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Abstract 
 

Bivariate frequency analysis of flood variables of different station locations of Kelantan river basin was conducted using copula for the 

assessment of the geographical distribution of flood risk. Seven univariate distribution functions of flood variables were fitted with flood 

variables such as peak flow, flood volume, and flood duration to find the best-fitted distributions. The joint dependent structures of flood 

variables were modeled using Gumbel copula. The results of the study revealed that different variables fit with different distributions. 

The correlation analysis among variables showed a strong association. Joint distribution functions of peak-flow and volume, peak-flow 

and duration, and volume and duration revealed that the joint return periods were much higher than univariate return periods of same 

flood variables. The flood risk analysis based on joint return period of flood variables revealed the highest risk of devastating flood in the 

downstream. The locations identified as highly susceptible to flood risk by joint distributing of flood variables had experienced most 

severe floods in recent history, which indicates the effectiveness of the method for the analysis of flood risk. It is expected that this pro-

cedure can be helpful for better assessment of flood impacts. 
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1. Introduction 

Reliable assessment of flood frequency and magnitude is essential 

for effective mitigation planning and designing hydraulic struc-

tures [1]. Univariate analysis based on flood peak is generally 

used for predicting flood occurrence [2]. However, devastating 

flood does not always depend on peak flow. Destructive floods 

occur when high flood peak sustain for a longer period or huge 

volume of flood water inundates an area for a longer time. The 

duration of the flood is often very important, particularly for struc-

tural designing. Flood volume is also required for designing flood 

protection measures. Therefore, flood hazard can be considered as 

a multivariate phenomenon depends on different variables such as 

flood peak flow, flood duration and flood volume [3], [4].  

Several studies have been conducted to analyze the flood variables 

using the multivariate method in order to evaluate flood character-

istics [5]. Most of the studies pointed that marginal distribution 

that best describes the flood parameters are often not from the 

same probability distribution function [6], [7] and therefore, make 

the bivariate analysis complicated. To overcome this problem the 

concept of copula was introduced into flood frequency analysis 

[8], [9]. Copula allows users to model the correlations among 

flood variables without considering the type of marginal distribu-

tions of flood variables [7], [10]. The evolution of the joint distri-

bution of flood frequency analyses using copula initiated number 

of studies on the joint distribution of flood variables across the 

world. Chen, et al. [10] used copula function for multivariate 

analysis of flood coincidence analysis. Chowdhary, et al. [8] com-

pared different copulas for identification of best-fitted copula for 

bivariate frequency analysis of flood peak and flood volume. Kao 

and Chang [9] employed copula for flood frequency analysis in 

the ungauged river basin of Nashville, USA. Li, et al. [11] adopted 

copula for bivariate flood frequency analysis using historical in-

formation. Reddy and Ganguli [12] used Archimedean copulas for 

bivariate flood frequency analysis of flood upper Godavari River. 

Salvadori and De Michele [7] adopted multivariate extreme value 

methods for analysis for flood. Xie and Wang [13] used joint 

probability methods for precipitation and flood frequencies analy-

sis. All the above studies indicated copula as a better option for 

joint parametric distribution. However, application of joint analy-

sis of flood variables is still very limited for flood analysis in Ma-

laysia.  

Increasing risk of flood in recent years has posed a major chal-

lenge in the Malaysian development [14], [15]. A number of re-

cent studies revealed increasing frequency and severity of rainfall 

extremes in peninsular Malaysia [16], [17]. It can be anticipated 

that changes in rainfall pattern have not only changed the return 

period of flood peak, but also the flood duration and volume. The 

structural designing in Malaysia is historically based on the analy-

sis of extreme values alone. However, consideration of other flood 

characteristics in defining flood risk is very important from adap-

tation and mitigation point of view. Therefore, the objectives of 

this study are (a) to determine the flood variables namely, annual 

peak, corresponding duration and volume from historical river 

discharge data, (b) to estimate the univariate distribution of flood 

variables, and (c) to perform copula analysis to the modeled joint 

distribution of flood. 

