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Abstract: The “Belt and Road” initiative proposed by China has received much attention from the
international community. Natural disasters along the route have posed considerable challenges
to the “Belt and Road” economic construction. Southeast Asia, as the main thoroughfare of the
Maritime Silk Road, always suffers from floods. It is necessary to evaluate flood risk to enhance
disaster emergency management. Based on the Data Envelopment Analysis (DEA) model, inputs
consist of four factors: the number of deaths, victims, frequency of occurrence, and economic losses
caused by meteorological disasters. To study the vulnerability to flood disasters in Southeast Asian
countries, the four factors caused by flood disasters were taken as outputs, respectively. The relative
efficiency values of Laos, Malaysia and Cambodia exceed 0.8. They are most vulnerable to floods.
The following four countries, Thailand, Myanmar, Indonesia, and the Philippines, are also vulnerable
to flood disasters. The vulnerability of Vietnam is relatively lower than the others. In brief, the risk of
flood disasters in Southeast Asia is high. Risk assessment for Southeast Asia is essential to ensure the
implementation of the “Belt and Road” initiative.

Keywords: the “Belt and Road”; flood disaster; DEA model; Southeast Asia

1. Introduction

The “Belt and Road” initiative was first proposed by General Secretary Xi Jinping
in September 2013 [1], which included the development strategy of jointly building the
“New Silk Road Economic Belt”. The strategy calls for cultural exchange and economic
cooperation [2]. Since China launched its “Belt and Road” initiative in 2013, it has spanned
more than 140 countries [3]. Under the backdrop of a slow global economic recovery,
China’s “Belt and Road” initiative has become a common cause that contributes to reinforc-
ing trade and overseas investment between countries.

Natural disasters in these regions account for 68.7% of global occurrences [4]. For
example, heavy rains resulted in severe damage to Pakistan’s infrastructure project. The loss
was approximately 0.3 million USD. A rainstorm occurred in the Yangtze River region of
China, which lasted for forty days from June 2020 to July 2020. More than 60 million people
suffered from the flood disaster. It is necessary to evaluate the risk so that some preparation
works can be performed. According to the data observed from the Emergency Events
Database, the frequency of floods and flood-affected populations slowly increased between
the years 1975 and 2016 [5]. Floods are regarded as one of the most frequently occurring
disasters. Seven indices, the analytical hierarchy process (AHP), and k-means have been
integrated to evaluate the flood disaster in Haikou, China [6]. A framework on the basis
of disaster theory was developed to assess the rainstorm disaster in the Yangtze River
Delta, China. The top ten indices contributed nearly 75% to the rainstorm risk results [7].
Flood disasters from 1990 to 2015 were assessed in Southeast Asia through TOPSIS and the
coefficient of variation method. The results indicated that Southeast Asia, as an essential
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component of the “Belt and Road” initiative, suffered greatly from the disasters [8]. The
trends and the influences of floods in the five regions of Asia have been analyzed from
1990 to 2018. The analysis results have revealed that the trend of flood occurrences was
upward [9]. A multi-criteria index was introduced to evaluate flood hazard areas, and the
method was used in Greece [10]. A random forest was utilized to assess the regional flood
risk in the Dongjiang River Basin of China, where seven risk indices were selected [11].
A flood disaster risk model on the basis of the Choquet integral was established in the
Yangtze River Delta region, and the empirical studies implied that risk rankings were the
highest in Shanghai City, Jiangsu Province, Zhejiang Province, and Anhui Province [12].
A multi-index evaluation with an information diffusion method was applied to evaluate
the risk of flood and drought disasters in the lower and middle reaches of the Yangtze
River. The evaluation results have shown that the threat of flooding is more than that
of drought [13]. A comprehensive evaluation approach was applied to assess the flood
disaster risk in Kelantan, Malaysia, which was more beneficial for the study area [14].

These severe natural disasters in the region along the “Belt and Road” have brought
significant challenges to the success of the “Belt and Road” construction. Natural disasters
like drought, floods and thunderstorms frequently hit countries along the line. Conducting
natural disaster research is significant to disaster prevention and reduction and can reduce
disaster damage and social impacts. Particularly, most countries in Southeast Asia along
the “Belt and Road” are highly vulnerable to floods. For instance, A. Ahamed et al.
established an automated flood monitoring system through a moderate-resolution imaging
spectroradiometer to observe the near real-time surface water extent and assess the impact
of floods [15]. Naim et al. presented a framing analysis of flood resilience policy in Bangkok,
which indicated that the economic growth frame was prevailing [16]. Zou et al. proposed
a diffused-interior-outer-set model based on information diffusion theory to analyze the
flood disaster risk in China [17]. Nowadays, there is much research on floods, including
risk management [18–21], technologies to reduce flood risk [22], disaster vulnerability, and
resiliency [23].

