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Flood wave propagation in steep mountain rivers

Gabriella Petaccia, Luigi Natale, Fabrizio Savi, Mirjana Velickovic,

Yves Zech and Sandra Soares-Frazão
ABSTRACT
Most of the recent developments concerning efficient numerical schemes to solve the shallow-water

equations in view of real world flood modelling purposes concern the two-dimensional form of the

equations or the one-dimensional form written for rectangular, unit-width channels. Extension of

these efficient schemes to the one-dimensional cross-sectional averaged shallow-water equations is

not straightforward, especially when complex natural topographies are considered. This paper

presents different formulations of numerical schemes based on the HLL (Harten–Lax–van Leer)

solver, and the adaptation of the topographical source term treatment when cross-sections of

arbitrary shape are considered. Coupled and uncoupled formulations of the equations are

considered, in combination with centred and lateralised source term treatment. These schemes are

compared to a numerical solver of Lax Friedrichs type based on a staggered grid. The proposed

schemes are first tested against two theoretical benchmark tests and then applied to the Brembo

River, an Italian alpine river, firstly simulating a steady-state condition and secondly reproducing the

2002 flood wave propagation.
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INTRODUCTION
Mathematical simulation of flood wave propagation in rivers

is a key tool for natural hazard studies. Nowadays the one-

dimensional shallow water model is still widely used in

field studies instead of more detailed two-dimensional

models. This is due to practical and economical reasons:

in fact the acquisition of the river topography is the very

cost of flood propagation studies, the numerical simulation

represents a minor cost. Usually ground surveys are used

to model the geometry of mountain rivers since the cost of

high precision light detection and ranging (LiDAR) surveys

and of image post processing, needed to identify the bare

soil, is seldom justified. Then, the airborne survey of large

alluvial rivers requires an integrative bathymetric survey of

the submerged riverbed and the total cost of the study

would become unaffordable when very long river reaches

have to be considered. So, we can consider that 1D

models are still profitable for many real world applications.
Applications of 1D unsteady flow models to real world

situations can be found in classical textbooks, such as Mah-

mood & Yevjevich () and Cunge et al. (), or in

recent scientific literature where rivers with rather mild

slopes and slowly varying cross-sections are considered

(Yoshida & Dittrich ; Helmio ; Remo & Pinter

; He et al. ; Wright et al. ).

The studies mentioned above generally consider rivers

flowing in alluvial plains; nonetheless hydraulic studies

for evaluation of natural hazard in newly proposed devel-

opment areas are becoming of paramount importance in

many European countries. Indeed, mountain valleys

have been densely inhabited for centuries: the population,

who in ancient time feared inundations and settled on

the mountainside, is now compelled to use the bottom

of the valley due to lack of space suitable for urban

development.
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To cope with the simulation of flood propagation in

mountain rivers, the model should be capable of calculating

unsteady flows presenting transcritical regime in a very irre-

gular bed with abrupt shape changes, adverse-slope reaches

and chutes.

When transcritical flow occurs, the shallow-water

equations (SWE) need to be solved using algorithms

which can handle discontinuities such as transonic/transcri-

tical flows and propagating shocks. Many authors refer to

Godunov-type schemes (Godunov ; Roe ; Le

Veque ; Alcrudo & Garcia Navarro ; Hirsh ;

Glaister ; Savic & Holly ; Toro ).

The results of these schemes are often presented for very

simple geometries (rectangular and horizontal channels),

while the applications to complicated topographies still

need some work (Garcia Navarro et al. ; Wang et al.

; Ying et al. ). Indeed, in such cases the source

terms, e.g. bed topography and bed resistance, play the

most important role (Garcia Navarro & Vasquez Cendon

). In flows over irregular topographies, common algor-

ithms tend to balance incorrectly the hydrostatic force

acting on the lateral and bottom boundaries of the finite

volume considered (Capart et al. ).

To address these problems, Hubbard & Garcia Navarro

() presented upwind schemes with decomposed source

terms applied to one-dimensional open channel flow cases

with general non-prismatic and non-rectangular geometries.