http://creativecommons.org/licenses/by/3.0/
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2. Study area and datasets 

The Kelantan River (Lat: 4° 40' - 6° 12' N; Lon: 101° 20' and 102° 

20' E) is located in the State of Kelantan in the north east of Pen-

insular Malaysia (Fig. 1). It is 248 km long and drains a catchment 

area of 13,100 km² [18]. About 95% of its basin is steep moun-

tains terrain rising to a height of 2,135 m [18]. The climate of 

Kelantan River basin is dominated by two monsoons like other 

parts of the Malaysia, northeast monsoon (Nov-Mar) and south-

west monsoon (May-Sep) [19], [20]. The Kelantan River basin is 

influenced strongly by the northeast monsoon when most of the 

average annual rainfall (2,500 mm) occurs [21]. The mean annual 

flow of the main river is 557.5 m3/s. Kelantan river has a long 

history of severe floods [21-24]. More than 90% of houses in 

flood affected area were destroyed in 2014 flood [25]. Recently, in 

2017, the floods affected more than 14,000 people who have been 

evacuated [26]. Due to its high proneness of extreme floods and 

high financial damage [23], Kelantan river basin was chosen as a 

case study.  

 

 
Fig. 1: River Discharge Monitoring Stations in Kelantan in the Map of 
Peninsular Malaysia. 

 

Forty-three years (1972-2014) hourly river discharge data records 

from twelve stations distributed over the catchment were used for 

the study (Fig. 1) and were collected from the Department of Irri-

gation and Drainage (DID), Malaysia. The years having complete 

streamflow record were used for analysis. Three out of twelve 

stations are located outside the Kelantan River basin. Floods in 

Kelantan River basin is often triggered by the overflow of flood 

water from nearby catchments. Therefore, available data from 

those three locations outside the basin which have a very close 

proximity and influence on the flood of the basin were included. 

The inclusion of the three stations enables us to provide a broader 

view of flood risk susceptibility of the whole Kelantan state of 

Malaysia, which is considered as the most vulnerable state to natu-

ral hazards.  

3. Methodology 

3.1. Determination of flood characteristics 

The hourly river discharge data were analyzed to determine the 

annual flood and its corresponding volume and duration. The start 

and the end of a flood event were marked using Hewlett and Hib-

bert method [27-30]. As shown in Fig. 2, flood event begins from 

a point when the hydrograph starts to rise to a point on the reces-

sion limb where the separation line with a constant slope of 0.0055 

liters per second per hectare per hour intersects [28], [29]. The 

time lapse between the start time (ts) and end time (te) represents 

the flood duration (D). The flood or stormflow volume (V) is giv-

en by the shaded area and peak flow is the maximum flow during 

the flood event. The annual flood series was determined based on 

water year (July to June) similar to that done by Yusop [31] for 

sites in Peninsular Malaysia. 

 

 
Fig. 2: Illustration of Method Used for Estimation of Flood Variables from 

a Typical Flood Hydrograph. 

3.2. Univariate distribution of flood variables 

In terms of copula functions, the joint distribution function is a 

function of the marginal univariate distribution functions. Thus, 

the univariate Cumulative Distribution Function (CDF) of flood 

variables need to be fitted from the observed flood data first. The 

best distribution of flood variables namely, flood duration, flood 

volume and peak flow were examined by fitting the data using 

Generalized Pareto, Normal, Log-normal, Exponential, Gamma, 

Weibull, Gumbel, Cauchy distributions. The Kolmogorov-

Smirnov (K-S) test for goodness of fit [32] was performed at 5 % 

level of significance. A copula captures the dependence of two or 

more random variables. The Sklar's theorem [33] states that the 

joint behavior of random variables (X, Y) with continuous mar-

ginal distributions u= Fx(x)= P(X≤x) and v= Fy(y)= P(Y≤y) can be 

characterized uniquely by its associated dependence function or 

copula, C. For 2-dimensional cases, all (u, v) relationships can be 

formulated as in Eq. (1). 

