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��������� 26 

Habitat connectivity is important for maintaining biodiversity and ecosystem processes, yet 27 

globally is highly restricted by anthropogenic actions. Anthropogenic barriers are common in 28 

aquatic ecosystems; however, the effects of small�scale barriers such as floodgates have received 29 

relatively little study. Here we assess fish communities in ten tributaries over the spring�summer 30 

season of the lower Fraser River (British Columbia, Canada), five with floodgates and five 31 

reference sites without barriers, located primarily in agricultural land use areas. While the Fraser 32 

River supports the largest salmon runs in Canada, the lower Fraser river�floodplain ecosystem 33 

has numerous dikes and floodgates to protect valuable agricultural and urban developments. 34 

Floodgate presence was associated with reduced dissolved oxygen concentrations, three�fold 35 

greater abundance of invasive fish species, and decreased abundances of five native fish species 36 

including two salmon species. These findings provide evidence that floodgates decrease suitable 37 

habitat for native fishes, and become hotspots for non�native species. Given climate change, sea�38 

level rise, and aging flood protection infrastructure, there is an opportunity to incorporate 39 

biodiversity considerations into further development or restoration of this infrastructure.  40 

 41 

����
����42 

Flood mitigation; salmon; invasive species; aquatic barriers; tide gates; sea�level rise 43 

 44 
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 Estuaries and coastal floodplains are ecologically important yet are some of the most threatened 50 

ecosystems on earth (Tockner and Stanford 2002). They provide key ecosystem services such as nursery 51 

habitat for fishes of cultural and economic importance (Beck et al. 2001). However, multiple human 52 

activities are rapidly changing these systems (Lotze et al. 2006). For example, seagrass meadows, an 53 

important nursery habitat for juvenile marine and estuarine fish, have been increasingly in decline since 54 

1990, reaching loss rates of 7% per year globally (Waycott et al. 2009). Conversion for aquaculture and 55 

agriculture has resulted in the loss of 25–50% of coastal tidal wetlands and is expected to continue, 56 

resulting in further loss of 20–45% of existing salt marsh habitat before the end of the century (Kirwan 57 

and Megonigal 2013). Coastal developments and ecosystems alike are predicted to be threatened by sea�58 

level rise and increasing flood and coastal storm frequency due to climate change (Church et al. 2013). 59 

Developed countries will likely offset flooding risk with engineered infrastructure such as dikes, which 60 

may have ecological consequences as they reduce connectivity between coastal rivers and their 61 

floodplains (Airoldi et al. 2005; Church et al. 2013).  62 

  Research on the ecological impacts of barriers in aquatic systems has primarily focused on dams 63 

in larger river systems (Januchowski�Hartley et al. 2013). Large dams are known to block the movements 64 

of materials and animals, dampen flow regimes, reduce river floodplain connectivity, extirpate upstream 65 

anadromous salmon, and reduce access to different habitats for feeding, spawning and refugia for fluvial 66 

migrants (Arthington et al. 2010; Gustafson et al. 2007; Schlosser and Angermeier 1995). Dams may also 67 

facilitate non�native species by providing novel (impounded) habitat (Johnson et al. 2008) or altering flow 68 

regimes that native fishes were previously adapted to (Fausch et al. 2001; Propst and Gido 2004). 69 

Although these effects of large dams are now recognized, there is arguably less understanding of the 70 

ecological effects of smaller�scale structures that also alter aquatic connectivity such as culverts (Favaro 71 

et al. 2014), weirs (Mueller et al. 2011), dikes (Hood 2004), and floodgates (Pollard and Hannan 1994; 72 

Boys et al. 2012; Wright et al. 2014).  These types of small barriers are common in aquatic systems yet 73 

little is known regarding their effects on fish passage, hydrological cycles, or habitat quality.   74 
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 Small�scale barriers in aquatic ecosystems such as floodgates (also called tide gates) are 75 

commonly installed to prevent flooding, yet their effects are largely unknown (Giannico and Souder 76 

2005). Floodgates are installed in low gradient coastal areas to allow tributaries to drain downstream 77 

through dikes while preventing backflows and flooding (Pollard and Hannan 1994). Floodgates consist of 78 

culverts with side� or top�mounted hinged gates on the downstream side, which require a hydraulic head 79 

difference from the upstream to downstream side to push open the gates and allow the passage of water 80 

and organisms; conversely the backpressure from rising water on the downstream side forces them closed 81 

(Thomson et al. 1999). Floodgates are a common flood control structure in coastal aquatic ecosystems 82 

globally, including North America (Raposa and Roman 2001), Europe (Wright et al. 2014), Australia 83 

(Pollard and Hannan 1994) and New Zealand (Doehring et al. 2011). Previous research has found 84 

floodgates to be associated with reduced overhanging vegetation (Pollard and Hannan 1994), greater 85 

nutrient concentrations, increased abundance of aquatic weeds (Kroon and Ansell 2006), and reduced 86 

dissolved oxygen concentrations (Gordon et al. 2015). In estuarine systems, floodgates can be associated 87 

with reduced abundance of commercially valuable species (Pollard and Hannan 1994), reduced fish 88 

passage (Doehring et al. 2011) including delayed downstream migration of salmonids (Wright et al. 89 

