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Abstract

Flood inundation maps provide valuable information towards flood risk preparedness,

management, communication, response, and mitigation at the time of disaster, and can be

developed by harnessing the power of satellite imagery. In the present study, Sentinel-1

Synthetic Aperture RADAR (SAR) data and Otsu method were utilized to map flood inunda-

tion areas. Google Earth Engine (GEE) was used for implementing Otsu algorithm and pro-

cessing Sentinel—1 SAR data. The results were assessed by (i) calculating a confusion

matrix; (ii) comparing the submerge water areas of flooded (Aug 2018), non-flooded (Jan

2018) and previous year’s flooded season (Aug 2016, Aug 2017), and (iii) analyzing histori-

cal rainfall patterns to understand the flood event. The overall accuracy for the Sentinel-1

SAR flood inundation maps of 9th and 21st August 2018 was observed as 94.3% and

94.1% respectively. The submerged area (region under water) classified significant flooding

as compared to the non-flooded (January 2018) and previous year’s same season (August

2015–2017) classified outputs. Summing up, observations from Sentinel-1 SAR data using

Otsu algorithm in GEE can act as a powerful tool for mapping flood inundation areas at the

time of disaster, and enhance existing efforts towards saving lives and livelihoods of com-

munities, and safeguarding infrastructure and businesses.

Introduction

Any populated areas which normally fall in tropical regions are prone to floods which is con-

sidered as one of the hazardous natural disasters. Heavy rainfall enhances the accumulation of

water in the catchments and overflow of water flashing beyond its normal confines are termed

as floods. Flood usually varies from place to place and depends on numerous factors such as its

severity and time of occurrence. Water inundation due to this disastrous event causes signifi-

cant damage to human lives, properties, agricultural lands and infrastructure, subsequently
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affecting the economy [1]. Flood mitigation planning and management requires knowledge of

land use as well as accurate identification and mapping of flood prone areas. Critical and

timely estimation for monitoring inundated areas during floods can play a significant role in

effective and prompt response for risk assessment. This also provides valuable information to

the policy cum decision makers for sustainable management and future preparedness [2].

Generation of real/near real time accurate water inundation maps are required to see the flow

of flood water in the affected areas during the time of disaster. Monitoring the flood extent

with the help of space based sensors are more effective in providing near real time information

as compared to the ground based techniques.

Space based sensors either optical or synthetic aperture radar (SAR) have shown their

potential for monitoring and mapping flood or water inundated areas [3,4]. SAR sensors can

penetrate through clouds and heavy rain, thus makes them capable of acquiring data during

floods while optical sensors such as multispectral are unable to do the same [5]. Earlier studies

have shown that SAR datasets are preferably being used for mapping and monitoring the flood

extent. [6–11]. The techniques used for flood mapping are broadly categorized as (i) conven-

tional and machine learning based classification approach [12–14]; and (ii) threshold based

approach [15,16]. The first approach requires ample training data from the field which is diffi-

cult to collect during or at the time of floods. Hence, these approaches are least recommended

for near real time preparation of flood maps [17,18]. However, threshold based techniques

(manual as well as automatic) seem to be more effective for flood map generation. Manual

threshold detection techniques are often difficult and challenging, as manually deriving the

threshold requires knowledge of a few number of training samples [19–21]. This technique

also leads to generation of less-accurate and inconsistent water inundated maps. This happens

due to variability in the manually selected threshold values for separating water and non-water

pixels [16].

However, an automatic threshold based approach detects the threshold values automatically

for separating water and non-water pixels without the use of any training samples [22,23].