 

Fx,y(X, Y) = C[Fx(x), Fy(y)] = C(μ, v)                                        (1) 

 

Where, F(x, y) (X, Y) is the joint CDF of random variables, X, Y 

and ⍱x, y € R. When I= [0, 1]. The bivariate copula has a distribu-

tion function of C = I2→I which normally satisfies the boundary 

(Eq. 2) and the increasing property condition (Eq. 3). 

 

C(t, 0) = C(0, t) = 0 and C(t, 1) = C(1, t) = t, ⍱t = I               (2) 

 

C(u2, v2) − C(u2, v1) − C(u1, v2) + C( u1, v1 ) ≥  

 

0 ⍱u1,u2,v1,€I                                                           (3) 

 

such that u1 ≤ u2 and v1 ≤ v2  

The bivariate copula density C (u, v) is the double derivative of C 

with respect to its marginal and can be expressed as in Eq. (4). 

 

C(u, v) =


 2 C(u,v)

uv
                                                                           (4) 

 

Detailed properties and various types of copulas can be found in 

Krupskii and Joe [34], Parent, et al. [35]; and Shiau and Modarres 

[36]. 

3.3. Copula-based joint distribution of flood variables 

Copulas are used to link the fitted models and construct the joint 

CDF of peak flow-duration frequency (QDF), peak flow-volume 

frequency (QVF) and volume-duration frequency (VDF) [37]. In 

this study, the Clayton, Frank, Gumbel, t and Gaussian copula 

were initially employed to model the dependence between a pair 

of flood variables. The Akaike Information Criterion (AIC) [38] 
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that was used to evaluate the fitness of the multivariate copula. 

The Gumbel was found to fit best for all the joint distribution cas-

es, and therefore, selected for analysis of joint frequency distribu-

tion of flood variables. The Gumbel copula has the genera-

tor  φ(μ) = (− ln(μ))α , with αϵ[1, ∞].  for all α > 1,  the copula 

calculated as: 

 

C(μ1, … μn) = exp {−[∑ (− ln μi)
αn

i=1 ]
1

α⁄ }                                   (5) 

 

The Kendall’s tau can be computed as τ = 1 − α−1 . It can be 

shown that Gumbel copulas have upper tail dependences λU =

2 − 21 α⁄  and lower tail dependence vanishing as α  diverges to 

infinity [37].  

4. Results and discussion 

4.1. General properties of flood variables 

The flood variables namely, annual peak flow, corresponding 

duration and volume from historical river discharge data for each 

station were determined. In addition to the mean, maximum, min-

imum standard deviation and skewness were also determined for 

each station. It was noticed that the station (5718401) has the 

highest mean flood duration and peak flow while the station 

(5120401) has the highest mean of flood volume among the sta-

tions used in this study. The averages of flood duration, flood 

volume, and peak flow at the study area varies between 23 and 

171 hours, 0.1 and 1.38 km3, and 81 and 7140 m3/sec, respectively. 

4.2. Determination of best-fitted distributions of flood 

variables 

Various univariate distribution functions including Pareto, log-

normal, exponential, gamma distribution, Weibull, Gumbel, Cau-

chy were used to determine the best fit for flood variables. The 

goodness of fit for different distributions was carried out based on 

Kolmogorov-Smirnov (KS). The obtained results are provided in 

Table 1. It was observed that there is no consistency of distribu-

tions for duration, volume and peak flow. For example, at station 

(5120401), a gamma distribution was found best fit for peak flow, 

a normal distribution for flood duration, and exponential for flood 

volume. Similar types of results were also observed at other sta-

tions. Overall, normal or log-normal was found to fit flood dura-

tion in most of the stations, exponential or log-normal for flood 

volume, and gamma or Gumbel for peak flood flow. 

4.3. Univariate return periods of flood variables 

The best-fitted distributions of flood variables were used for esti-

mation of return periods of flood variables at different locations. 

Obtained results are presented in Fig. 3. 