An effective hazard vulnerability assessment is critical for successful disaster pre-
paredness, disaster response, and local reconstruction [24]. In solving this problem, the
primary methods can be grouped into four categories: disaster loss data, indicator-based
methods, curves, and computer modeling methods, in which the indicator-based approach
can more accurately reflect overall flood vulnerability [25]. The Data Envelopment Analysis
(DEA) method is considered a “data-oriented” approach for assessing the performance of
a set of peer entities called Decision-Making Units (DMUs), which converts multiple inputs
into multiple outputs [26]. The DEA method was introduced by Charnes [27] and subse-
quently developed into various fields, including energy [28], environment [29], health [30],
industry [28], sports [31], finance [32], education [33] and natural hazards [34]. However,
the application of the DEA method in flood disaster risk assessment, especially along the
“Belt and Road”, is still at an early stage. In this paper, the vulnerability evaluation uses
multidimensional factors, including population, death toll, economy, and frequency. The
assessment of flood disasters in Southeast Asia along the “Belt and Road” is developed
based on the DEA method, which is simple and feasible, and could have high transferability
to other areas or other disasters.

This paper consists of five sections: Section 1—Introduction, Section 2—Dataand
Methods. Results and the analysis are presented in Section 3. Discussions are included in
Section 4. At last, the conclusions are included in Section 5.

2. Data and Methods
2.1. Data

The statistical data were derived from the Emergency Database (EM-DAT) (https://
www.emdat.be/, accessed on 10 July 2022), including the related disaster data of Southeast
Asian countries from 2001 to 2018. Considering the lack of data in Brunei, Singapore, and
East Timor, only eight countries were selected in Southeast Asia on the Maritime Silk Road

https://www.emdat.be/
https://www.emdat.be/
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as the research object, namely Vietnam, the Philippines, Thailand, Cambodia, Myanmar,
Malaysia, Indonesia and Laos. The studied area is shown in Figure 1.
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2.2. Research Methods

The statistical analysis of meteorological disasters in Southeast Asia along the “Belt
and Road” from 2001 to 2018 was carried out directly using the death toll, number of
victims, number of occurrences, and economic loss. First, the situation of meteorological
disasters and floods in Southeast Asia were analyzed, and the distribution and impact
of disasters in different countries were further analyzed. Then, flood disaster risk was
evaluated based on data envelopment analysis (DEA).

DEA is an efficient evaluation method developed to measure the relative efficiency of
different units when inputs and outputs are measured in their natural units. Parameters
are not set beforehand in DEA, which only needs to assess the decision-making unit based
on the input–output data. It can prevent the interference of subjective factors. The equation
of the model is shown as follows:

max [θk − ε(∑t
m=1 s− + ∑r

n=1 s+)
]
= vd(ε) (1)

s.t.



∑n
j=1 xjmwj + s−m = xkm

∑n
j=1 yjnwj − s+n = θkykn

wj ≥ 0; s−m ≥ 0; s+n ≥ 0
j = 1, 2, · · · n;
n = 1, 2, · · · r;
m = 1, 2, · · · t

(2)

where xjm represents the value of mth input indicator of jth region; yjn represents the
value of nth output indicator of jth region; s−m is input slacks; s+n is output slacks; ε is the
non-Archimedean infinitesimal; and wj represents the weight of the indicator. 1/θk is the
relative efficiency value of the kth decision unit.

The disaster data of the eight research-object countries in Southeast Asia on the
Maritime Silk Road were chosen to conduct flood vulnerability measures. Risk means loss.
Four factors are considered in terms of loss, which are the frequency of disasters, victims,
death toll, and economic loss. These factors greatly influence the loss associated with
flood disasters, and can provide data. Based on the input–output model of natural disaster
vulnerability, the exposure and loss are determined as inputs and outputs, as shown in
Table 1. The victims factor in this paper is defined as the extent to which a population is
susceptible to the loss of production and livelihood due to flood disasters; the death factor
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refers to the extent to which a population is susceptible to death due to flood disaster; the
frequency factor denotes the number of occurrences of flood disasters; the economic loss
factor means the extent to which an economic system is susceptible to flood disasters.

Table 1. Input–output metrics.