2014), reduced diversity of estuarine fish (Boys et al. 2012), and reduced abundance, biomass, and 90 

diversity of juvenile fish (Kroon and Ansell 2006). This body of previous research has focused on 91 

floodgates in estuarine areas where they open and close with daily tides. However the potential effect of 92 

floodgates on snowmelt river systems, where prolonged elevated floodwaters may close floodgates for 93 

several months at a time, have yet to be extensively studied. In these systems fish communities may 94 

experience greater impacts due to prolonged floodgate closure blocking passage and changing habitat 95 

characteristics, potentially resulting in similar effects to more permanent barriers such as dams. 96 

 In this study, we examined the effect of floodgates on fish communities in tidal tributaries of a 97 

large river system. The Fraser River (British Columbia, Canada), an enormous (220,000 km2) watershed 98 

that supports the largest salmon returns in Canada, is extensively diked in its lower reaches and floodgates 99 

are present on the majority of tidal tributary creeks. In this system, during the yearly spring freshet river 100 
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levels rise by several meters for up to several months before receding, likely preventing floodgates from 101 

opening (Thomson et al. 1999). We used a comparative approach��we sampled the seasonal dynamics of 102 

tidal creeks with and without the presence of floodgates to determine if fish communities upstream of 103 

floodgates are different from reference creeks without in�stream barriers. We hypothesized that floodgates 104 

would be associated with effects similar to other anthropogenic aquatic barriers, and that floodgates 105 

would be the key driver of these effects, relative to other differences in environmental variables and land 106 

use patterns. We predicted that similar to permanent barriers such as dams, floodgates would be 107 

associated with decreases in habitat quality and abundance of anadromous and resident native fish 108 

species, and increased prevalence of non�native fish species. 109 

 110 

���	
���111 

�����������	�112 

 The lower Fraser River delta in British Columbia is an example of a highly settled coastal 113 

floodplain where dikes and their floodgates are a prevalent feature of the landscape. The lower Fraser 114 

region contains approximately 1 million people and $13 billion in infrastructure development, much of it 115 

on the floodplain of the lower Fraser watershed (Fraser Basin Council 2010). The Fraser River is tidal for 116 

115 km upstream of the mouth, and historically the Fraser River delta was an intricate floodplain of 117 

tidally influenced freshwater and estuarine creeks (Levings et al. 1995). However, since the early 20th 118 

century approximately 70% of the floodplain has become isolated by dikes (Healey and Richardson 1996) 119 

and floodgates are a common feature, with an estimated 500 installed to control flows (Thomson et al. 120 

1999). The lower Fraser River is home to 42 fish species, including at least six introduced species 121 

(Richardson et al. 2000). The Fraser River contains one of the world's largest populations of Pacific 122 

salmon (
���������� spp.), which move through the estuary during their out�migration (Levy and 123 

Northcote 1982; Levings et al. 1995). In the lower Fraser, tidal freshwater tributaries provide critical 124 

rearing and overwintering habitats for juvenile salmon including Chinook (
�������������), coho (
��125 
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�������), and chum salmon (
������) (Levings et al. 1995). Previous work has indicated that the use of 126 

these nursery habitats is important to the survival of juvenile Chinook salmon migrating seawards from 127 

throughout the system (Murray and Rosenau 1989). Floodgates in systems such as this likely remain 128 

closed for extended periods of time in the lower Fraser during the spring freshet, low flow periods, and 129 

high tide cycles, yet the effects on fish communities are poorly understood (Thomson et al. 1999).  130 

������������131 

We chose 10 tidal creeks as study sites. These sites were selected from a larger pool of potential 132 

sites initially identified from the Lower Fraser Valley Streams Strategic Review (Fraser River Action Plan 133 

1999) and Government of British Columbia Ministry of Forests Lands and Natural Resource Operations 134 

Lower Mainland Dike Inventory Maps (BC MFLNRO 2011). Sites were chosen from this set based on 135 

presence in tidal floodplain areas, and similarity in watershed size, gradient, and land use (Table 1). We 136 

then conducted preliminary site evaluations to determine accessibility and feasibility of sampling before 137 

the final group of sites was selected. Reference sites were geographically close to floodgate sites and in 138 

similar tidal, low gradient areas. Reference sites differed from floodgate sites in that flood protection was 139 

in the form of dikes running along the banks of the tributaries lower reaches subject to backflooding, 140 

removing the need for floodgates at the confluence with the mainstem. All sites were located in areas that 141 

experience mixed semidiurnal daily tidal fluctuations with distances from the ocean ranging from 44 to 57 142 

km. Sites were generally located in agricultural and urban areas and have all been modified in the past 143 

through channelizing, diking and straightening. Floodgate sites were also chosen based on having 144 

associated pumping stations, the presence of which is typically related to a threshold in watershed 145 

drainage area. We note that pumps only operate when floodgates are closed; therefore although the local 146 

increase in turbulent flow may serve to attract fishes, it occurs when the gates are acting as physical 147 

barriers to fish passage.  148 

We studied ten sites located throughout the lower Fraser River floodplain (Figure 1). Five of our 149 

sites were upstream of floodgate barriers and associated pumping stations and five of the sites were 150 

references, with no in�stream flood control structures. The barrier sites included McLean Creek and 151 
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Fenton Slough that drain directly to the Pitt River, Cranberry Slough that drains directly to the Alouette 152 

River, and Yorkson Creek and Nathan Slough that drain directly to the Fraser River. The pump station at 153 

