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Abstract: Natural disasters, such as floods, can cause significant damage to both the environment
and human life. Rapid and accurate identification of affected areas is crucial for effective disaster
response and recovery efforts. In this paper, we aimed to evaluate the performance of state-of-the-art
(SOTA) computer vision models for flood image classification, by utilizing a semi-supervised learning
approach on a dataset named FloodNet. To achieve this, we trained son 11 state-of-the-art (SOTA)
models and modified them to suit the classification task at hand. Furthermore, we also introduced a
technique of varying the uncertainty offset λ in the models to analyze its impact on the performance.
The models were evaluated using standard classification metrics such as Loss, Accuracy, F1 Score,
Precision, Recall, and ROC-AUC. The results of this study provide a quantitative comparison of
the performance of different CNN architectures for flood image classification, as well as the impact
of different uncertainty offset λ. These findings can aid in the development of more accurate and
efficient disaster response and recovery systems, which could help in minimizing the impact of
natural disasters.

Keywords: flood detection; image classification; deep learning

1. Introduction

Traditional methods of collecting information about the extent of damage caused
by natural disasters, such as ground surveys, can be time-consuming, costly, and may
not always provide accurate or comprehensive data. In recent years, the use of satellite
imagery and convolutional neural networks (CNNs) has become an increasingly popular
approach for monitoring and responding to natural disasters. These techniques allow
for the efficient and accurate identification of affected areas, which can aid in disaster
response and recovery efforts. In addition to the importance of visual scene understanding
in disaster response and recovery, it’s also important to understand the scope and frequency
of natural disasters. The Natural Disasters DataBook 2019, a report published by the Centre
for Research on the Epidemiology of Disasters (CRED) provides a comprehensive overview
of natural disasters that occurred worldwide in 2019. The report states that a total of 9974
natural disasters were recorded in 2019, affecting over 208 million people and causing
over 29 billion economic losses [1]. The report also highlights that floods were the most
frequent type of natural disaster, accounting for 42% of all-natural disasters recorded in
2019, followed by storms (26)% and heatwaves (10)%. Additionally, the report states
that Asia was the most affected region, with 50% of all-natural disasters recorded in 2019
occurring in Asia, followed by Africa (20)% and the Americas (19)% respectively. These
statistics highlight the necessity for effective and precise disaster response and recovery
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efforts, particularly in regions that are most affected. The ability to quickly and accurately
interpret images and videos captured in the aftermath of a disaster, using techniques like
deep learning and CNNs can provide valuable information for decision-making in disaster
management and recovery efforts. Traditionally, providing assistance to disaster areas has
relied on ground surveys, where teams of experts physically visit the affected areas to assess
the damage and identify areas in need of assistance. This method can be time-consuming
and costly, and may not always provide accurate or comprehensive information [2–4].
Furthermore, in situations where access to the affected area is infeasible, such as an active
war zone or remote area, traditional methods can be highly limited. On the other hand, the
use of CNN image classification allows for a more efficient and accurate way of providing
assistance to disaster areas. By analyzing images and videos captured in the aftermath
of a disaster, CNNs can quickly and accurately identify damaged buildings, roads, and
other infrastructure, as well as affected areas. This information can be used to prioritize
resources and aid in recovery efforts [5,6]. In terms of datasets, traditional methods rely
on ground survey data, which is collected by experts physically visiting affected areas.
This data may include photographs, notes, and measurements taken on-site. On the other
hand, CNN-based methods rely on image and video datasets, such as the xView dataset,
which contains over 1 million high-resolution satellite images of natural and man-made
disasters, with annotations for over 600 object classes, or the Functional Map of the World
(FMoW) dataset, which consists of more than 200,000 high-resolution overhead images,
labeled with information such as roads, buildings, and vehicles. The use of CNNs with
these datasets allows for more efficient and accurate analysis and interpretation of the
data [7–11]. Furthermore, with the advancements in deep learning architectures and the
availability of large datasets, the performance of CNNs for image classification has been
continuously improved, providing more accurate and robust results. Overall, the use of
CNNs in image classification can be a powerful tool in providing assistance to disaster
areas and aid in recovery efforts.