This approach computes image statistics for deriving the optimum thresholds to classify water

and non-water pixels. Image tiling and split selection, Kittler and Illingworth’s technique,

Global minimum threshold method, Quality index thresholds, Split combination and Otsu

image threshold are some of the well-known automatic threshold based techniques used for

different applications [24–27]. The Otsu image threshold method is the most widely adopted

approach used for flood mapping [23,28,29]. This method is based on an adaptive threshold

method which measures to evaluate the between-class variance of a threshold at a given level

computed from a normalized image histogram. This method is less complex and requires least

user interaction making it suitable for large SAR image scenes. Tests of this Otsu algorithm

were conducted on eight large scenes of Radarsat-2 data for near-real time detection of water

bodies and monitoring their dynamic changes [29]. An operational and robust framework was

proposed for precise flood mapping by conducting tests in the large SAR scenes, for classifying

flood and non-flood areas. This Otsu method is capable of providing a more precise flood map

using Sentinel-1 SAR scenes for large areas [23]. Monitoring real time water extent during

large-scale flood events also requires data from several sources (social media, remote sensing

and topographic data). Rapid estimation of flood extent based on the information shared in

real-time using social media such as geo-tagged photographs helps in validation of inundation

for flood extent [30].

Various remote sensing based models with field observation have been used for monitoring

and mapping of Kerala 2018 extreme flood events. Hunt et al., explored the circumstances

which majorly caused this extreme flood by using Weather Research and Forecasting (WRF)

model in combination with a hydrological model (WRF-Hydro, run at 125 m resolution) [31].
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Haider et al., used downscaled future and historic climate projections from Coupled Model

Inter comparison Project (CMIP5) and the Noah-MP land surface hydrological model, to sim-

ulate and observe the projected changes in extreme precipitation and flood events [32]. The

extreme precipitation and runoff conditions observations made by Mishra et al. using the Var-

iable Infiltration Capacity (VIC) model, have shown that the 2018 extreme flood event was

unprecedented in the last seven decades from 1951–2018 [33]. The simulation results by Vis-

wanadhapalli et al., suggested that the high convective instability and transport of mid-tropo-

spheric moisture from the Bay of Bengal were the driving factors behind the heavy rainfall

over Kerala in 2018 [34]. The change in water levels of reservoir storage during extreme rain-

fall of Kerala in 2018 were also discussed by Ramasamy et al., Anandalekshmi et al.,. The exist-

ing six major reservoirs that serve the state would have needed to have 34% more capacity to

handle the heavy rainfall, and controlled release might have helped in alleviating the flood

disasters [35,36]. These studies suggested that extreme heavy rainfall was the major factor

behind this disastrous event and projected climate change could intensify these effects in the

near future.

Most of the studies on Kerala flood focused on a hydrological modeling-based approach to

study and analyze the reasons behind the flood event; whereas limited focus was on generating

near real time water inundation maps. The hydrological model based approach are not suitable

as it requires an up-to-date and accurate DEM, AWS (Automatic weather station) data as well

as computing infrastructure which is often not available. Lal et al., Vishnu et al., and SK et al.,

utilized SAR data (Sentinel-1 & ALOS-2 PALSAR) along with a manual threshold-based, con-

ventional and machine learning based classification approaches to prepare flood extent maps

and damage assessment [37–39]. Though these studies have shown good results, they used the

approach for map generation which requires ample training sample points. Also, the entire

process was performed on the desktop based data processing tools which requires enormous

time for downloading and processing data. This limits the timely response for providing the

flood maps to different decision making agencies for immediate and adequate action. Consid-

ering this above methods in a desktop based environment are not suitable for providing rapid

processing services critical for a flood response. On the other hand the cloud-based image pro-

cessing platform utilizing automatic threshold methods are the possible solution. Google Earth

Engine (GEE) is a cloud-based image processing platform enabling the rapid processing of

such big datasets covering a large area. The GEE has publically made available numerous satel-

lite image collections and provides image analysis functionality at large spatial scales [40]. In

the existing approaches for flood mapping in Kerala no study has been performed which com-

bines openly accessible SAR (Sentinel-1) data and automatic threshold detection techniques in

a cloud computing platform (GEE).

The main objective of this study was to evaluate the potential of automatic threshold detec-

tion techniques using large SAR scenes in cloud computing platform for rapid and precise

mapping of flood affected areas in Kerala, India. In this study, time-series Sentinel-1 SAR data

of pre and post flood events and Otsu algorithm [41,42] were utilized in GEE for mapping

flood extent or water inundated areas. Rainfall time series analysis was also performed to

understand the long term rainfall trend over Kerala.