These schemes were later extended by Vukovic & Sopta

(). Liang & Marche () developed a well-balanced

numerical scheme for simulating frictional shallow flows

over complex domains involving wetting and drying, solving

the equations in a Godunov-type finite-volume framework,

considering pressure balancing. They showed that non-nega-

tive reconstruction of Riemann states and compatible

discretization of slope source term produce stable and

well-balanced solutions to shallow flow hydrodynamics

over complex topography.

The concept of well-balanced scheme was first intro-

duced by Greenberg & Le Roux () with a numerical

scheme adapted to a scalar conservation law that preserves

the balance between source terms and internal forces. How-

ever, the principle of well-balanced schemes, without

naming it explicitly, was already explored earlier by Roe

(). Later the concept was extended to more general
://iwaponline.com/jh/article-pdf/15/1/120/386906/120.pdf
hyperbolic systems. Lhomme & Guinot () proposed

an approximate Riemann solver for the solution of the

hyperbolic systems of conservation laws with source

terms, taking into account the source terms in the governing

equations for the Riemann invariants. Finaud-Guyot et al.

() then introduced PorAs, a new approximate-state Rie-

mann solver, to solve problems involving topography- and

porosity-driven source terms. These schemes were applied

to the shallow water equations, comparing the results with

the classical HLLC (Harten–Lax–van Leer–Contact) solver

and showing the improvement obtained with the new

schemes.

Lee & Wright () proposed a simple and efficient

method to solve the one-dimensional shallow water

equations with source terms, with a homogeneous form of

the shallow water equations and a modification of well-

known conservative numerical schemes to solve the new

form of the equations. This modification to the homo-

geneous form combines the source term with the flux

term. As a result, the source terms are automatically discre-

tized to achieve perfect balance with the flux term without

any special treatment and the method does not introduce

numerical errors. The proposed method is verified against

several benchmark tests and shows strong agreement with

the analytical solutions.

Moving to a higher order of accuracy, Tseng () pro-

posed a scheme based on the finite-difference flux-limited

total variation diminishing (TVD) and developed a simple

approach to handle the source terms for the one-dimen-

sional open channel flow simulation with rapidly varying

bed topography. Caleffi et al. () proposed a well-

balanced central weighted essentially non-oscillatory

(CWENO) method, fourth-order accurate in space and

time, for shallow water system of balance laws with bed

slope source term, extending the applicability of the stan-

dard CWENO scheme to very irregular bottoms,

preserving high-order accuracy. Vignoli et al. () pre-

sented a high-order ADER (Arbitrary high-order schemes

using DERivatives) numerical scheme for solving the one-

dimensional shallow water equations with irregular bed

elevation. The governing equations are expressed in terms

of water level, instead of water depth, and discharge. Non-

oscillatory results are obtained for discontinuous solutions

both for steady and unsteady cases. The resulting schemes



Figure 1 | Brembo River location.
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can be applied to solve realistic problems characterized by

uneven bottom topography.

However, all these research efforts have generally

focused on the shallow-water equations written for a unit-

width channel, i.e. with the simplified variables h and

q¼ uh (Tseng ; Caleffi et al. ; Liang & Marche

; Xing & Shu ; Pu et al. ). Extension to the

cross-section averaged equations, i.e. with the variables

A and Q¼AV is not straightforward. This issue is addressed

in the present work.

Moreover it has to be pointed out that the greatest

part of the numerical schemes discussed above do not

evaluate realistic discharges even if applied to almost

simple cases.

The present work is focused on testing the suitability of

some one-dimensional first-order accurate finite-volume

schemes to a real-world case study, highlighting what diffi-

culties arise when very irregular topographies are

considered. This paper suggests a way of overcoming these

shortcomings that can arise in practical applications and

that are seldom shown in scientific literature.