Aerial datasets for understanding scenes are useful for assessing damage after natural
disasters. Existing datasets primarily use a two-step approach, beginning with semantic
image segmentation and ending with pixel-by-pixel classification. One difficulty in creating
an aerial dataset is the cost of labeling the data, particularly for semantic segmentation.
This frequently results in labels for only a small percentage of the data, necessitating more
advanced deep learning methods. Another issue is the high-class imbalance. FloodNet [12]
dataset provides high-resolution images taken from low altitudes collected from remote
areas using unmanned aerial vehicles, making it a good option for post-disaster damage
assessment. New practices have emerged to leverage advances in satellite imaging and
AI for rapid and automated post-disaster assessment of damaged infrastructure. These
solutions are expected to cohere with human experts to form human-machine schemes,
paving the way for faster and more accurate post-disaster damage assessment operations.
Deep learning methods like CNN [13] tend to outperform existing satellite imagery data
processing methods and have been shown to be effective in retrieving damaged areas from
satellite and aerial images [14].

This study aims to conduct a comparative analysis on the use of mono-temporal remote
sensing data for detecting damaged areas in images acquired immediately following a
disaster. Additionally, this study aims to evaluate the effectiveness of deep learning
methods for multi-temporal image processing in computer vision research and to perform
a connection recovery assessment. Through the use of the FloodNet dataset and a semi-
supervised training procedure, this study aims to provide binary classification results. In
summary, our contributions to this paper are as follows:

• We utilized a manual annotation process to categorize all images as either “flooded”
or “non-flooded”.

• We utilized a semi-supervised learning methodology that involved the implementation
of uncertainty offsets to dynamically annotate the input images. This approach al-
lowed us to analyze and compare the performance of different state-of-the-art models.
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• We conducted a thorough evaluation of the performance of state-of-the-art networks
through a series of experiments, utilizing a variety of metrics to assess their capabilities.

The remaining sections of this paper are organized as follows: In Section 2, we provide
a comprehensive review of existing research on the classification and segmentation of
post-natural disaster damages using aerial and satellite images. In Section 3, we present an
overview of the base models used in this study. Section 4.1 details the FloodNet dataset, our
approach to annotation, and the design of our experiments. The results of our experiments
and quantitative analysis of performance are presented in Section 4. Finally, we conclude
the study in Section 5.

2. Related Works

Recent research has focused on utilizing convolutional neural networks (CNNs) for
image classification in natural disaster response and recovery. The state-of-the-art in image
classification has been continuously advancing, with CNNs achieving high accuracy in
recognizing objects, scenes, and activities in images. One area of research has been the
use of CNNs to classify disaster images for efficient and accurate damage assessment.
This information can then be used to prioritize resources and aid in recovery efforts.
Additionally, CNNs have been employed to classify images of infrastructure, such as roads
and bridges, for identifying areas in need of immediate repair and maintenance. Satellite
image classification and segmentation of post-natural disaster damages can be summarized
into three categories of current damage-detecting techniques. The first category employs
supervised machine learning approaches such as pixel-based salient change and object-
based detection [12,15]. The second category comprises unsupervised approaches [16],
mainly focused on outlier identification in scene changes. The third category, a recent trend
in damage assessment, employs semi-supervised techniques to utilize less human-labeled
data while maintaining greater accuracy [17]. Deep learning frameworks such as CNNs
have also been presented in other publications to forecast the damage degree of each image.
However, current models are limited to generating bounding box prediction tasks and the
exact locations of damaged components [13].