 
Table 1: The Best Fitted Distribution Function of Flood Variables at Dif-

ferent Stations 

Variable 
Station ID 

5120401 5222452 5320438 5320443 5419401 5621401 
Flow G G G G G G 

Duration N E N N LN LN 

Volume E N E LN LN E 

Variable 
Station ID 

5718401 5721442 5818401 6022421 6019411 6021401 

Flow Gm G Gm Gm Gm Gm 

Duration C N LN Gm LN Gm 
Volume LN E W Gm LN W 

Notation: G: Gamma; N: Normal; E: Exponential; LN: Log-Normal; Gm: 

Gumbel; W: Weibull; and C: Cauchy. 

 

 

 
Fig. 3: The Return Period of (Upper) Peak Flood Flow (m3/s); (Middle) 

Duration (hr); and (Lower) Volume (Km3) at Different Locations in Kelan-
tan. 

4.4. Correlations between flood variables 

The correlation among different flood variables at all the stations 

was assessed. The distribution of flood variables, scatter plots and 

correlations between two pairs of flood variables at station 

(5222452) is shown as an example in Fig. 4. The linear correla-

tions among flood variables at all the stations are presented in Fig. 

5. 

10

100

1000

10000

100000

1 10 100 1000

F
lo

o
d

 P
e
a
k
 F

lo
w

 (
m

3
/s

)

Return period (years)

5120401 5222452 5320438

5320443 5419401 5621401

5718401 5721442 5818401

6019411 6021401 6022421

10

100

1000

10000

1 10 100 1000

D
u

ra
ti

o
n

 (
h

r)

Return period (years)

0.00

0.01

0.10

1.00

10.00

100.00

1000.00

1 10 100 1000

Fl
o

o
d

 V
o

lu
m

e
 (

km
3 )

Return period (years)



International Journal of Engineering & Technology 587 

 

 
Fig. 4: The Correlation between Two Flood Variables in A Matrix Format 

at Station (5222452). The Variables are Peak Flow (F), Duration (D), and 

Volume (V). 

 

The figure shows high dependency among flood variables, 

particular dependency between flood volume and duration was 

found very high at all stations. Association between peak flow and 

flood volume was also found very high at many stations. However, 

the relationship is relatively weak between duration and flow. The 

relationship varies over different stations. Highest correlation of 

0.96 between duration and volume was observed over station 

(5120401). It can be seen that most of the stations have a 

correlation above 0.5. In addition to this, flow and volume also 

have a good relationship where most of the stations have a 

correlation of above 0.5. Stations (6019411) have the highest cor-

relation of 0.99. It is important to mention here that station 

(5120401) which showed the highest correlation of 0.96 between 

duration and volume showed lower relationship in flow and vol-

ume (0.2). A negative correlation was also observed over station 

(5818401) for duration and flow and over station (5320438) for 

flow and volume. 

 

 
Fig. 5: Correlation between Flood Variables at Different Locations of 

Kelantan River Basin (F: Peak Flow; V: Volume; and D: Duration). 

 

4.5. Copula analysis of flood variables 

The pairs of flood variables were modeled using Gumbel copula. 

Obtained results are presented in Fig. 6. The figure demonstrates 

the bivariate return period of flood events over station (5120401) 

and station (5721442). The contour lines in the figure represent 

the return period of flood event while x and y-axis are different 

combinations of flood peak, volume, and duration. Red dots repre-

sent the observed data while grey dots represent the simulations. It 

can be seen that flood is more frequent at low return periods and 

duration of peak flood is low. The figures provide quick infor-

mation on volume, duration, and peak. For example, a flood vol-

ume of 2 km3 can generate a peak flow of around 8000 cm3/s at 2 

years return period. Similarly, a flood volume of 2 km3 can hap-

pen for 60 hours. On the other hand, a flood peak of 10,000 cm3/s 

can occur approximately in 75 hours. Similar types of information 

can be extracted from the figures of other stations. 
 