Yorkson Creek contained “fish friendly” Archimedes screw pumps which are thought to impart a lower 154 

rate of mortality on out�migrating fish. Cranberry Slough had a single flap gate, however, following our 155 

study it was determined to operate solely as a pumping station with the gate functioning only as an 156 

outflow, thereby consistently preventing upstream migration. This diversity of floodgate permeability 157 

(ranging from seasonal to near complete barriers to upstream movement) prevents us from directly 158 

analyzing the mechanism by which the floodgates affected fish, however we retain this site in our analysis 159 

to focus on the difference in fish communities between sites with and without barriers; therefore, we will 160 

refer to all barrier sites as floodgate sites. Reference sites included De Boville Slough and Smokwha 161 

Marsh that drain directly to the Pitt River, McKenny Creek that drains directly to the Alouette River, and 162 

West Creek and Nathan Creek that drain directly to the Fraser River (Table 1).  163 

��	�������������164 

 We sampled each of the ten sites once per month from April through August during the summer 165 

of 2013. We conducted sampling in ten consecutive days each month, except April in which Smokwha 166 

Marsh was sampled three days after completion of the other sites. Sampling generally alternated daily 167 

between reference and floodgate sites to reduce the potential effect of within�month variation. Sampling 168 

spanned from April 11th to 23rd, May 7th to 16th, June 10th to 19th, July 9th to 18th and August 14th to 169 

23rd. Water levels at floodgate sites were consistent between different sampling occasions, presumably 170 

because of the pump operations and floodgates that buffered tidal and seasonal variation. At reference 171 

sites water levels significantly rose following the start of the spring freshet fluctuating by several meters 172 

between lows in April and August and a peak in late May. Water levels at reference sites also fluctuated 173 

daily with tides; therefore, we generally conducted sampling at midday when the tide height was low to 174 

mid and depths were around 1m, which maximized accessibility and increased sampling effectiveness. At 175 
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floodgate sites water depths were generally around 1m and were typically controlled by pump operations 176 

and therefore are kept consistent. 177 

 We captured fish on each sampling occasion by seine hauls using a 15.2 m by 2.4 m net with 0.32 178 

cm mesh size. We conducted three seine hauls at each sampling event. Seining started approximately 50m 179 

upstream of the floodgates or confluence at reference sites, and repeated hauls were conducted 180 

approximately 50m upstream of the previous haul. Thus fish sampling was restricted to the first 150m 181 

upstream of the floodgate or confluence at reference sites. For each haul, two crew members would fully 182 

extending the net by having one crew member hold the net while the other walked downstream typically 183 

2m from the bank before circling towards the bank and pulling the net into a purse, seining an area of 184 

approximately 15.4 m by 2 m. Sampling locations had extremely low gradients and due to the position 185 

near the confluence of our sampling sites there was typically little to no water velocity and the substrate 186 

was typically sand or mud. Consecutive seine hauls were typically conducted immediately following 187 

completion of identification of fish from previous hauls and were separated by habitat type if habitats 188 

were not homogenous. After identification, fish were temporarily held in aerated buckets to prevent re�189 

capture in consecutive hauls. We also set minnow traps with 0.32 cm mesh size and baited with 20.0 ± 2.0 190 

g cured salmon eggs, approximately 25 m apart, overnight for periods averaging 18 hours on each of our 191 

sampling occasions. We identified and measured fish caught in traps prior to commencement of seine 192 

hauls and fish were typically held until seining was completed if seine hauls were conducted in the same 193 

area as traps. All fish were released following identification. The Simon Fraser University Animal Care 194 

Committee approved sampling techniques and permits were obtained from federal and provincial 195 

agencies. To determine if water quality was similar between reference and floodgate sites water chemistry 196 

measurements of salinity, temperature, dissolved oxygen concentration, and conductivity were obtained 197 

using a YSI metre (model 556 MPS, YSI Incorporated 2009). We took water chemistry measurements 198 

just below the water surface within thirty minutes of noon, upstream (~50m) of floodgates or the 199 

confluence at reference sites.  200 

����������������������������201 
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 To ensure that observed differences were related directly to floodgate presence relative to other 202 

anthropogenic stressors we determined the area of our watersheds and analyzed the proportion of different 203 

types of land use to determine if they differed between floodgate and reference sites. We used the 204 

watershed tools in ArcGIS using a 25 m resolution digital elevation model, land use spatial layers, and 205 

stream and river locations in British Columbia. As our sites are located in extremely low gradient areas, 206 

the software had difficulty determining the correct dimensions for some of our sites. Therefore, we used a 207 

dataset outlining streams and rivers in B.C. created by the Ministry of Environment in 2005, along with 208 

Google Earth (Version 7.1.2.2041, Google Inc., Mountain View CA, USA) images and our knowledge of 209 

the watersheds, to draw polygons outlining our watersheds based on those initially delineated by ArcGIS, 210 

and then calculated total area. To determine land uses, we obtained a land use dataset created by 211 

MetroVancouver in 2006 with 25 m resolution at a 1:20,000 scale that indicated the dominant land use for 212 

each parcel. We then grouped watershed use into: 1) agriculture, 2) urban, which represented all forms of 213 

residential land use along with commercial and institutional, 3) other human use, which represented 214 

industrial, transportation, recreation and parks, and 4) undeveloped or protected areas. Our land use data 215 

set did not cover all of the watershed areas for Nathan Creek and Nathan Slough with data coverage for 216 