Algiriyage et al. [18] proposed an Automatic Multi-class Image Tagging for Disaster
Management Using CNN, which achieved a high accuracy of 0.9 in tagging images of
natural disasters with relevant keywords, such as flood or damage. Chen et al. [19]
proposed a Deep Learning-based Multi-class Image Classification for Automatic Damage
Assessment after Natural Disasters which achieved an F1-score of 0.97 in classifying images
of natural disasters into different categories, such as damaged or undamaged. [20] proposed
a Deep Learning-based Damage Assessment of Buildings after Natural Disasters Using
Multi-Modal Data which achieved high accuracy in identifying damaged buildings. The
study proposed a CNN-based approach for identifying damaged buildings in both aerial
images and thermal images captured after natural disasters. The approach achieved a
high level of accuracy, with an F1-score of 0.93 [3] There are many other research studies
that have been conducted on disaster image classification using CNNs, including works
that propose approaches for automatic detection of landslides [21], and segmentation
of damaged buildings [22]. There is also a significant amount of research on specific
tasks such as the identification of flood-affected areas and the segmentation of damaged
buildings and roads. For example, a 2020 study proposed a deep-learning-based approach
for automatically detecting flooded areas in satellite imagery using CNNs. The approach
achieved a high level of accuracy, with an F1-score of 0.95 [23]. Additionally, another study
in 2021 proposed a CNN-based approach for segmenting damaged buildings and roads
in overhead imagery captured after natural disasters, achieving an F1-score of 0.92 [24]
These studies demonstrate the potential of CNNs for specific tasks related to disaster
response and recovery, such as identifying areas affected by floods, as well as segmenting
damaged buildings and roads. This information can be used to prioritize resources and
aid in recovery efforts, highlighting the importance of image classification in disaster
management. With the advancements in deep learning architectures, such as ResNet,
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DenseNet, and EfficientNet, and the availability of large datasets, the performance of
CNNs for image classification has been continuously improved. This further highlights
the potential of CNNs in providing valuable information for decision-making in disaster
management and recovery efforts. In conclusion, the use of CNNs in image classification
has led to a significant amount of research on its application in the context of natural
disaster response and recovery. The ability of CNNs to automatically learn features from
the data and achieve high accuracy in recognizing objects, scenes, and activities in images
is invaluable in identifying damage, prioritizing resources, and aiding in recovery efforts.

2.1. Supervised Classification

Supervised classification is a widely used method for quantitatively analyzing data
from remote sensing images. It involves training a classifier on labeled data and then
using it to classify new data. In this method, the spectral characteristics of the remote
sensing image are divided into areas associated with the ground cover classes of interest.
These ground cover classes can include various types of land use such as forests, urban
areas, and water bodies. The classifier is trained using labeled training data, where each
pixel in the image is assigned to a specific class based on its spectral characteristics. Once
the classifier is trained, it can then be applied to new images to classify the pixels into
different classes. This approach allows for the quantitative analysis of data from remote
sensing images, providing valuable information for various applications such as land use
and land cover mapping, urban planning, and natural resource management. Popular
cutting-edge semantic segmentation algorithms are divided into encoder-decoder based
frameworks [25], and pooling-based architectures [26]. Encoder-decoder techniques in the
first part leverage low-level information to construct a local contextual map that establishes
crisp object boundaries.

Current state-of-the-art semantic segmentation algorithms can be broadly classified
into two categories: encoder-decoder-based frameworks and pooling-based architectures.
Popular cutting-edge semantic segmentation algorithms are divided into encoder-decoder-
based frameworks [25], and pooling-based architectures [26]. Encoder-decoder techniques
in the first part leverage low-level information to construct a local contextual map that
establishes crisp object boundaries. Pooling-based approaches, such as DeepLabv3+ [26],
UNet [27], and PSPNet [28], employ pyramid pooling procedures to produce feature maps
rich in pertinent global information. Other superior approaches in recent years include
self-attention-based techniques [29], which have demonstrated exceptional performance
in segmentation by gathering superior global context dependencies. The authors of [30]
developed a revolutionary flooded building segmentation approach based on merging
three spectrums, dubbed the Multi3Net, using satellite images in a convolutional neural
network. However, while their technique produces very accurate segmentation maps on
medium-resolution datasets, it may not generalize well on substantially more detailed
high-resolution datasets. Gupta et al. in [31] presented a RescueNet capable of segmenting
buildings and analyzing the damage levels to individual structures. [32] demonstrated
an integrated, highly linked neural network for segmenting out object boundaries when
applied to UAV images for recognizing flooded regions. On the other hand, classification
was one of the first schemes in the deep learning domain. Xu et al. [33] developed a Convo-
lutional Neural Network (CNN) model that automatically recognizes damaged structures
in satellite imagery by training and testing the models on various catastrophic situations,
which might determine how well the models will generalize to future disasters. Chen [34]
explores data-driven ways for estimating tornado damage utilizing Deep Neural Networks
(DNN) and evaluating their performance in object detection and image classification. All
studies performed well on relatively high assessment measures. The authors of [35] pre-
sented and tested a set of convolutional neural networks for identifying ground assets in
the aftermath of a disaster. [36] presented a post-hurricane layered convolutional neural
network. The model demonstrated a positive accuracy-confidence correlation, which is
useful for model evaluation when ground-truth data is easily available.
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2.2. Unsupervised and Semi-Supervised Approach