 

 

 
Fig. 6: Gumbel Copula of (A) Flood Peak and Volume; (B) Flood Volume and Duration; and (C) Flood Peak and Duration for Station (5120401) at The 
Upper Row and (D) Flood Peak and Volume; (E) Flood Volume and Duration; and (F) Flood Peak and Duration for Station (5721442) at the Lower Row. 
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4.6. Bivariate return period of flood variables 

The pairs of flood variables were modeled using Gumbel copula to 

estimate the joint return periods of flood variables. The joint re-

turn periods of flood variables at two catchments where flood 

peaks were found highest among all the catchments are shown in 

Fig. 7. The 10-year return amount of flood peak flow for flood 

volume of 6 km3 was found 10,125 and 13,094 m3/s at stations 

(5721442) and (5120401), respectively. This value is much high 

compared to a 10-year return period of peak flood flow estimated 

using the univariate distribution of peak flow. A similar discrep-

ancy was observed for a joint return and univariate return values 

of other flood variables. This indicates the importance of analysis 

of joint return period of flood variables for flood risk assessment. 

 

 
 

 
 

 
Fig. 7: Joint Return Period of Flood Variables at Two High Flood Suscep-
tible Locations of Kelantan River Basin: Peak Flood for Six Km3 Flood 

Volume (Upper); Flood Volume for Flood Duration of 300 Hours (Mid-

dle); Peak Flood Flow for Duration of 300 Hours (Lower). 
 

 

 
 

4.7. Local-scale flood risk based on joint return periods 

Flood risk in different locations of Kelantan River basin was as-

sessed based on flood volume generated per km2 of the area that 

contributing runoff to that point. The estimated volume was then 

used in copula function to estimate the joint return amount of peak 

flow and duration for that the flood for each station. The flood 

peak flow, volume, and duration at each location for three differ-

ent return periods namely, 10-, 50- and 100-year are shown in Fig. 

8. The higher values of flood variables at a station location 

indicate higher risk. The figure clearly shows the higher volume of 

flood water, high peak flow and long duration of flood for all the 

return period at station (5621401), which indicates a higher risk of 

flood devastation in this region of Kelantan basin compared to 

others. The triangular shape of the basin has made this location 

highly susceptible to flood. The areas in the vicinity of the stations 

were severely affected by floods in 2014. The results indicate the 

importance of the joint distribution of flood variables for assessing 

flood risk at gauged locations and thus, the spatial distribution of 

floods in river basins. 

 
Fig. 8: Flood Risk in Different Locations of Kelantan River Basin with 

(A) a 10-Year; (B) a 50-Year; and (C) a 100-Year Return Period. 
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5. Conclusion 

Destructive floods occur when high flood peak sustain for a longer 

period or huge volume of flood water inundates an area for a long-

er time. This emphasizes the need to study the joint distribution of 

flood variables together. In this study, three flood variables name-

ly; peak flow, duration, and volume were separately modeled by a 

probabilistic distribution function. The fitted models were linked 

using the concept of copula to construct joint bivariate distribution 

function of peak flow-duration, peak flow-volume, and volume-

duration. Based on KS, the different distribution fits were found 

for different flood variables. The correlation among flood varia-

bles including duration, volume and flow indicates that there is a 

good agreement between duration and volume, volume and flow. 

The results indicate that bivariate copula provides more infor-

mation on floods, which cannot be obtained by univariate flood 

frequency analysis. The novelty of the study is that the bivariate 

distribution of flood variables is used for the assessment of flood 

risk based on all the three flood properties together. The applica-

tion of the method at different gauging locations of Kelantan River 

basin was found to identify the higher flood risk areas efficiently. 

The spatial map of flood risk could not be generated due to the 

limited availability of river discharge data at a limited number of 

stations. Furthermore, the stations are not aligned according to 

sub-catchment outlets in the river basin and therefore, it was not 

possible to rank the sub-catchments according to flood risk. Such 

studies can be conducted in another river basin where data is 

available to show the efficacy of the method proposed in this 

study for flood risk analysis. 
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