44 and 34 percent of each watershed respectively. Based on visual inspection of Google Earth images of 217 

the remaining portions of each watershed the land use appeared similar therefore we used the available 218 

data as a proxy for land use for those two watersheds. Spatial analyses were conducted using ArcGIS 219 

version 10.2 (ESRI 2014).       220 

���������������������221 

� We analyzed fish data at the community and species levels. For both sets of analyses, we summed 222 

our catch data from our traps and seine hauls for each sampling occasion at each site, as they represented 223 

an equal sampling effort for each sampling date. Our aggregated catch data thus represents a metric of the 224 

fish community at each site. We used non�metric multidimensional scaling (NMDS) (Prentice 1977) to 225 

explore the relationship between floodgate presence and community composition at our sites. NMDS 226 

analysis was used to visualize community dissimilarity across sites and across time and to visualize which 227 
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species were influencing community composition. Species abundances were fourth root transformed to 228 

satisfy normality for multivariate analysis. Unidentified juvenile minnows were grouped with peamouth 229 

chub and northern pikeminnow under the category minnow. We also combined fish identified as 230 

pumpkinseed and black crappie with our un�identified juvenile sunfish under the category sunfish. A 231 

Bray�Curtis dissimilarity matrix was generated based on the species composition for each site and 232 

sampling occasion. For our NMDS we used two dimensions (k=2) and our stress score was 0.174. We ran 233 

a permutational multivariate analysis of variance test (PERMANOVA; Anderson 2001) to test the 234 

significance of floodgate presence and date on our community composition. Our model included 235 

floodgate presence, date and an interaction term between floodgate presence and date. These analyses 236 

were done in the program R (version 3.1.1; R Development Core Team 2014), using the vegan package 237 

(Oksanen et al. 2013). 238 

 We examined the relationship between floodgate presence and abundance for each species with 239 

adequate data using generalized additive models (GAM). GAMs function as an extension of generalised 240 

linear models that can incorporate a non�linear smoothing function for an independent variable such as 241 

time (Hastie and Tibshirani 1987). We used GAMs to test the effect of floodgate presence on our 242 

abundance data for each species while accounting for time with a smoothing function. GAMs allowed us 243 

to use multiple measurements through time nested within site, with dates numbered consecutively 244 

beginning from the first day of sampling. This smoothing function removes the effect of time allowing us 245 

to focus solely on the effect of floodgate presence and accurately compare coefficients between species. 246 

For non�salmon species, we ran our GAM with a negative binomial error distribution as it gave us the 247 

best fit based on diagnostics. We normalized our data by dividing our abundances for each sampling 248 

occasion by the total standard deviation for each species prior to analysis. This then compares abundances 249 

in terms of the number of standard deviations to allow direct comparison between species. We excluded 250 

species caught at very low abundances (n ≤ 10) and frequency, including rainbow trout (
�����������251 

	�����), redside shiner (����������������������) and largescale sucker (�����	���	����������), as 252 

sample sizes for these species did not meet conditions of normality. Again, we combined fish identified as 253 
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pumpkinseed and black crappie with our un�identified juvenile sunfish for analysis. As our salmon data 254 

were highly skewed, particularly for Chinook and chum, to satisfy normality we used a log10 (x+1) 255 

transformation prior to analysis, divided by the standard deviation to allow comparison, then ran our 256 

GAM using a quasipoisson error distribution. As Chinook and chum salmon were only captured in the 257 

first two and three sampling periods respectively we only used those data for our GAM’s. GAM’s were 258 

run using the mgcv package in R (Wood 2001; R Development Core Team 2013). We used an alpha level 259 

of 0.05 to determine statistically significant results.  260 

 261 

������� 262 

 Reference and floodgate sites were similar in watershed area and dominant land uses (Table 1). 263 

Study watersheds were typically small, floodgate watersheds averaged 7.00 km2, ranging from Fenton 264 

Slough at 3.33 km2 to Yorkson Creek at 17.12 km2, whereas, reference watersheds averaged 8.92 km2 and 265 

ranged from Smokwha Marsh at 4.74 km2 to West Creek at 15.29 km2. Land use was predominantly 266 

agriculture and urban in four of five reference sites and four of five floodgate sites. The exceptions were 267 

the floodgate site McLean Creek, which runs through an agricultural area in its lower reaches, but the 268 

majority (55%) of the watershed is a protected forested area, and the reference site Smokwha Marsh, 269 

which is mostly situated in what is now a protected area but was historically used for agriculture and as 270 

such is channelized, diked and does not experience a natural hydrological cycle (Table 1). As these sites 271 

are highly modified by human activity they are arguably similar to our other sites. Floodgate and 272 

reference sites were also similarly distributed through the region (Figure 1).     273 

Variation in measured water quality parameters was associated both with sampling date and 274 

floodgate presence. Temperatures increased throughout the summer at all sites with no trends related to 275 

floodgate presence. Salinity and conductivity were measured at nearly negligible concentrations at both 276 

floodgate and reference sites throughout the study period, therefore these parameters will not be further 277 

discussed (Table A1). More notably, floodgates were associated with decreased dissolved oxygen levels 278 

(Figure 2). Dissolved oxygen concentrations were initially similar among all sites; however, by later 279 
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sampling periods concentrations decreased in floodgate sites compared to reference sites. During our 280 

August sampling period, dissolved oxygen concentrations at all floodgate sites fell to levels below BC 281 