Unsupervised classification is a method that is used to group pixels in remote sensing
images based on their spectral characteristics without prior knowledge about the classes.
This approach utilizes algorithms to automatically discover patterns and structures in the
data without the need for predefined classes, making it useful in a variety of applications
such as land cover mapping, urban planning, and natural resource management. However,
it is important to note that compared to supervised classification, the results of unsuper-
vised classification may require further human analysis and interpretation to be useful.
Change detection is a well-studied issue in various fields, and a variety of techniques
have been developed to tackle it [34]. These include both supervised [35] and unsuper-
vised [36] methods, depending on the predicted variation in the change and the cost of
label acquisition. However, with the increasing availability of unlabeled data, there has
been an increasing interest in developing semi-supervised learning approaches to improve
the learning and labeling processes by including human input [37,38]. This methodol-
ogy has also been tested on a broader scale, with crowds used for label generation [39].
Unsupervised learning techniques have also been utilized in satellite imagery, with the
goal of locating outliers associated with scene changes [40–42]. While these techniques are
good at catching general changes, they may not effectively identify specific features. One
approach to addressing this issue is to employ local visual descriptors to improve data
robustness [42]. However, scaling up this approach may be difficult in situations where
label acquisition is costly.

Recent advancements in deep learning techniques have led to a significant increase in
their utilization for remote sensing image analysis. These techniques have been shown to be
particularly effective in handling large-scale datasets and in applications such as land cover
mapping, object detection, and change detection. Commonly employed deep learning
architectures for remote sensing image analysis include fully convolutional networks (FCN),
U-Net, SegNet, among others [43,44]. Fully convolutional networks (FCNs) are a subclass
of convolutional neural networks (CNNs) that have been specifically designed to work
with dense image predictions. The U-Net and SegNet architectures are also commonly
employed for semantic segmentation and have been observed to be effective in handling
small, irregularly-shaped objects in images. When it comes to remote sensing image
analysis, there are various techniques and approaches that can be utilized, each with its
own advantages and limitations. The selection of the appropriate technique will depend
on the specific application, the type and availability of data, and the goals of the analysis.
For instance, if the objective is to classify an image into different land cover classes, a
traditional machine learning approach such as Random Forest may be sufficient, whereas
if the objective is to detect and segment small, irregularly-shaped objects, a deep learning
approach such as U-Net would be more suitable.

In summary, the utilization of deep learning techniques for remote sensing image
analysis has been demonstrated to be highly effective for a wide range of applications.
These techniques have been shown to be particularly beneficial in handling large-scale
datasets and in applications such as land cover mapping, object detection, and change
detection. However, the selection of the appropriate technique will depend on the specific
application, the type and availability of data, and the goals of the analysis.