Materials andmethods

The study area selected was the state of Kerala (Fig 1), situated in the southwest part of India

(10.8505˚ N, 76.2711˚ E with elevation of 54 mMean Sea Level). The area was severely affected

by floods in July-August 2018 which caused substantial loss of lives, and property worth USD

5.8 billion [43]. The major cities affected were: Chengannur, Pandanad, Edanad, Aranmula,

PLOS ONE Flood inundation mapping

PLOSONE | https://doi.org/10.1371/journal.pone.0237324 August 19, 2020 3 / 17

https://doi.org/10.1371/journal.pone.0237324


Kozhencherry, Ayiroor, Ranni, Pandalam, Kuttanad, Malappuram, Aluva, Chalakudy, Thiru-

valla, Eraviperoor, Vallamkulam, N. Paravur and Cochin.

The satellite dataset utilized in the study was Sentinel 1 SAR Vertically transmitted Verti-

cally receive (VV) Polarization data (Table 1). VV was preferred over vertically transmitted

Horizontally receive (VH), as VV polarization was acquired with medium incident angle and

Fig 1. Maps of study area (Kerala India). Shapefile reprinted from GADM database under a CC BY license, with
permission from Global Administrative Areas (www.gadm.org), original copyright 2018. The figure was made with
ArcGIS 10.3 under a CC BY license, with permission from ESRI (www.esri.com).

https://doi.org/10.1371/journal.pone.0237324.g001

Table 1. Data specification.

Characteristics Sentinel -1 (SAR data) Sentinel– 2 (Optical data) CHIRPS

Acquisition Date Before Flood Aug. 13 2015 1981–2018

Aug. 7 2016

Aug. 14 2017

Jan. 5 2018

April 11

Starting of Flood July 28

During Flood Aug. 9 and Aug.21 Aug. 10 and Aug. 20 2018

After Flood Sept. 2, Sept.16 & Sept. 26 B8-NIR

B4- RED

B3- Green

Polarization VV polarization B8 –NIR; B4- RED; B3- Green NA

Bands 1 12 NA

Wavelength 5.5cm 443-1290nm NA

Spatial resolution 10 m 10m (resampled) 5 Km

Swath 250 Km 290 Km NA

Temporal resolution 12 Days 5.5 Days Daily

https://doi.org/10.1371/journal.pone.0237324.t001
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previous research have shown it being most suitable for flood inundation mapping [44–47].

Sentinel-2 optical data and Climate Hazards Group Infra-Red Precipitation with Station data

(CHIRPS) rainfall data of the flooded season (refer Table 1) were also utilized for validation of

the results.

Methodology

The flow chart of the detailed methodology adopted in the present study is shown in Fig 2. The

methodology was divided into the following steps:

Preprocessing of Sentinel 1 VV SAR images

Sentinel-1 images suffer from erroneous noise, (i.e. rigorous geometric, radiometric correc-

tions, thermal, and speckle) [48]. Any satellite data requires rigorous pre-processing before it

can be utilized for any application.

GEE provides Sentinel-1 VV polarization Ground Range Detected (GRD) images which are

already preprocessed using Sentinel-1 algorithm [48]. The preprocessing includes (i) Orbital

file correction to eliminate the orbital noise; (ii) Thermal noise correction to eliminate the

noise in the data produced by the sensors during data acquisition process onboard the satellite

[49]. Thermal noise can affect the quality of the data in the areas having low mean signal

response detected by the SAR system like lakes, standing water, rivers, etc., (iii) Radiometric

calibration, to calibrate RADAR reflectivity (DN) to backscattering coefficient (physical units)

which is mainly performed to compare the SAR images of different acquisition dates; and (iv)

Terrain correction, to convert Sentinel-1 SLC (Single look complex) data from slant range

geometry to a map coordinate system, and to rectify the distortions like foreshortening, lay-

over, or shadowing effects. [50].