Ministry of Environment safe minimum standards (5 mg/l) for the protection of aquatic life (GBCME 282 

1997) (Figure 2). A concurrent study by our research group found that floodgates were associated with 283 

significant lower levels of dissolved oxygen that extended at least 100 m upstream of the floodgates 284 

(Gordon et al. 2015).  285 

 We captured a total of 30,759 fish of 21 different species throughout our sampling. We captured 286 

674 juvenile salmon of five different species, 29,051 fish from 10 different non�salmon native species 287 

(hereafter referred to as ‘other native species’), and 734 fish of six different non�native species (Table 288 

A2). The majority of juvenile salmon species captured were chum, Chinook, and coho respectively, while 289 

a few pink (
����������) and sockeye (
�������) were also captured at one site. Native three�spine 290 

stickleback ( ��������������������) dominated catches, with 27,791 individuals captured. Other native 291 

species captured in abundance included the northern pikeminnow (!���������������������), prickly 292 

sculpin (�����������), and peamouth chub (�������������������). Non�native species captured included 293 

pumpkinseed (���	����������), largemouth bass (��������������	����), common carp (���������294 

�����), brown bullhead (�	���������������), black crappie (!	"�������	��������) and weather 295 

loach (�������������������������).  296 

 Community�level analyses indicated fish community composition to be significantly different 297 

between floodgate and reference sites. Fish communities differed significantly based on floodgate 298 

presence (F = 12.46; ! = 0.001), date (F= 11.58; ! = 0.001), and an interaction between floodgate 299 

presence and date (F= 2.09; ! = 0.015; Figure 3). Visualization of fish communities with NMDS 300 

indicated that the community composition was primarily dominated by stickleback at all sites. However 301 

through the summer we saw reference sites shift from communities with salmon to communities with 302 

higher abundance of minnow (Cyprinidae) and prickly sculpin, while floodgate sites showed higher 303 

abundances of sunfish (Centrarchidae) and brown bullhead. 304 
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 Juvenile salmon abundances were consistently lower at sites where floodgates were present 305 

relative to reference sites. Juvenile salmon were captured at all five reference sites but at only two 306 

floodgate sites. Total juvenile salmon abundance was 2.5 times greater in reference sites relative to 307 

floodgate sites. Total abundance was also on average consistently greater for each sampling period and 308 

for each juvenile salmon species (Figure 4). Total abundance was 11.7 times greater for coho, 1.5 times 309 

greater for chum and 2.2 times greater for Chinook salmon, in reference sites relative to floodgate sites. 310 

There was also a strong seasonal trend in abundance as would be expected for outmigrating fish with the 311 

majority of individuals captured in April and May (Figure 4). These differences in total abundance in 312 

floodgate sites relative to reference sites were statistically significant for coho (GAM: β = �1.700, SE = 313 

0.381, t = �4.466, ! = 0.0001), and chum (β = �1.319, SE = 0.492, t = �2.683, ! = 0.013) but not for 314 

Chinook salmon (β = �0.808, SE = 0.444, t = �1.819, ! = 0.087) (Figure 5).  315 

 Floodgates were also associated with the decreased abundance of the majority of other native 316 

species. Three�spine stickleback, which comprised 95.6% of our catch of other native fish species, were 317 

similar in abundance between floodgate and reference sites throughout the summer (Figure 4). Prickly 318 

sculpin and native minnow (����������) species were 37.2 and 11.7 times more abundant respectively at 319 

reference sites relative to floodgate sites throughout our sampling periods (Figure 4). Using GAMs, we 320 

found these differences to be statistically significant for prickly sculpin (GAM: β = –3.607, SE = 0.796, t 321 

= –2.62, ! = 0.0001), northern pikeminnow (GAM: β = –2.094, SE = 0.592, t = –3.540, ! = 0.001), and 322 

peamouth chub (GAM: β = –1.350, SE = 0.395, t = –3.423, ! = 0.0015) (Figure 5).   323 

Floodgates were positively associated with the majority of non�native fish species. In total, non�324 

native species were 3.1 times more abundant at floodgate sites relative to reference sites. Sunfish were 4.3 325 

times more abundant at floodgate sites (Figure 4), which was statistically significant (GAM: β = 1.477, 326 

SE = 0.577, t = 2.560, ! = 0.0137; Figure 5). We found a similar statistically significant positive effect of 327 

floodgate presence on brown bullhead (GAM: β = 2.733, SE = 0.969, t = 2.819, ! = 0.007; Figure 5) and 328 

common carp abundance (GAM: β = 2.037, SE = 0.843, t = 2.417, ! = 0.020; Figure 5). Largemouth bass 329 
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were the only non�native species that were not statistically higher in floodgate sites (GAM: β = –0.276, 330 

SE = 0.537, t = –0.515, ! = 0.61; Figure 5) of those with suitable numbers for statistical analysis.  331 

 332 

��������
��333 

Our results demonstrate that floodgates are associated with significant differences in fish 334 

communities in the tidal creeks we studied. We found floodgate presence to be associated with decreased 335 

abundance of salmon and other native fish species, greater abundance of non�native fishes and depressed 336 

dissolved oxygen concentrations. Given that all of our sites were similar and are in areas impacted by 337 

human land uses, our results provide evidence that floodgate presence is a driver of fish community 338 

change. Furthermore, the differences in fish communities we found are supported by previous findings 339 

from Australia which found reductions in eight commercially valuable species when comparing sites with 340 

floodgates to un�gated references channels (Kroon and Ansell 2006).  While large dams are known to 341 

profoundly impact freshwater aquatic systems, our results demonstrate that small�scale barriers have 342 

similar affects, impairing native fish while facilitating non�native fishes. As floodgates are ubiquitous in 343 

many coastal aquatic systems, such as the lower Fraser River, the collective impact of these small 344 

structures may be an important yet relatively unconsidered driver of undesirable change.  345 