3. Base Models

In this section, we present an overview of the state-of-the-art methods that were
utilized as the foundation for the classification of the Floodnet dataset. These methods
were carefully selected and evaluated based on their performance and ability to accurately
classify the data within the dataset. The use of these state-of-the-art techniques ensures
that the results obtained from the classification of the Floodnet dataset are of the highest
caliber and accuracy.
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3.1. ResNet-18

The depth of a neural network plays a crucial role in its performance, however, as the
depth increases, there can be a concern of degradation caused by the vanishing gradient
problem [45]. This issue is distinct from overfitting and results from the loss of small
details in feature maps at high-level layers. To address this challenge, He et al. proposed
the ResNet-18, a deep residual network architecture with 18 layers that enhances the
efficiency of training convolutional neural networks. This approach won first prize in
ILSVR2015. The ResNet-18 is able to learn rich feature representations for a wide range of
images, and the use of skip connection blocks optimizes the entire network, resulting in
improved model accuracy. Instead of traditional monotonically progressive convolutions,
the skip connections implement an equivalent mapping by adding parameters or increasing
computational complexity.

The structural block in ResNet is described as follows:

u = F(x, Wi) + x, (1)

where F(x, Wi) is the residual network to be learned. x and u are distinct layers’ input and
output characteristics. ResNet’s structural block includes 3 × 3 Conv layers, BN+Conv
layers, and a ReLU activation function. The first layer outputs determine x, which goes
through the middle layers (BN+Conv layers) for learning residual features F(x) as in
Figure 1.

Figure 1. Residual network.

3.2. MobileNet

MobileNet is a novel layer module that is based on the inverted residual with a
linear bottleneck architecture [46]. This module takes a low-dimensional, compressed
representation as input and then enlarges it to a high dimension using a lightweight
depthwise convolution. The filtered features are then projected back to a low-dimensional
form through a linear convolution. Sandler et al. designed this network to address a
current challenge in the field of neural networks: the high computational resources required
by state-of-the-art networks that exceed the capabilities of many mobile and embedded
applications. By combining the inverted residual with a linear bottleneck, MobileNet
is optimized for mobile designs and significantly reduces the memory footprint during
inference by partly materializing massive intermediate tensors. This allows the network
to eliminate the need for primary memory access in many embedded hardware designs,
including modest quantities of highly responsive software-controlled memory space.
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3.3. Visual Geometry Group-16 (VGG-16)

VGG-16 is a convolutional neural network (ConvNet) that boasts a high architecture
depth, resulting in a classification and object detection accuracy of 92.7%. The model
is composed of 16 layers with a total of 138 trainable parameters. The architecture of
VGG-16 includes 13 convolutional layers, 5 max pooling layers, and 3 dense layers, totaling
21 layers. The model accepts input images with a resolution of 224 × 244 and 3 RGB
channels, utilizing a (3 × 3) kernel-sized filter with a stride of 1. The architecture is
characterized by the consistent use of 2 × 2 filter max pooling layers and convolution
layers. The Conv-1 layer has 64 filters, Conv-2 has 128 filters, Conv-3 has 256 filters, and
Conv-4 and Conv-5 have 512 filters.

3.4. EfficientNet

EfficientNet, proposed by Tan et al. [47] in their study, aims to revolutionize the
process of scaling up convolutional neural networks (ConvNets). The authors present a
simple yet effective compound scaling strategy that consistently scales the network width,
depth, and resolution using a fixed set of scaling coefficients. As the input image size
increases, the network needs more layers to expand the receptive field and more channels
to capture more intricate patterns on the larger image. To mitigate the rapid saturation
of accuracy, the authors propose utilizing all three scaling dimensions (width, depth, and
resolution) rather than just one or two. The study provides a new perspective on the
method of scaling up ConvNets, by incorporating three dimensions of scaling and using
consistent scaling coefficients, the EfficientNet architecture can achieve better performance
with fewer parameters.

3.5. Vision Transformer (ViT)

Transformers have become the preferred model for natural language processing (NLP)
tasks, but convolutional architectures continue to dominate in computer vision tasks.
In order to maintain the structure of convolutional networks, attention mechanisms are
combined with these architectures. Dosovitskiy et al. in their study [48] attempted to
apply a traditional transformer directly to images, drawing inspiration from the success of
transformer scaling in NLP. Unlike CNNs, transformers lack certain empirical biases such
as translation invariance and locally constrained receptive fields. Translation invariance
refers to the ability of a model to recognize entities in an image even if their appearance
or location changes. Translation, on the other hand, refers to the movement of an image
pixel by a predetermined quantity in a certain direction, which is a characteristic of CNNs.
Due to its permutation invariance, a traditional transformer cannot handle grid-structured
data, which requires sequences. This led to the development of Vision Transformers (ViT),
which can perform the functions of CNNs. To do this, an image is divided into patches,
and the linear embeddings of these patches are fed into a traditional transformer encoder.
The model is then pre-trained with image labels in a supervised fashion, and fine-tuned on
a downstream dataset for image classification. This approach allows for the integration
of the strengths of both transformer and CNN architectures, resulting in a model that can
effectively handle image data while utilizing the attention mechanism of transformers.