Factor Variable of Input Variable of Output

Frequency Number of total disasters Number of flood disasters

Victims Victims of total disasters Victims of flood disasters

Death Death toll of total disasters Death toll of flood disasters

Economic loss Economic loss caused by
total disasters

Financial loss caused by
flood disasters

3. Results and Analysis
3.1. Status of Meteorological Disasters and Floods

The status of meteorological disasters and floods from 2001 to 2018 is shown in Table 2.
In the past 18 years, Southeast Asia has had more than 739 disasters, with an average of
more than 41 disasters per year. More than 260.959 million people have been affected.
The death toll has reached 173,753. (Because of a typhoon in 2008, there were more than
130,000 deaths in Myanmar, which figured into the majority of deaths from meteorological
disasters. So, the number of brackets indicates the data after having removed the death toll
in Myanmar in 2008.). As a result, the economic losses have exceeded 100 billion dollars.
The variable of output of flood disasters in the above statistics is 420, 185.776 million,
28,182, and 71.86 billion dollars, respectively, accounting for 57%, 71%, 80%, 72% of the
proportion of total meteorological disasters, respectively, which is shown as Figure 2. It
indicates that flood disasters have had a considerable impact on Southeast Asia.

Table 2. Status of meteorological disasters and floods in Southeast Asia.

Disasters Frequency Victims/Million Death Toll Economic Loss/
Million Dollars

Meteorological
disasters 739 260.959 173,753 (35,387) 100,023.176

Floods 420 185.776 28,182 71,860.141
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3.2. Analysis Based on DEA Model

The vulnerability to flood disasters of selected areas is shown in Tables 3–5. The higher
the relative efficiency value is, the greater the vulnerability of the regions to floods. That
means the comprehensive loss caused by floods to the area is more severe than others in
the same situation. The distribution of flood vulnerability in Vietnam, the Philippines,
Thailand, Cambodia, Myanmar, Malaysia, Indonesia and Laos are presented in Tables 3–5.
The null value indicates no meteorological disaster in the country during the year.

Table 3. Vulnerability to flood disasters in Southeast Asian countries (2001–2006).

Vulnerability

Country 2001 2002 2003 2004 2005 2006

Vietnam 0.682 0.421 0.563 0.398 0.175 0.274

The Philippines 0.597 0.401 0.460 0.986 0.716 0.617

Thailand 0.792 0.726 0.716 0.469 0.301 1.000

Cambodia 1.000 0.655 1.000 1.000 1.000

Myanmar 1.000 1.000 0.220 0.278 0.529

Malaysia 1.000 0.100 1.000 0.564 1.000 0.965

Indonesia 0.675 0.637 0.753 0.140 0.486 0.617

Laos 1.000 1.000

Table 4. Vulnerability to flood disasters in Southeast Asian countries (2007–2012).

Vulnerability

Country 2007 2008 2009 2010 2011 2012

Vietnam 0.628 0.291 0.129 0.785 1.000 0.529

The Philippines 0.715 0.528 0.584 0.231 0.476 0.642

Thailand 0.983 0.495 1.000 1.000 1.000 0.783

Cambodia 0.954 0.050 1.000 1.000 1.000

Myanmar 1.000 0.075 0.100 0.038 1.000 1.000
Malaysia 0.795 1.000 1.000 0.998

Indonesia 0.696 0.918 1.000 0.916 1.000 0.631

Laos 1.000 0.381 1.000

Table 5. Vulnerability to flood disasters in Southeast Asian countries (2013–2018).