The tested schemes consist of a finite-difference

scheme and different finite-volume schemes with HLL

(Harten–Lax–van Leer) fluxes computation. The topogra-

phical source terms are written in coupled or uncoupled

form and these terms are discretized either in centred or

lateralized form. As a very challenging case, because of

the steep slope and abruptly changing cross-sections, the

Brembo River was chosen to compare the numerical

schemes. First, a steady flow analysis is performed to high-

light the difficulties posed by the Brembo River case study

and a modification to the classical mass flux expression is

proposed to overcome the observed problems. Finally, a

severe flood is simulated and the results are discussed

and compared to field measurements.
Figure 2 | Cross-section width, evaluated for Q¼ 400 m3 s�1, and bed profile along the

thalweg.
THE BREMBO RIVER

The Brembo River is a 50.74 km long Alpine river located in

Northern Italy (Lombardy Region), see Figure 1. It is a tribu-

tary of the Adda River that flows from Como Lake to the Po

River. It is a very challenging river. Because of the many

singularities of its riverbed – steep and adverse slopes
om http://iwaponline.com/jh/article-pdf/15/1/120/386906/120.pdf
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(Figure 2), control structures and check dams, successive

enlargements and constrictions (for example width

reductions of a factor 10 over a 100-metre distance) – the

Brembo River is difficult to deal with and it is used here

as a benchmark for validation of numerical methods.

On 25–28th November 2002, due to heavy rainfalls in

this Alpine Region, a significant flood came down from

the mountains to the Brembo and Adda rivers, inundating
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a wide portion of the riverside and the city of Lodi. Due to

the presence of many small mountain tributaries, the peak

discharge along the Brembo River increased significantly

from upstream to downstream. During the November 2002

event, at San Pellegrino gauging station a peak discharge

of about 800 m3 s�1 was measured while about 1,100 m3 s�1

was measured further downstream, at Ponte Briolo (see

Figure 3). After the flood event, maximum water elevations

were measured in some points along the river.

A set of 274 cross-sections obtained by land survey

defines the geometry of the river channel. The average

distance between the cross-sections is 180 m. Values of Man-

ning’s coefficient nM , ranging from 0.018 to 0.100 m�1/3 s,

were estimated from land-use maps, mean particle size of

the river bedmaterial and photographs of the riverbank revet-

ments according to Arcement & Schneider ().

The flood hydrograph in the upstream section was

reconstructed as illustrated in Figure 4, while the contri-

bution of the numerous small mountain tributaries is

considered as a distributed lateral inflow, and the down-

stream boundary condition is the stage-discharge

relationship at the confluence with the Adda River.
Figure 4 | Boundary conditions of the Brembo model: inflow hydrograph and stage-

discharge relationship at the confluence with Adda river.
GOVERNING EQUATIONS

The model is based on the shallow-water equations written

in conservative form (Cunge et al. ):

@U
@t

þ @F Uð Þ
@x

¼ S Uð Þ (1)
Figure 3 | Discharge measurement at San Pellegrino and Ponte Briolo stations.

://iwaponline.com/jh/article-pdf/15/1/120/386906/120.pdf
where U is the vector of hydraulic variables, F the vector of

fluxes, and S the vector of source terms. The vectors U and F

are defined as

U ¼ A
Q

� �
, F Uð Þ ¼

Q
Q2

A
þ gI1

0
@

1
A ¼ Q

Σ

� �
, (2)

where x is the spatial co-ordinate measured along the chan-

nel, t is the time, g is the gravitational acceleration, A is the

cross-section wetted area, and Q is discharge. The term I1
accounts for the hydrostatic pressure:

I1 ¼
ðh
0

h� ηð Þb ηð Þdη (3)

where b is the cross-section width at a given level η above

the thalweg and h is the water depth (Figure 5).

Two different forms for the vector S(U) in (1)

were analyzed. The first one, that will be referred



Figure 5 | Definition of the variables linked to I1 and I2.
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to as the uncoupled formulation of the momentum

equation is

S Uð Þ ¼ 0
gA S0 � Sfð Þ þ gI2

� �
¼ 0

Su

� �
(4)

where Su denotes the uncoupled source term formulation,

S0 is the bed slope and Sf is the friction slope calculated

by Manning’s formula as:

Sf ¼
n2
MV2

R4=3
(5)

where V is the averaged velocity and R the hydraulic

radius. The function I2 accounts for the width-variation

effects:

I2 ¼
ðh
0

h� ηð Þ @b ηð Þ
@x

dη (6)

where the topography varies smoothly, the respective

contributions of the bottom slope and cross-

section width variations can be determined without

problems.