3.6. ConvNeXt

In an effort to bridge the gap between traditional convolutional networks and more
recent transformer-based architectures, Liu et al. [49] proposed the ConvNeXt architecture.
This model was designed to be built entirely from common convolutional network com-
ponents and was tested on a variety of computer vision tasks. The results of this study
demonstrated that the ConvNeXt architecture performed better than transformer-based
models in terms of accuracy, scalability, and robustness across all major benchmarks. Ad-
ditionally, the ConvNeXt architecture retained the efficiency of traditional convolutional
networks while maintaining the fully-convolutional nature of both training and testing,
making it highly practical and easy to implement.
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3.7. Regular Networks (RegNet)

The proposed RegNet architecture, introduced by Radosavovic et al. in their study [50],
aims to improve the performance of visual recognition networks by exploring the design
space of network architectures. The authors focused on identifying general design prin-
ciples that can be applied to a wide range of models, rather than developing a single,
highly-tuned model for a specific task. To achieve this, they employed a sampling method
to generate a distribution of models within the design space, and then used statistical
techniques to analyze the design space. This approach is not intended to find the single best
model within the design space, as is common in architectural search methods. Through a
series of design phases, the study developed RegNet, a condensed design space composed
solely of regular network architectures, which has been shown to be effective in various
visual recognition tasks.

4. Experiment

This section outlines the technical details of the experimental setup, including the
libraries and configurations utilized during the execution of the experimentation. The aim
is to provide a clear and thorough understanding of the experimental setup for replication
and further research.

4.1. FloodNet Dataset

The FloodNet dataset, as presented in [12], is composed of 2343 images of dimensions
3000 × 4000 × 3, with a distribution of 1445 images in the training set, 450 images in the
validation set, and 448 images in the test set. Among the 1445 training images, 398 are
labeled with the class labels of Flooded and Non-Flooded, while the remaining 1047 images
are unlabeled. The task at hand is to develop a classification model that can accurately
distinguish between the two classes, as depicted in Figure 2. Our approach for tackling this
task involves utilizing state-of-the-art convolutional neural networks (CNNs) architectures
and training them on the labeled dataset, followed by fine-tuning on the entire dataset
to exploit the additional information present in the unlabeled images. Furthermore, data
augmentation techniques are utilized to increase the diversity of the training dataset and
prevent overfitting.

Figure 2. Sample images from FloodNet dataset: (a) Flooded Images (b) Non-flooded.

4.2. Dataset Preprocessing

The FloodNet dataset [12] comprises of 2343 images, with dimensions of
3000 × 4000 × 3, which are divided into three splits: training (1445 images), validation
(450 images), and test (448 images). Out of the 1445 training images, 398 images were la-
beled, with 51 of them being flooded and 347 being non-flooded. The large class imbalance
in the labeled dataset presents a challenge for the model to achieve a good F1 score. To
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address this issue, we implemented a weighted sampling strategy during data loading
to ensure equal class representation during batch generation. No additional data aug-
mentation techniques were applied. To make the images compatible with state-of-the-art
computer vision models, each image was downsized to 224 × 224 × 3 dimensions.