The Lee speckle filter with kernel window size 5x5 was applied in GEE environment to

remove speckle noise from the dataset. [14,51]

Classification of water and non-water areas

After preprocessing of Sentinel-1 VV SAR images, the data was classified into two major clas-

ses: water and non-water, to determine the water inundated areas. Otsu’s automatic threshold

detection method was used to determine optimum threshold for this separation. The Otsu

method is typically used for deriving threshold for optical data [52]. However, some recent

studies have suggested that the Otsu method can also be applied in SAR data for separating

water and non-water classes [53,54].

Fig 2. Research methodology.

https://doi.org/10.1371/journal.pone.0237324.g002
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The Otsu’s method is a clustering based thresholding method used for separating two clas-

ses i.e. foreground from background. The technique assumes that the distribution of image

pixel intensities follows a bi-modal histogram, and separates those pixels into two classes (e.g.

foreground and background). The optimum threshold value is determined by minimizing the

weighted sum of within-class (intra-class) variances of the foreground and background pixels.

The mathematical algorithm of Otsu method is described as follows:

The pixels in a given image be represented in L gray levels (1, 2, 3, L). ni Represents the

number of pixels at level i, and N denote the total number of pixels,

N ¼ n
1
þ n

2
n
3
þ nL ð1Þ

The normalized grey level histogram and probability distribution can be expressed as Eqs 2

to 4

Pi ¼ ni=N ð2Þ

Pi � 0 ð3Þ

XL

i¼1
P
1
¼ 1 ð4Þ

Threshold k divides the pixels into two classes (i.e. foreground and background). The opti-

mum value of k can be computed by maximizing the intra class variance (within the class).

The criterion function ρ is introduced and defined as

rðkÞ ¼ s
2

BðkÞ=s
2

BT ð5Þ

s
2

B and s2

BT can be expressed as:

s
2

B ¼ o
0
o

1
ðm

1
� m0Þ

2

ð6Þ

s
2

T ¼
XL

i¼1
ði� mTÞ

2

Zi ð7Þ

Where,

ρ = criteria function

s
2

B = Between class variance

s
2

BT = Total variance

ω0 = Probabilities of class occurrence for background

ω1 = Probabilities of class occurrence for foreground

μ0 = Class mean of background

μ1 = Class mean of foreground

μT = Total mean grey level of the image

k = Threshold value

Eqs 8 and 9 defines the probabilities of class occurrence and the class mean levels.

oðkÞ ¼
Xk

i¼1
Zi ð8Þ

mðkÞ ¼
Xk

i¼1
i Zi ð9Þ
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Validation and calculation of water inundated areas

The validation of the classified map was done through calculating a confusion matrix. The Sen-

tinel -1 SAR classified images of 9th and 21st August 2018 were validated utilizing correspond-

ing Sentinel-2 optical images, acquired on the 10th and 20th August 2018. The optical Sentinel

2 image acquired on 10th and 20th August were mostly affected with cloud cover therefore,

these images were first preprocessed to remove clouds/ bad pixels. The cloud masking utilizes

Sentinel-2 Band QA60, a quality flag band, to identify and mask out flagged cloud and cirrus

pixels. After that, reference samples were randomly identified and collected using visual inter-

pretation approach, for water and non-water class for the area that were not masked out due to

cloud cover. The areas which were masked out due to cloud cover in sentinel-2 data, the refer-

ence samples were collected using sentinel-1 data.

The collected reference samples (from sentinel-2) were overlaid on Sentinel-1 SAR images

of 9th and 21st August 2018. The backscatter values from water and non-water class were

extracted and examined. It was observed that water class (Backscatter value = -23.53±2.44 db)

exhibits low backscatter than non-water class (Backscatter value = -8.78±1.49 db) as shown in

Fig 3. Then the same rule was utilized for collecting reference samples from Sentinel -1 SAR

data (random sampling) for the areas which were affected by clouds. The aptness of the Otsu’s

method was assessed by deriving not only the overall accuracy, but also individual class accura-

cies. The validation was also performed by (i) comparing the area submerged under water in

the classified images of flooded (August 2018), non-flooded (January 2018) and previous

year’s same month data (August of 2015, 2016 and 2017); and (ii) analyzing the rainfall data

for confirming the flood event.