The second form of the vector S(U) is an alternative

form that is more suited where the bottom slope is not

clearly defined, due to the irregular shape of the cross-sec-

tions. This formulation will be addressed in the following

as the coupled formulation, already introduced by Cunge

et al. (). It is obtained as follows. Through Leibniz

integral rule for differentiation of a definite integral

whose limits are functions of the differential variable,

and considering expression (6) defining I2, the derivative
om http://iwaponline.com/jh/article-pdf/15/1/120/386906/120.pdf
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of I1 expressed as (3) may be obtained as:

@I1
@x

¼ A
@h
@x

þ I2 (7)

If the derivative of I1 is taken for a constant water level

�z, we obtain:

@I1
@x

����
�z
¼ I2 þAS0 (8)

Substituting expression (8) in the momentum equation

we obtain the coupled form of the source term (Soares-

Frazão ; Capart et al. )

S Uð Þ ¼
0

�gASf þ g
@I1
@x

����
�z

0
@

1
A ¼ 0

Sc

� �
(9)

where Sc denotes the coupled source term formulation. Fol-

lowing the definition in (7), I2 will be calculated in the

following as the derivative of I1 for a constant water depth
�h (i.e. @h=@x ¼ 0).

I2 ¼ @I1
@x

����
�h
�A

@h
@x

����
�h
¼ @I1

@x

����
�h

(10)
NUMERICAL SCHEMES

Finite-difference scheme: SANA

This numerical scheme consists of a semi-implicit

first-order scheme applied on a staggered grid (Figure 6):

the wetted area Ai is defined at nodes i while the dis-

charge Qiþ1/2 is defined at mid-distance between the

nodes. This scheme, that has a structure similar to the

Abbott-Ionescu scheme (Abbot & Ionescu ), was

developed by Natale & Savi () modifying the

scheme proposed by Sielecki (). It is intuitive from

the physical point of view and easy to implement (Petac-

cia & Savi ).

The momentum equation in (1) with the uncoupled

source term formulation Su is solved in a fully explicit



Figure 6 | The finite-difference scheme.
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way, except for the source term:

Qnþ1
iþ1=2 ¼ Qn

iþ1=2 � ΔtMn
iþ1=2 �

Δt
Δxiþ1=2

gIn1,iþ1 � gIn1,i�1

� �
þ ΔtSn�u,iþ1=2 (11)

The term Mn
iþ1=2 corresponds to the spatial derivative of

the momentum flux @=@x Q2=A
� �

. It is evaluated in a

upstream way on iþ 1/2 for supercritical flows and in a cen-

tered way on iþ 1/2 for subcritical flows according to a

parameter s that depends on the Froude number Fr¼V/c,

where c ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
gA=B

p
and B is the cross-section width at the

free surface. This yields for Mn
iþ1=2

Mn
iþ1=2 ¼ 1

xiþ1=2þs � xi�1=2
� � α Q2

Â

����
n

iþ1=2þs
�Q2

Â

����
n

i�1=2

 !
(12)

with

Ân
iþ1=2 ¼ 0:5 An

i þAn
iþ1

� �
(12a)

and

s ¼ 0
1

if
if

Frniþ1=2

��� ��� � 1

Frniþ1=2

��� ���< 1

8<
:

9=
; (12b)

α ¼ 1 if Frniþ1=2 > 0

�1 if Frniþ1=2 < 0

(
(12c)

In the source term Sn
�

u, iþ1=2 of (11), superscript n*

denotes that the friction term is evaluated in a mixed explicit

and implicit way while the topographical source terms are

evaluated in an explicit way. The friction term Sf is
://iwaponline.com/jh/article-pdf/15/1/120/386906/120.pdf
discretized as

Sn
�
fiþ1=2

¼
n2
MQnþ1

iþ1=2jQnþ1
iþ1=2j

Ân
iþ1=2

� �2
R̂n

iþ1=2

� �4=3 (13a)

with

R̂n
iþ1=2 ¼ 0:5 Rn

i þ Rn
iþ1

� �
(13b)