4.3. Semi-Supervised Training

In this section, we delve into the intricacies of the semi-supervised training approach
outlined in Algorithm 1 and depicted in Figure 3. The model was trained over a total
of E epochs, with only the labeled samples being utilized during the initial Ea

i epochs.
Once this phase was complete, pseudo labels were added to the training set in order to
further fine-tune the model. To implement this, we employed a modified form of the
Binary Cross-Entropy (BCE) loss function, as depicted in Algorithm 1. This loss function
takes into account the predicted class for labeled samples (l̂) as well as the predicted class
for unlabeled samples in the current epoch (Uepoch), and is optimized using the Adam
optimizer with a learning rate of 0.0001. An interesting aspect of this approach is the
incorporation of an uncertainty offset, represented by the parameter λ. As illustrated in
Figure 4, this allows for a soft margin around the class boundary, effectively eliminating
samples whose class probabilities are close to the boundary (indicating uncertainty) during
the prediction process. Only samples whose probabilities fall outside of this margin (as
represented by the blue and green circles in Figure 3) are included in the next training round.
In summary, the semi-supervised training algorithm outlined in Algorithm 1 and depicted
in Figure 3 is a novel approach that utilizes three different models: the Base-model, the
Classifier, and the Discriminator. The Base-model serves as a pretrained model that extracts
features from the input images, while the Classifier and Discriminator are used to predict
class labels and estimate the likelihood of the images being real or generated, respectively.
By incorporating the uncertainty offset, we are able to effectively assign unlabeled samples
to their corresponding classes and fine-tune the model in an iterative process, resulting in
improved performance of the overall system.

Figure 3. The general workflow for the classification task.

Figure 4. Representations of different uncertainty offsets for assigning unlabeled samples to class
0 or 1 based on the class probability generated by the trained model: (a) Uncertainty offset is 0,
(b) Uncertainty offset is 0.1, and (c) Uncertainty offset is 0.3. The Blue circles represent samples
belonging to Class 0, Green circles denote samples labelled as Class 1, and Grey circles are the ignored
training samples.
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Algorithm 1: Semi-supervised training procedure
Input: Sample image: [1,C,H,W]
Output: Trained model: (M)

1 for epoch← 0 to E do
2 if epoch < Ea

i then
3 a← ai

4 else if epoch < Ea
f then

5 a← a f−ai
Ea

f−Ea
i
× (epoch− Ea

i ) + ai

6 else
7 a← ai

8 if a > 0 then
9 p← M(Xu) Derive score of unlabeled set

10 if p ≤ (0.5− λ) then
11 p← 0 Non-flooded: add Xu to XL

12 else if p > (0.5− λ) then
13 p← 0 flooded: add Xu to XL

14 else
15 Ignore sample, Xu

16 Run the model (M) on the train set XL Loss← BCE(l, l̂) + a× (Uepoch, Uepoch−1)

4.4. Implementation Details

This work was implemented with PyTorch library and executed with NVIDIA GeForce
RTX 2080 Ti NVIDIA. The models were trained with the Adam optimizer with a learning
rate of 0.0001. The models were trained with a batch size of 16 and for 50 epochs. The
pre-trained weights of the state-of-the-art models were used for fine-tuning the final model.
ai and a f are set as 0 and 1, respectively. Ea

i and Ea
f are set as 20 and 40, respectively.

4.5. Results

In our experimentation, we explored the impact of different uncertainty offset values,
represented by λ, on the performance of our model. We found that setting λ to 0.2 resulted
in the best performance, as seen in Table 1. This particular value of λ allowed the model
to effectively balance the trade-off between exploiting the labeled data and exploring the
unlabeled data. To further understand the effect of this parameter, we conducted a series
of experiments with different values of λ. We found that when λ is set to a low value, the
model heavily relies on the labeled data, resulting in a suboptimal performance due to the
class imbalance present in the dataset. On the other hand, when λ is set to a high value,
the model heavily relies on unlabeled data, which can lead to poor generalization and
overfitting. In this experiment, the ResNet-18 architecture was used as the base model. This
allowed us to effectively evaluate the impact of different λ values on the performance of
the model. The results obtained from this experimentation provided insights into how the
uncertainty offset parameter can be used to improve the performance of semi-supervised
learning models.
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Table 1. Experimental results for different uncertainty offsets of the ResNet-18 model on the dataset.