Vulnerability

Country 2013 2014 2015 2016 2017 2018

Vietnam 0.332 1.000 0.016 0.301 0.444 0.013

The Philippines 1.000 0.848 0.545 0.645 0.410 0.136

Thailand 1.000 0.505 0.220 0.649 0.663

Cambodia 0.993 1.000 0.777 0.267 1.000

Myanmar 1.000 1.000 0.461 0.706 0.999 1.000

Malaysia 0.914 0.448 1.000 1.000 1.000 1.000

Indonesia 0.688 0.573 0.456 0.628 0.562 0.405

Laos 0.847 1.000 0.954 0.997 0.306 1.000
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The vulnerability to flood disasters of the eight countries in 2001, 2009, 2013, and
2016 is presented in Figure 3. Overall, the vulnerability to flood disasters of Cambodia,
Malaysia, Laos and Myanmar are higher than the others. When relative efficiency values of
Cambodia, Malaysia, Laos and Myanmar exceed 0.8, the frequency of floods is 11, 12, 8 and
9, respectively. Moreover, the frequency of values reaching 1 is 9, 7, 6 and 8, respectively. It
is worth noting that the number of meteorological disaster records in these four countries
is 15, 16, 11 and 17, respectively. The rate of relative efficiency value exceeding 0.8 is more
than 0.5, which explains why the vulnerability to flood disasters in Cambodia, Malaysia,
Laos, and Myanmar is very high. For example, the catastrophic floods in many Southeast
Asian countries in July 2018 caused severe impacts on countries such as Cambodia and
Laos, and the corresponding flood disasters have a value of 1.
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Followed by Thailand, when relative efficiency values are more significant than 0.8,
the frequency of floods is 6, and the instances of values reaching 1 is 5. Meanwhile, the
number of meteorological disaster records is 17, indicating that the vulnerability to flood
disasters in Thailand is also high. For example, in 2011, Thailand suffered a major flood
disaster, and 65 out of the 77 cities across the country were affected, causing hundreds of
deaths and severe economic losses. Therefore, the flood disaster risk in Thailand cannot
be ignored.

Indonesia, the Philippines and Vietnam all recorded 18 meteorological disasters,
showing that meteorological disasters occur yearly. When the relative efficiency values
are more than 0.8, the frequency of flood disasters is 4, 2 and 2, respectively. Although the
frequency of values surpassing 0.8 is small, the number of meteorological disasters is great.
Flood disasters occur in most years, with high incidence.

On average, as shown in Figure 4, the average relative efficiency value of flood
vulnerability is ranked as Laos > Malaysia > Cambodia > Thailand > Myanmar > Indonesia
> the Philippines > Vietnam. The average efficiency values of Laos, Malaysia and Cambodia
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are all greater than 0.8, which is consistent with the overall level of vulnerability, indicating
that they are highly vulnerable countries. Moreover, the number of meteorological records
in Laos is 11. Although the times of meteorological disasters and floods in Laos are fewer
than that in the other countries, the relative efficiency value of flood disasters is very high,
demonstrating that the impact of each occurrence of a flood disaster is enormous. The
average efficiency values of Thailand, Myanmar, Indonesia, and the Philippines are 0.724,
0.671, 0.655 and 0.585, respectively. Although the vulnerability to floods for these four
countries is not as high as in the previous three countries, each value also exceeds 0.5,
indicating that the vulnerability to flood disasters is also high. The average efficiency value
of Vietnam is the lowest in the research countries, which is 0.443. However, the frequency
of floods in Vietnam is 2, with the relative efficiency value reaching 1. This shows that flood
disasters are the only meteorological disasters in some years and that they have reached
abnormally significant conditions. However, in general, the vulnerability of Vietnam is
relatively stable.
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4. Discussion

The vulnerability to flood disasters in Southeast Asia is generally high. In the 18 years
from 2001 to 2018, the frequency of relative efficiency values greater than 0.8 in all countries
calculated by the DEA model reached 54, with relative efficiency values reaching 1 as
many as 35 times. In the case of a relative efficiency value greater than 0.8, the ratio of
values reaching 1 is 65%, which shows that the vulnerability to floods in Southeast Asia is
very high.

As shown in Table 6, among the eight countries, the average vulnerability to floods in
Laos is the highest, reaching 0.862. Compared with its 11 meteorological disaster records,
the instances of flood relative efficiency values outstripping 0.8 are 8, and the instances of
values reaching 1 are 7. It should be stated that although the number of meteorological
disasters in Laos is smaller than in the other seven countries, the vulnerability index of flood
disasters is not low. The average relative efficiency value of flood vulnerability in Malaysia
ranks second. From the vulnerability to flood disasters over the past 18 years, its frequency
of flood relative efficiency values exceeding 0.8 is 12, with 16 records of meteorological
disasters. In addition, the instances of flood relative efficiency values reaching 1 in Laos
are 7. The above three frequencies in Cambodia are 11, 15, and 9, respectively. Although
the relative efficiency value of Cambodia has reached 1 more times than Malaysia, it has
been found that Malaysia’s relative efficiency values of greater than 0.8 are equivalent to or
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greater than 0.9. This indicates that the considerable relative efficiency value is in a higher
range. Thailand, Myanmar, Indonesia, and the Philippines have average relative efficiency
values between 0.5 and 0.8, of which Thailand ranks first at 0.724, followed by Myanmar
and Indonesia at 0.671 and 0.655, respectively.

Table 6. Analysis results in Southeast Asia.