The topographical source terms are represented by

means of the uncoupled formulation (4) and are discretized

in Sn
�

iþ1=2 in an explicit and centred way:

gAS0ð Þn�
iþ1=2¼ �gA

@zb
@x

� �n�

iþ1=2
¼ �gÂn

iþ1=2
zb,iþ1 � zb,i
Δxiþ1=2

(14a)

gI2ð Þn�
iþ1=2¼ g

@I1
@x

����
�h

� �n�

iþ1=2

¼ g
I1,iþ1

��
hi
�I1,i

��
hi

Δxiþ1=2
(14b)

where zb is the bottom elevation. In (14b), I2 is calculated as

the derivative of I1 for a constant water depth hi according

to (10) and (3).

Finally, the continuity equation is solved in an implicit

way and reads

Anþ1
i ¼ An

i �
Δt
Δxi

Qnþ1
iþ1=2 �Qnþ1

i�1=2

� �
(15)

Finite-volume schemes

System (1) is discretized over a domain divided into compu-

tational cells assuming constant values of the conserved

variables A and Q over each cell (Figure 7(a)). In contrast

to the previous finite-difference scheme where variables

are defined at the nodes, the variables are defined here

over an entire cell, as cell-averaged values. The governing

equations are then solved by means of a first-order finite-

volume scheme that can be written in vector form as

Unþ1
i ¼ Un

i �
Δt
Δx

F�
iþ1=2 � F�

i�1=2

� �
þ Si�Δt (16)

The unknowns are the variables at time level nþ 1, i.e.

Anþ1
i and Qnþ1

i , assumed constant over the cell in a first-

order scheme. The mass and momentum fluxes, F�
i�1=2 and



Figure 7 | (a) Spatial discretization; (b) definition of the variables in a x–t system.
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F�
iþ1=2, are calculated at the cell interfaces. Fluxes and topo-

graphical source term calculations are detailed in the next

sections. It must be pointed out that here both the

uncoupled formulation Su and the coupled formulation Sc
can be used for the source term. The friction term Sf is eval-

uated in a mixed explicit and implicit way as

Snþ1
fi

¼ n2Qnþ1
i jQnþ1

i j
An

i

� �2 Rn
i

� �4=3 (17)

Flux calculation by HLL solver

In the HLL scheme (Harten et al. ) the fluxes F* at the

interface between two computational cells are calculated as

the solution of an approximate Riemann problem between

two distinct constant states UL at the left side and UR at the

right side (Figure 7(b)). Twowaves of speed λL and λR, respect-

ively, are issued from the initial discontinuity betweenUL and

UR. In the originalHLLmethod, the solution is approximated

as a constant intermediate state denoted U* in the so-called

star region between the two waves λL and λR. Following

Toro (), the sought flux F* in this star region is calculated

as:

F� ¼
FL if λL � 0

FHLL ≡
λRFL � λLFR þ λRλL UR �ULð Þ

λR � λL
if λL � 0� λR

FR if λR � 0

8>><
>>:

(18)
om http://iwaponline.com/jh/article-pdf/15/1/120/386906/120.pdf
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with the wave speeds λL and λR defined following Toro ()

by means of synthetic expressions accounting for both sub-

and supercritical cases and including an entropy fix to

handle the critical point where the Froude number Fr¼ 1:

λL ¼ VL � cLwL

λR ¼ VR þ cRwR
(19)

In (19), wK (K¼ L, R) is a weight function given by:

wK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

h� þ hKð Þh�

h2
K

� �s
if h� > hK

1 if h� � hK

8><
>: (20)

Depth h* is an estimate for the exact solution of h in the

star region between the two waves λL and λR:

h� ¼ 1
g

1
2

cL þ cRð Þ þ 1
4

VL � VRð Þ
� �2

(21)

Numerical treatment for the uncoupled topographical
source terms

The uncoupled topographical source terms correspond to

the formulation (4) of the source term of the momentum

equation, i.e. gAS0þ gI2. These terms, which are evaluated

within the source term S�
i of (16), can be discretized either

in a centred way or in a lateralized way following the

scheme proposed by Fraccarollo et al. ().