Analyzing the rainfall data

Climate Hazards Group Infra-Red Precipitation with Station data (CHIRPS) is a quasi-global

rainfall dataset prepared by blending satellite imagery with in-situ station data [55]. It has daily

temporal resolution with 0.05 degree spatial resolution. Studies has been done in the past to

evaluate the accuracy of the CHIRPS data over Indian region. Gupta, V. et al., [56] reported

higher correlation with station data (>0.80) and lower systematic error (<10%) of CHIRPS

rainfall over Kerala region. Similar results were also observed by Prakash, S. et al., [57]. This

signifies that the CHIRPS rainfall has good potential for hydro metrological studies in this

region. The linear trend analysis was performed to study the overall rainfall trend over the

study area. Cumulative rainfall plot is used to analyze the variation of precipitation during

monsoon season June, July and August (JJA) between 2015 and 2018. This period was selected

Fig 3. Backscatters values of non-water and water class.

https://doi.org/10.1371/journal.pone.0237324.g003
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to comply with the inundation analysis. Trend analysis during JJA (1981–2018) was also per-

formed to monitor the long term rainfall pattern. The selected period of rainfall data was

based on the recommendation of World Meteorological Organization (WMO)—WMO rec-

ommends a period of at least 30 years for the assessment of climatic change [58]. The advan-

tage of having climatic data for longer period enables us to perform comparison of trends

across different flood effected locations.

Results and discussion

Time series backscatter profile was also examined at the flooded location as shown in Fig 4.

The backscattered vs. time curve was smoothed utilizing Fourier transform smoothening tech-

nique [59]. Since water behaves as a smooth surface, the graph shows sudden decrease in the

backscatter signal at the time of the flood (August 2018). Changes in the backscatter value

describe the occurrence of the flood event in August 2018. The August 2018 flood event was

also reported in the news [60,61]. The low backscatter values (function of surface roughness)

in the month of August 2018 were due to the increase in water inundation (mainly due to the

flood event) which again went up in September 2018 because of the decrease in water inunda-

tion (post flood event).

Water inundation maps from 2015–2018 and different seasons of 2018 were developed as

depicted in Figs 5 and 6 respectively. Our analysis clearly show that the area submerged under

water increased in the classified map of August 2018 as compared to the maps of the same

month from 2015 to 2017 (Table 2). Similarly, in the classified images, water covered areas

observed were less in pre-flood and post flood acquired data of 2018 (January-April and Sep-

tember) (Fig 6 and Table 2).

Fig 7 shows the graph between the different years (August 2015–2018) and the area sub-

merged under water; and Fig 5 depicts a graph between different seasons (2018) and the area

covered by water. It can be interpreted from the above graphs that the extent of the area in

August 2018 is maximum as compared to other years (2015–2017) and seasons (January-Sep-

tember 2018). This clearly indicates the occurrence of a flood event in August 2018.

The accuracy assessment was performed on the 9th and 21st August 2018 flood maps. The

overall accuracy of the classification was found to be 94.73% and 94.71% with a kappa coeffi-

cient of 0.87 and 0.88 respectively. The individual class accuracy of the classification is depicted

Fig 4. Time series backscatter signal at flooded location.

https://doi.org/10.1371/journal.pone.0237324.g004
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in Fig 8. High classification accuracy demonstrates the potential of the Otsu’s algorithm for

classifying the water and non-water pixels.

Sentinel-1 SAR operates in C band with its penetration capability ranges between ~5.6cm.

Presence of clouds and rain droplets with thickness more than 7.5 cm at the time of data acqui-

sition attenuates signal which result in noisy sentinel-1 images. This may be the reason for mis-

classification. However, using L or X band sensors can overcome this kind of uncertainty as

these sensors have high penetration capability then C band.

The variation of the backscatter values was also examined using non-water sample points

used in the validation. The backscatter response of the non-water sample points were exam-

ined for the month of Aug. 2015–2018 as depicted in Fig 9. It was observed that during the

flood event (Aug. 2018), the backscatter values of the non-water class exhibits low backscatter

values with a mean and average deviation value of -23.52 ± 2.14 db respectively. Contradictory,

the backscatter values of the non-water class in non-flood year’s shows low backscattering i.e.