Country Relative Efficiency Value Average Relative
Efficiency

Number of
Meteorological DisastersMore Than 0.8 Reach 1

Laos 8 7 0.862 11

Malaysia 12 7 0.861 16

Cambodia 11 9 0.846 15

Thailand 6 5 0.724 17

Myanmar 9 8 0.671 17

Indonesia 4 2 0.655 18

The Philippines 2 1 0.585 18

Vietnam 2 2 0.433 18

On the whole, the frequency of relative efficiency values in Myanmar greater than
0.8 is 9, while the instances of relative efficiency values reaching 1 are 8. Furthermore,
there are 17 records of meteorological disasters. The vulnerability to floods is high for
more than half of the year, but it was lower than in Thailand because in some years,
such as 2009 and 2010, the relative efficiency values were 0.1 and 0.038, respectively. This
means that flood disasters have small impacts or do not occur in some years. There were
18 instances of meteorological disasters in Indonesia, the Philippines and Vietnam. From
this, it can be noted that meteorological disasters occur every year. Among the research
regions, the average relative efficiency value was less than 0.5 only in Vietnam.

The selected regions have been divided into three categories based on the above
analysis of vulnerability to flood disasters. The first echelon of vulnerability includes Laos,
Malaysia and Cambodia representing the high disaster vulnerability, respectively. Thailand,
Myanmar, Indonesia, and the Philippines are the countries in the second echelon with
a medium–high rating. Meanwhile, only one region in the third tier, namely Vietnam,
reflects a medium flood disaster vulnerability.

5. Conclusions

Based on historical data, eight countries in the Southeast Asia of the 21st Century
Maritime Silk Road were used as the research object, and the DEA model is used for evalu-
ating the vulnerability to flood disasters in Vietnam, the Philippines, Thailand, Cambodia,
Myanmar, Malaysia, Indonesia and Laos over the 18 years between 2001 and 2018. The
results have indicated that the vulnerability to floods in Southeast Asia is at a high level,
and there is a slight difference in the spatial distribution of flood hazard risk. Among
these countries, the vulnerability to flood disasters of Laos, Malaysia and Cambodia is the
most, and the average relative efficiency value is greater than 0.8, which fully indicates that
Laos, Malaysia and Cambodia are highly vulnerable countries. Furthermore, the average
relative efficiency value of Myanmar, Indonesia, and the Philippines is between 0.5 and 0.8,
which can be classified as countries with medium–high flood vulnerability. The average
efficiency value of Vietnam reaches 0.433, which is half that of the top three countries and
ranks at the bottom out of the 8 countries listed. However, the number of flood disasters
in Vietnam with a relative efficiency value of 1 is 2. It is also impossible to ignore the
risk pressure of flood disasters, so it could possibly be defined as a country with medium
flood vulnerability.
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We consider that flood disaster has become the main obstacle to the sustainable devel-
opment of the “Belt and Road”. Therefore, public meteorological services should be further
provided in various forms to maximize the coverage of information regarding disasters
in order to keep the public informed. Combined with our research, recommendations are
given in the following paragraphs.

Southeast Asia is a tropical rainforest climate and a tropical monsoon climate. It is
a hot, humid climate and is susceptible to floods, heavy rains and typhoons. When carrying
out economic construction, choose a higher terrain to prevent flooding.

Further development of predictive monitoring technology is essential for preventing
and mitigating flood disasters. The first is to improve the monitoring accuracy of hydro-
meteorological satellites and enhance the satellite monitoring capability. The second is to
improve the monitoring capability of surface hydrological stations, especially the rapid
transmission and analysis capabilities. The third is to deal with the scientific scheduling
model of floods, scheduling scheme generation, and scheduling services. Currently, the
flood control implementation system is still not perfect. Therefore, actively carry out
international cooperation on disaster prevention and reduction. The adjacent countries
along the “Belt and Road” often have similar natural disasters, which provide a basis for
establishing a cooperation mechanism for disaster prevention and relief. In the face of
catastrophe risk, an individual country has limited ability to take losses. Thus, establishing
a national cooperation mechanism for disaster prevention and reduction can improve the
efficiency of disaster relief and achieve resource sharing and risk sharing.

Although the climatic and hydraulic models perform well on large-scale events, they
are sometimes inferior in forecasting small-scale events. This lack of awareness is typ-
ically the main reason people may not take extreme flood events seriously, which may
lead to overconfidence and inadequate preparation, and consequently to high fatality. In
subsequent analyses, we will focus on small-scale events to conduct profound research,
as there are many types of natural disasters along the “Belt and Road” besides floods,
such as earthquakes, which cause massive damage to local populations, and therefore also
deserve attention.
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