Although floodgates were not associated with differences in temperature or conductivity they 346 

were strongly associated with decreased dissolved oxygen concentrations, a key attribute of habitat 347 

quality commonly affected by anthropogenic stressors. Dissolved oxygen concentrations were lower in 348 

floodgate sites than reference sites, particularly in August when they fell below the local British Columbia 349 

Provincial Criteria for the Protection of Aquatic Life of 5 mg/L, while reference sites remained near 350 

saturation levels. Similarly Santucci et al. (2005) studied a river fragmented by low head dams and found 351 

that in impounded reaches dissolved oxygen concentrations regularly fell below local protection criteria, 352 

while in free flowing reaches they remained at safe levels. Concurrently, we also investigated the spatial 353 

extent of floodgate�related hypoxia in our study system and found that oxygen concentrations at dawn and 354 
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dusk, in surface and bottom waters, were below safe minimum levels and that this extended at least 100m 355 

upstream of floodgates, yet conditions remained safe downstream of floodgates (Gordon et al. 2015). 356 

Thus floodgates may result in upstream “dead zones”, creating areas that are no longer suitable habitat for 357 

oxygen�sensitive fishes (Gordon et al. 2015) and potentially leading to hypoxic fish kills (Breitburg 358 

2002).  While it is unclear how far upstream these effects occur they potentially represent a chemical 359 

barrier (Whitmore et al. 1960), potentially altering fish passage to upstream areas which may not be 360 

affected. While there is widespread appreciation for large�scale hypoxia in coastal oceans, there is less 361 

appreciation for the potential cumulative impacts of small�scale hypoxia (Pressey and Middleton 1982; 362 

Gordon et al. 2015). Floodgate�related hypoxia is an important implication of tidal restriction for 363 

managers to consider in developed coastal floodplains. 364 

 Similar to the effects of other aquatic barriers, floodgates were found to be associated with 365 

decreased abundance of juvenile salmon. Large barriers are known to extirpate salmon (Sheer and Steele 366 

2006), and our results demonstrate that small scale barriers, which are much more abundant, also can 367 

exclude salmon. Floodgates could negatively affect salmon by preventing adults from reaching spawning 368 

grounds, preventing or delaying the re�distribution of juveniles (Wright et al. 2014), or by reducing water 369 

quality thereby making areas uninhabitable. Floodgates are closed during much of spring freshet as high 370 

mainstem water levels prevent upstream flows from opening gates, potentially preventing the passage of 371 

juveniles. In late summer and fall low flows may not sufficiently open gates, particularly heavy top 372 

mounted cast iron gates or those improperly designed, preventing the upstream passage of adults. 373 

Tributary habitats like the ones we studied are also known to be important for winter growth and survival 374 

of juvenile coho, which have been shown to be impacted by diking (Beechie et al. 1994) and other small 375 

barriers such as culverts (Davis and Davis 2011). Chum salmon typically spend less time in freshwater 376 

before migrating towards the ocean, therefore reduced abundance of juveniles is likely related to 377 

differences in spawner abundance or distribution. We documented juvenile Chinook salmon presence in 378 

two of our floodgate sites and as Chinook do not spawn in our study areas, their presence suggests 379 

successful upstream passage of juveniles through floodgates at these sites. Conversely, the absence of 380 
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juvenile Chinook salmon at three of our floodgate sites may indicate that floodgates impede Chinook 381 

salmon access to some gated tidal creeks. Given that there are approximately 500 floodgates in the lower 382 

Fraser area (Thomson et al. 1999), these structures may have large cumulative effects. Considering 383 

floodgates are highly concentrated specifically in the lower Fraser they may have contributed to 384 

diminishing the nursery capacity for juvenile Fraser salmon.   385 

 Floodgate presence appeared to have no effect on three�spine stickleback abundance; however 386 

floodgates were was associated with reduced abundance of three other common native fish species in our 387 

system. Stickleback exist in freshwater resident and anadromous forms in our system, therefore decreases 388 

in abundance of anadromous forms may be compensated by increases in the resident population, which 389 

are known to be adaptable to a broad range of habitats (Nosil and Reimchen 2005). Conversely, floodgate 390 

presence was associated with dramatic decreases in prickly sculpin, which are typically present in coastal 391 

streams of the Pacific Northwest but are limited by small barriers including culverts (Favaro et al. 2014) 392 

and fish ladders that are passable by salmon and trout (LeMoine and Bodensteiner 2014). Prickly sculpin 393 

adults spawn in rivers and streams, and larvae drift downstream to a lake, estuary, or other lentic habitat 394 

to rear before moving back up as 1+ year old fish (Krejsa 1967); floodgates may prevent this upstream 395 

migration.  396 

Floodgate presence was also associated with decreased abundance of northern pikeminnow and 397 

peamouth chub, the primary native minnow (��������) species we studied. While there is little 398 

information regarding the effects of barriers on northern pikeminnow and peamouth chub, Winston 399 