-7.45 db�Mean backscatter� -6.23 db and average deviation of ±1.8 db respectively. In addi-

tion to inundation delineation of the 2018 flood event, cumulative rainfall for the Kerala

Fig 5. Water inundation map from Jan.–Sept. 2018. Shapefile reprinted from GADM database under a CC BY license, with permission from Global
Administrative Areas (www.gadm.org), original copyright 2018. The figure was made with ArcGIS 10.3 under a CC BY license, with permission from ESRI
(www.esri.com).

https://doi.org/10.1371/journal.pone.0237324.g005
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Fig 6. Water inundation map from Aug. (2015–2018). Shapefile reprinted from GADM database under a CC BY license, with permission from Global
Administrative Areas (www.gadm.org), original copyright 2018. The figure was made with ArcGIS 10.3 under a CC BY license, with permission from ESRI
(www.esri.com).

https://doi.org/10.1371/journal.pone.0237324.g006

Table 2. Water inundated area observed in different dates data.

Event Date Area (Hectares) Year

Before Flood Aug. 13 88540.11 2015

Aug.17 84210.56 2016

Aug.14 80516.85 2017

Jan. 5 66955.46 2018

April 11 70923.45

Starting of Flood July 28 92463.39

During Flood Aug.9 109147.67

Aug. 21 105967.76

After Flood Sept. 2 95617.21

Sept.14 93871.25

Sept 26 90695.02

https://doi.org/10.1371/journal.pone.0237324.t002
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district was analyzed to provide further context to the magnitude of the flooding event. Fig 10

shows the cumulative rainfall during JJA for four different locations which were severely

affected by floods. It was observed that all the locations received more amount of rainfall dur-

ing 2018 as compared to other years (2015–2018).

Cumulative rainfall during 2018 was calculated to be 1.5 times higher than the average of

cumulative rainfall for the period 2015–2018. This clearly signifies that rainfall was one of the

driving factors for the flood event. Hunt et al., [31] have done the reservoirs capacity assess-

ment of the six major reservoir of Kerala using WRF hydrological model where they depict

that flooding event would have not taken place if the capacity of the six reservoirs would have

been 34% more.

Further analysis was performed to detect long term (1981–2018) rainfall trend during JJA.

Fig 11a depicts the spatial variability of annual monsoon trend of rainfall over Kerala state

from 1981–2018. It was observed that majority of the locations in Kerala have shown positive

trends. Statistically significant trend (confidence level>95%) was extracted and illustrated in

Fig 7. Water inundation area from Aug. 2015- Sept. 2018.

https://doi.org/10.1371/journal.pone.0237324.g007

Fig 8. User’s and producer’s accuracy.

https://doi.org/10.1371/journal.pone.0237324.g008

PLOS ONE Flood inundation mapping

PLOSONE | https://doi.org/10.1371/journal.pone.0237324 August 19, 2020 11 / 17

https://doi.org/10.1371/journal.pone.0237324.g007
https://doi.org/10.1371/journal.pone.0237324.g008
https://doi.org/10.1371/journal.pone.0237324


Fig 11b. It was observed that major flood affected locations (described in methods and material

section) in Kerala have shown statistically significant increasing trend of JJA rainfall from

1981–2018. The increasing trend varies between 5 to 20 mm per year. Similar findings were

depicted in Ali et al., [32] and Sharmila S, [62] where surface hydrological model was utilized

to observed and projected changes in extreme precipitation and flood events. Their study dem-

onstrate that the multi-day flood events are projected to increase with a faster rate in the future

than the single day events.

