)=0$ and $I\left(S_{2}\right)=0$. Moreover, $r\left(S_{1}, t\right)=p \chi\left(R_{+}(\gamma)\right)+K$ and $r\left(S_{2}, t\right)=q \chi\left(R_{+}(\gamma)\right)-K$, where K is the contribution of $\partial S_{1} \cap R(\gamma)$ to $r\left(S_{1}, t\right)$.

Since (M, γ) is taut $\chi\left(R_{+}(\gamma)\right)=-x(r)$. Thus

$$
c\left(S_{1}, t\right)=\chi\left(S_{1}\right)+p x(r)-K=-x(s+p r)+p x(r)-K
$$

and

$$
c\left(S_{2}, t\right)=\chi\left(S_{2}\right)+q x(r)+K=-x(-s+q r)+q x(r)+K
$$

From Claim 9.10 we get that

$$
c\left(S_{1}, t\right)+c\left(S_{2}, t\right)=(p+q) x(r)-(x(s+p r)+x(-s+q r))<0
$$

Let $\mathfrak{s}_{i} \in O_{S_{i}}$ for $i=1$, 2. Lemma 3.10 implies that $\left\langle c_{1}\left(\mathfrak{s}_{1}, t\right),\left[S_{1}\right]\right\rangle=c\left(S_{1}, t\right)$ and $\left\langle c_{1}\left(\mathfrak{s}_{2}, t\right),\left[S_{2}\right]\right\rangle=c\left(S_{2}, t\right)$. But $r=0$ in $H_{2}(M, \partial M)$, and thus $\left[S_{1}\right]=s=-\left[S_{2}\right]$ in $H_{2}(M, \partial M)$. So $\left\langle c_{1}\left(\mathfrak{s}_{2}, t\right),\left[S_{1}\right]\right\rangle=-c\left(S_{2}, t\right)$. Together with $c\left(S_{1}, t\right) \neq-c\left(S_{2}, t\right)$ this implies that $\mathfrak{s}_{1} \neq \mathfrak{s}_{2}$, and thus $O_{S_{1}} \cap O_{S_{2}}=\varnothing$. Using Theorem 1.3 we get that

$$
\mathbb{Z}^{2} \leq S F H\left(M_{1}, \gamma_{1}\right) \oplus S F H\left(M_{2}, \gamma_{2}\right) \leq S F H(M, \gamma)
$$

This concludes the proof of Theorem 9.7.
Theorem 9.11 Let K be a null-homologous knot in an oriented 3-manifold Y such that $Y \backslash K$ is irreducible and let S be a Seifert surface of K. If

$$
r k \widehat{H F K}(Y, K,[S], g(S))=1
$$

then K is fibred with fibre S.
Proof From Theorem 1.5

$$
S F H(Y(S)) \approx \widehat{H F K}(Y, K,[S], g(S))
$$

Consequently, $\operatorname{SFH}(Y(S)) \neq 0$ and thus $Y(S)$ is taut. So we can apply Theorem 9.7 to $Y(S)$ and conclude that $Y(S)$ is a product, since otherwise we had $\mathbb{Z}^{2} \leq S F H(Y(S))$. This implies that the knot K is fibred with fibre S.

Theorem 9.12 Let (M, γ) be a taut balanced sutured manifold that is a rational homology product. If $\operatorname{rk} \operatorname{SFH}(M, \gamma)<4$ then the depth of (M, γ) is at most two.

Proof Suppose that the depth of (M, γ) is ≥ 3. Note that decompositions along product disks and product annuli do not decrease the depth of a sutured manifold, and decompositions along disjoint unions of product annuli can decrease the depth by at most one. Thus applying the same procedure to (M, γ) as in the proof of Theorem 9.7 we get two depth ≥ 1 (ie, nonproduct) taut balanced sutured manifolds (M_{1}, γ_{1}) and (M_{2}, γ_{2}) such that

$$
S F H(M, \gamma) \geq S F H\left(M_{1}, \gamma_{1}\right) \oplus \operatorname{SFH}\left(M_{2}, \gamma_{2}\right) .
$$