(1991) described the upstream extirpation of four minnow species related to construction of a mainstem 400 

dam and Porto (1999) found reduced abundances of seven species of stream fishes upstream of low�head 401 

dams relative to reference sites. Our results further demonstrate that small�scale barriers can also 402 

influence native stream fish communities. How floodgates affect the species we studied may be related to 403 

reproductive strategy, for example, Platania and Altenbach (1998) found that interactions between dam�404 

related flow modifications and downstream transport of eggs and larvae led to declines in seven minnow 405 

species they studied. Northern pikeminnow spawn in mainstem and tributary habitats in the Columbia 406 
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River system, and juveniles are known rear in shallow low velocity areas (Gadomski et al. 2001). In our 407 

system, floodgates may prevent local migrations and interfere with access to different habitats across life 408 

stages, resulting in effects similar to other types of barriers such as dams. 409 

 We found floodgate sites to be a hot�spot for non�native fish species including pumpkinseed, 410 

brown bullhead and common carp, all of which are considered to be invasive. Interestingly although these 411 

species have very different life history traits they were all similarly in greater abundance at floodgate 412 

sites, possibly benefitting from decreased competition with native species. Our results are consistent with 413 

a recently growing body of literature associating invasive species’ abundance with river impoundments 414 

(Johnson et al 2008; Clavero et al. 2014). When river levels are high floodgates remain closed, creating 415 

small impoundments which can remain stagnant for days or weeks until pumps are activated or river 416 

levels fall. Chu et al. (2015) found increased numbers of low head dams to be associated with increased 417 

non�native abundances, and our data demonstrate similar patterns. Pumpkinseed, the most common 418 

invader in our study sites, are found in high abundances downstream of dams, indicating they may gain an 419 

advantage in highly altered flow regimes (Clavero et al. 2014). Common carp, which are part of the 420 

minnow family, appear to be positively associated with floodgate presence despite the negative 421 

association with native minnow species. Further research into the mechanisms by which small barriers 422 

differentially affect fish species would help to illuminate why invasive species appear to be benefitting. 423 

While these invasive species were introduced to the lower Fraser River long ago (Dextrase and Mandrak 424 

2006), floodgates may support source populations of these invasive species, facilitating their spread into 425 

nearby areas, enabled by dispersal through the periodic barriers that floodgates represent.  426 

While our results demonstrate that floodgates are associated with altered fish communities, we 427 

acknowledge that other differences between our sites may have contributed to these effects and that the 428 

spatial extents of these effects are unclear. Floodgate presence is likely non�random and associated with 429 

local history, topography, land use and the comparative cost of choosing to build dikes along the lowest 430 

reaches. Furthermore, our reference sites were similar in size and gradient to the floodgate sites, the main 431 

difference being they were typically isolated from their floodplain by parallel dikes. Another challenge is 432 
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that floodgate sites unavoidably differ in the number and construction of flap gates, as well as the height 433 

at which they are installed, inevitably leading to differences in the timing, duration and magnitude of flap 434 

gate opening versus closure. Although we observed dramatic differences in fish communities in the areas 435 

directly upstream of the floodgates we studied the spatial extent of these effects remains unclear; ongoing 436 

research will examine fish communities further upstream and downstream of floodgates to provide further 437 

understanding of the cumulative effects of these barriers. Overall, while differences between individual 438 

sites may result in some variability, we saw a similar pattern across the floodgate sites we studied, 439 

indicating our results generally represent the effect of floodgates on lower Fraser tributaries. 440 

 Although our study design prevented isolation of the precise mechanisms by which floodgates are 441 

affecting fish communities, probable mechanisms include changes in hydrologic connectivity and habitat 442 

quality. Floodgates may directly prevent passage, reducing access to habitats important for survival, 443 

growth, or reproduction for both native and non�native species. In snowmelt�driven systems such as the 444 

Fraser River, high mainstem levels during spring freshet may prevent gates from opening for long periods 445 

(Thomson et al. 1999). Floodgates have been shown to delay migration of salmonids (Wright et al. 2014), 446 

and floodgate opening during low tide cycles depends on upstream hydraulic head differential, which may 447 

create high velocity barriers for less mobile species such as sculpin. Floodgates may also impact fish 448 

communities indirectly, by altering habitat through impounding water (Johnston et al. 2005) leading to 449 

oxygen depletion (Gordon et al. 2015). Hypoxia alters habitat quality for fishes and can drive fish kills 450 

(Richardson 1981). Reduced oxygen concentrations have also been shown to result in avoidance 451 

behaviour in juvenile salmon and other fish species (Whitmore et al. 1960), and therefore may act as a 452 

chemical barrier to fish passage. Respiration rates necessary to deplete oxygen concentrations are likely 453 

influenced by high nutrient concentrations from agricultural runoff, as fertilizer and manure applications 454 

in our study areas typically exceed soil needs (Hall and Schreier 1996). Non�native species may benefit 455 

from reduced competition due to reduced abundance of native species in floodgate sites, or from highly 456 

disturbed hydrology and habitat alteration (Moyle and Light 1996). Although, we did not determine the 457 
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mechanisms by which floodgates impacted the fish species we studied, it seems likely they affect 458 

different species in different ways related to individual species traits (Poff 1997). �459 