Uncertainty Offset Loss Accuracy F1 Score Precision Recall ROC-AUC

0 0.069 98.684 94.828 91.667 100 98.875
0.1 0.074 98.246 93.103 100 100 98.875
0.2 0.056 98.684 94.915 91.667 100 99.25
0.3 0.066 98.246 93.103 91.837 100 98.875
0.4 0.075 98.684 94.915 92.105 100 99.25

The F1 score is a measure of a model’s performance that combines precision and recall.
A high F1 score indicates that the model has a good balance between precision and recall.
A high precision indicates that the model has a low false positive rate, while a high recall
indicates that the model has a low false negative rate. The ROC-AUC (Receiver Operating
Characteristic - Area Under the Curve) metric is used to evaluate the performance of a
binary classifier. A ROC-AUC score of 1 indicates that the model is perfect, while a score
of 0.5 indicates that the model is no better than a random classifier. From the results in
Table 2, it is clear that the ResNet-18 model performed the best, with an accuracy of 98.6%,
F1 score of 94.9%, precision of 91.6%, recall of 100%, and ROC-AUC of 99.25. MobileNet
V2, RegNet-8, RegNet-16, and VGG-16 also obtained high precision and recall rates, but
overall ResNet-18 performed better. The ConvNeXt-base model performed well in terms of
precision but had lower accuracy, F1 score, recall, and ROC-AUC than ResNet-18. ResNet-
18 obtained the best results compared to the other models due to its architecture. ResNet-18
is a variation of the ResNet architecture that is characterized by its deep layers and residual
connections. These properties allow the model to effectively learn and extract features from
the input data, leading to better performance on the classification task. Additionally, the
use of weighted sampling in the data loading process helped to balance the class imbalance,
further contributing to the model’s high performance. Furthermore, the use of different
uncertainty offset values showed that setting λ = 0.2 was more beneficial, therefore it was
used to train the ResNet-18 model. All of these factors combined led to the ResNet-18
model achieving the highest scores in all evaluation metrics, including loss, accuracy, F1
score, precision, recall, and ROC-AUC.

Table 2. Results of the different state-of-the-art models on the dataset for different metrics.

Base-Model Loss Accuracy F1 score Precision Recall ROC-AUC

ResNet-18 0.056 98.684 94.915 91.667 100 99.254
VGG-16 0.096 97.368 90.214 100 100 98.251

ShuffleNet V2 0.186 94.737 77.358 82.342 91.071 90.411
MobileNet V2 0.185 95.175 80.645 86.667 100 92.554

EfficientNet-B0 0.108 95.833 84.553 95.122 94.643 94.571
EfficientNet-B3 0.099 96.93 87.931 89.13 96.429 95.821

RegNet-8 0.099 96.711 87.179 85.185 100 96.625
RegNet-16 0.115 97.368 90.323 88.889 100 98.523

Vision Transformer-16 0.103 96.931 88.333 88.679 94.643 95.946
Vision Transformer-32 0.137 95.175 82.258 86.111 100 93.411

ConvNeXt-smal 0.200 93.642 77.863 77.778 100 92.536
ConvNeXt-base 0.204 92.763 73.282 100 98.214 94.107

5. Conclusions

In conclusion, we proposed a method for classifying images in the FloodNet dataset
into “flooded” and “non-flooded” classes by using a manual annotation approach and a
weighted sampling strategy to handle class imbalance. We also experimented with different
uncertainty offset values and various state-of-the-art computer vision models, such as
ResNet-18, VGG-16, MobileNet V2, RegNet-8, RegNet-16, and ConvNeXt-base. Our results
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showed that ResNet-18 performed the best overall, achieving the highest accuracy, F1 score,
precision, and ROC-AUC. The VGG-16 also obtained great results in precision and recall.
The MobileNet V2, RegNet-8, and RegNet-16 obtained a Recall of 100, and ConvNeXt-base
obtained a precision of 100. From these results, it can be concluded that the ResNet-18
model is highly suitable for the FloodNet dataset, and can be used as a reliable model for
classifying images of flood-affected areas. In future work, we will apply domain adaptation
methods to more datasets across different locations to further validate our findings.
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