Conclusions and future recommendations

Swift and accurate estimation of water inundated areas can provide valuable and timely infor-

mation during flood events. In this study, we assessed the Otsu thresolding approach using

Sentinel-1 SAR for mapping flood areas. The analyses were done on the GEE platform. The

conclusions that can be drawn from this study are as follows: (i) currently available Sentinel-1

Fig 9. Backscatter values of non-water sample points from Aug. 2015–2018.

https://doi.org/10.1371/journal.pone.0237324.g009

Fig 10. Cumulative rainfall for June July Aug. from 2015–2018.

https://doi.org/10.1371/journal.pone.0237324.g010
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SAR allows data retrieval in all weather conditions therefore, has a good potential for mapping

water inundated areas at the time of floods specifically in Kerala where more flood are likely to

occur in near future (Fig 11a & 11b); (ii) Otsu’s method is capable of automatically detecting

thresholds for separating water and non-water pixels without requiring user dependent

parameter (reference points from the ground) unlike supervised machine learning methods;

and (iii) the GEE platform can be used for processing and analysis of the inundation maps

without the need for downloading data or high computing hardware. The automated and on-

the-fly performance at acceptable accuracy level proves the utility and potential of GEE appli-

cations for rapid response in flood inundation mapping. While this paper highlights a proof of

concept, further analysis is needed to explore the VH Polarization and band ratio techniques

such as VV/VH. Since the Otsu method has been implemented and tested in GEE environ-

ment, the method can be tried on other areas for mapping real time flood events without

requirement of ground sample points, except for validation. Though Otsu have shown good

performance with far and wide case studies for flood mapping. It has limitations, Otsu

assumed to have bimodal histogram distribution and also assumed to possess a deep and sharp

valley between two peaks. In the study area if the object area is small compared with the back-

ground area, the histogram no longer exhibits bimodality. Therefore, Two-dimensional Otsu’s

method can be consider as it performs better image segmentation in noisy images [63]. Addi-

tionally, how information can be utilized and shared through social media could be explored

for further validation and dissemination of the findings for rapid response as described in

Babu et al., [64].

It is important to note that the natural occurrence and impact of floods can be magnified by

socio-economic development, including encroachment on the floodplains and inadequate

drainage management [65]. In addition, traditional knowledge of dealing with floods has been

forgotten, which have the potential to offer site-specific knowledge and critical guidance to

planners and decision makers. Flooding causes economic and livelihood losses especially in

developing countries where low-income earners undergo great stress. Losses due to floods

Fig 11. a) Pixel wise trend analysis of annual monsoon rainfall from 1981–2018 over Kerala, India; b) Pixel wise
signification trend analysis (95% confidence level.) of annual monsoon rainfall from 1981–2018 over Kerala, India.
Shapefile reprinted from GADM database under a CC BY license, with permission from Global Administrative Areas
(www.gadm.org), original copyright 2018. The figure was made with ArcGIS 10.3 under a CC BY license, with
permission from ESRI (www.esri.com).

https://doi.org/10.1371/journal.pone.0237324.g011
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reduces the asset base of households, communities and societies through the destruction of

standing crops, dwellings, infrastructure, machinery and buildings, in addition to tragic loss

of life. Despite the rich natural resources and water, people living in these areas are poorer as

compared to the rest of the country, and this is primarily due to the annual floods and related

devastation. The resulting financial burden is often back-breaking for the communities. The

pressure to maintain the day to day expenses, education of children, rituals, health amongst

these disasters, increasing poverty, and few available adaptive mechanisms has sometimes led

to migration from such areas. Flood and migration have direct relation as higher the flood,

higher is the migration rate. It is important to note that floods impact different sections of soci-

ety differentially, and requires a thorough understanding of flood-related issues. Floods have

adverse impacts such as the risk to life and property in the coming years, both because floods

are likely to be more frequent, and because increase in population is likely to result in more

people settling in areas vulnerable to flooding. An increase in floods is likely to influence prev-

alence of water-related diseases and contaminate water sources whereas, the insufficient water

for hygiene purposes during dry periods is likely to increase the risk of water-washed diseases.

Given the projected changes in precipitation, it is likely that there is going to be serious costs

for communities and sectors here. In view of the above, there is an urgent need for actions

to assist communities and dependent sectors to adapt. Therefore, the various heavily water-

dependent sectors—agriculture, industry, energy, navigation and water supply and sanitation

—need to cooperate to work towards achieving a resilient State.
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