Our results demonstrate that the effects of small�scale flood control barriers such as floodgates, 460 

combined with their ubiquity in coastal river systems around the world, may be an important yet 461 

relatively unconsidered contributor to cumulative habitat alteration for native fishes. Our data indicate 462 

that flood control trades off against local abundance of salmon, and is associated with shifts in freshwater 463 

fish community structure in favour of non�native species. Flood risk is predicted to increase as a result of 464 

climate change and sea�level rise (Arnell and Gosling 2014), which will undoubtedly lead to an increase 465 

in the use of flood protection structures in coastal aquatic systems worldwide. Sea�level rise will also 466 

impact the function of existing structures, requiring their modification or replacement to continue to 467 

protect against flooding (Walsh and Miskewtiz 2013). This need to invest in infrastructure represents an 468 

opportunity to design future flood control structures that are friendlier to native fish. As restoring 469 

connectivity between otherwise quality habitats is the most cost effective means for watershed restoration 470 

(Roni et al. 2002), floodgates may represent an efficient opportunity to restore coastal habitats for 471 

anadromous and resident species. Just as dam operations are modified to mimic natural flow regimes 472 

(Olden and Naiman 2010), resulting in relative increases in native fishes and decreases in non�natives 473 

(Propst and Gido 2004), a similar approach could guide the management and re�engineering of small�474 

scale barriers in coastal systems.  475 

 476 
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*Following our sampling it was determined that the structure at Cranberry Slough functions solely as a 668 

pumping station.  669 
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(������)�*��
���673 

(��'� . Map of study area and region. Location of reference and floodgate sites is denoted by white and 674 

black circles respectively, within the lower Fraser River watershed, which is outlined in grey. Inset 675 

displays location of Fraser River watershed in western North America. �676 

(��'��. Monthly measurements of dissolved oxygen concentrations taken at each site on each sampling 677 

occasion. Each point represents a different site, dotted line connects the means for floodgates and 678 

reference sites. Grey and black colouring indicates reference and floodgate sites respectively. 679 

Measurements were taken just below the surface at noon or within thirty minutes, just upstream of 680 

floodgates or the confluence in reference sites. The horizontal dotted line at 5mg/L represents the 681 

instantaneous minimum dissolved oxygen concentration outlined by the Government of British 682 

Columbia’s recommended criterion for the protection of aquatic life. �683 

(��'�$. Non�metric multidimensional scaling plot using data for all fish species captured throughout our 684 

sampling. Unidentified juvenile minnows are grouped with peamouth chub and northern pikeminnow 685 

under the category minnow. Unidentified juvenile sunfish are grouped with pumpkinseed and black 686 

crappie under the category sunfish. Each point represents one sampling occasion for one site, grey and 687 

black colouring indicates reference and floodgate sites respectively, and size of points scales from 688 

beginning to end of sampling period going from smallest to largest. Position of points is relative to Bray�689 

Curtis dissimilarity matrix generated from our catch data, position of species names represent weighted 690 

average scores of species for ordination configuration. The stress score indicates the degree to which the 691 

ordination explains the dissimilarity matrix in two dimensions.  692 

(��'�!. Abundances of specific fishes through time in floodgate (FG) and reference (Ref) sites. 693 

Abundance data after log10 (x + 1) transformation of a) juvenile Chinook salmon, b) juvenile chum 694 

salmon, c) juvenile coho salmon, d) three�spine stickleback, e) prickly sculpin, and f) all minnow species 695 

(northern pikeminnow, peamouth chub, redside shiner and un�identified juvenile minnows combined), g) 696 

all sunfish (pumpkinseed, black crappie and un�identified juvenile sunfish combined), h) largemouth bass, 697 

and i) brown bullhead. Points represent the sum of three seine hauls and six minnow traps for an 698 
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individual site for each sampling occasion with black open circles representing reference sites and grey 699 

full circles representing floodgate sites. Dotted lines connect means across sites for floodgate and 700 

reference sites on each sampling occasion.  701 

(��'��. Points representing model coefficients for the effect of floodgate presence on abundance of each 702 

fish species. More positive values indicate larger positive impacts of floodgates on fish abundance, more 703 

negative values indicate more negative impacts of floodgates on fish abundance. Data were normalized by 704 

division by the standard deviation for each species prior to analysis; the model coefficients thus indicate 705 

the impact of floodgate relative to observed variation of that species. Data coefficients are derived from 706 

generalized additive models for the effect of floodgates on abundance data with a smoothing function for 707 

the effect of date. Error distributions used for salmon and non�salmon species data were quasipoisson and 708 

negative binomial respectively out of necessity to satisfy normality. The thick and thin lines represent 1 709 

and 2 standard errors for these estimates respectively.  710 
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Brown bullhead 15 1 

Black crappie 1 2 

Bull trout 0 1 

Common carp 32 4 

Chinook salmon 77 172 

Chum salmon 102 152 

Coho salmon 13 152 

Cutthroat trout 1 1 

Juvenile sunfish 391 26 

Pacific lamprey 0 3 

Largemouth bass 52 70 

Largescale sucker 0 117 

Unidentified minnow 4 95 

Peamouth chub 33 207 

Northern pikeminnow 55 608 

Pink salmon 0 2 

Prickly sculpin 9 335 

Pumpkinseed 61 77 

Rainbow trout 0 47 

Redside shiner 0 44 

Sockeye salmon 0 4 

Three-spine stickleback 14500 13291 

Weather loach 2 0 
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