Theorem 9.7 implies that $\operatorname{SFH}\left(M_{i}, \gamma_{i}\right) \geq \mathbb{Z}^{2}$ for $i=1,2$. Thus $\operatorname{SFH}(M, \gamma) \geq \mathbb{Z}^{4}$.
Proof of Theorem 1.8 Let S be a genus g Seifert surface of K. Then $(M, \gamma)=$ $Y(S)$ is a taut balanced sutured manifold with $\operatorname{SFH}(Y(S)) \approx \widehat{H F K}(Y, K, g)$ due to Theorem 1.5. The linking matrix V of S is a matrix of the map

$$
i_{+}: H_{1}\left(R_{+}(\gamma) ; \mathbb{Q}\right) \rightarrow H_{1}(M ; \mathbb{Q}),
$$

thus det $V= \pm a_{g} \neq 0$ and i_{+}is an isomorphism. From the long exact sequence of the pair $\left(M, R_{+}(\gamma)\right)$ we see that $H_{1}\left(M, R_{+}(\gamma) ; \mathbb{Q}\right)=0$. Similarly, $H_{1}\left(M, R_{-}(\gamma) ; \mathbb{Q}\right)$ is also zero, thus (M, γ) is a rational homology product. Using Theorem 9.12 we conclude that the depth of (M, γ) is ≤ 2. Now using [2] we get a depth ≤ 2 taut foliation on (M, γ) transverse to γ and leaves including $R_{ \pm}(\gamma)$.

Remark 9.13 If rk $\widehat{H F K}(Y, K, g)=3$ then using the fact that $\chi(\widehat{H F K}(Y, K, g))=$ a_{g} we see that the condition $a_{g} \neq 0$ is automatically satisfied.

Question 9.14 Let K be a knot in a rational homology 3-sphere Y and suppose that k is a positive integer. Does

$$
\operatorname{rk} \widehat{H F K}(Y, K, g(K))<2^{k}
$$

imply that $Y \backslash N(K)$ has a depth $<2(k-1)$ taut foliation transverse to $\partial N(K)$?

References

[1] D Cooper, D D Long, Virtually Haken Dehn-filling, J. Differential Geom. 52 (1999) 173-187 MR1743462
[2] D Gabai, Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983) 445-503 MR723813
[3] D Gabai, The Murasugi sum is a natural geometric operation, from: "Low-dimensional topology (San Francisco, CA, 1981)", Contemp. Math. 20, Amer. Math. Soc., Providence, RI (1983) 131-143 MR718138
[4] D Gabai, Foliations and the topology of 3-manifolds III, J. Differential Geom. 26 (1987) 479-536 MR910018
[5] D Gabai, Problems in foliations and laminations, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc., Providence, RI (1997) 1-33 MR1470750
[6] \mathbf{P} Ghiggini, Knot Floer homology detects genus-one fibred knots arXiv: math.GT/0603445
[7] A Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429-1457 MR2253454
[8] R Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006) 955-1097 MR2240908
[9] Y Ni, Knot Floer homology detects fibred knots arXiv:math.GT/0607156
[10] Y Ni, Sutured Heegaard diagrams for knots, Algebr. Geom. Topol. 6 (2006) 513-537 MR2220687
[11] P Ozsváth, Z Szabó, Holomorphic disks, link invariants, and the multi-variable Alexander polynomial arXiv:math.GT/0512286
[12] P Ozsváth, Z Szabó, Link Floer homology and the Thurston norm arXiv: math.GT/0601618
[13] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311-334 MR2023281
[14] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004) 1159-1245 MR2113020
[15] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed threemanifolds, Ann. of Math. (2) 159 (2004) 1027-1158 MR2113019
[16] S Sarkar, J Wang, An algorithm for computing some Heegaard Floer homologies arXiv:math.GT/0607777
[17] M Scharlemann, Sutured manifolds and generalized Thurston norms, J. Differential Geom. 29 (1989) 557-614 MR992331

Department of Mathematics, Princeton University
Princeton NJ 08544, USA
ajuhasz@math.princeton.edu

Proposed: Peter Ozsváth Received: 13 November 2006
Seconded: Ron Fintushel, Tom Mrowka Accepted: 24 November 2007