In the centred scheme, the spatial derivative is centred

on cell i:

gAS0ð Þi¼ �gA
@zb
@x

� �
i
¼ �gAi

zb,iþ1 � zb,i�1

2Δx
(22a)

gI2ð Þi¼ g
@I1
@x

����
�h

� �
i
¼ g

I1,iþ1
��
hi
�I1,i�1

��
hi

2Δx
(22b)

As for (14b) in (22b), I2 is calculated as the derivative of

I1 for a constant water depth hi according to (10) and (3).

In lateralized schemes, weighting factors linked to the

wave propagation speeds are applied to the topographical

source term, resulting in a formulation close to an upwind



127 G. Petaccia et al. | Flood wave propagation in steep mountain rivers Journal of Hydroinformatics | 15.1 | 2013

Downloaded from http
by guest
on 20 August 2022
scheme (Bermudez & Vasquez ) for the momentum

equation. In the lateralized scheme of Fraccarollo et al.

(), denoted LHLL scheme, the derivatives are evaluated

over the distance Δx between the two cell interfaces. The

value of the variable at each interface is estimated in an

upwind way, with weights λL and λR corresponding to the

HLL wave-speed estimators (19). It must be noted that the

values of λL and λR are distinct for the iþ 1/2 and i� 1/2

interfaces

gAS0ð Þi¼

� g
Δx

Ai
λRzb,i � λLzb,iþ1

λR � λL

� �
iþ1=2

� λRzb,i�1 � λLzb,i
λR � λL

� �
i�1=2

" #

(23a)

As in (22b), I2 is calculated as the derivative of I1 for a

constant water depth �h

gI2ð Þi¼

g
Δx

λRI1,i
��
hi
�λLI1,iþ1

��
hi

λR�λL

 !
iþ1=2

�
λRIi,i�1

��
hi
�λLI1,i

��
hi

λR�λL

 !
i�1=2

2
4

3
5

(23b)

Numerical treatment for the coupled topographical source
terms

The coupled topographical source terms correspond to for-

mulation (9) of the momentum equation, where the

topographical effects are represented by the spatial derivative

of I1 at a constant level z, i.e. @=@x gI1ð Þjz.
As already outlined, coupling the topographical source

terms as in (9) is more suited to natural topographies with

steep slopes and severe variations of cross-section width.

Again, this term can be discretized either in a centred or

lateralized way.

In the centred scheme the spatial derivative is centred

on cell i :

@I1
@x

����
�z

� �
i
¼

I1,iþ1
��
�zi
�I1,i�1

��
�zi

2Δx
(24)

Using the LHLL approach of Fraccarollo et al. (),

the discretization of the topographical source term in the
://iwaponline.com/jh/article-pdf/15/1/120/386906/120.pdf
lateralized scheme, reads:

@I1
@x

����
�z

� �
i
¼

1
Δx

λRI1,i
��
zi
�λLI1,iþ1

��
zi

λR�λL

 !
iþ1=2

�
λRI1,i�1

��
zi
�λLI1,i

��
zi

λR�λL

 !
i�1=2

0
@

1
A

(25)

As for the uncoupled source terms, this consists of eval-

uating the derivative over a distance Δx between the two cell

interfaces. The value of I1jz at each interface is estimated in

a lateralized way, with weights corresponding to the HLL

discretization of the fluxes.
Boundary conditions

The boundary conditions considered for the applications

consist of a prescribed discharge or hydrograph at the

upstream end and a prescribed water level at the down-

stream end of the model. The treatment of the upstream

boundary condition for the finite-difference model SANA

and the finite-volume schemes are presented briefly.

For SANA, following (Natale et al. ), when flow is

supercritical at the time level nþ 1, two conditions are

required: here, the discharge and the upstream Froude

number are provided as Qnþ1
UB and Frnþ1

UB . From there, the

hydraulic variables at the upstream boundary Qnþ1
1=2 and

Anþ1
1 are calculated as functions of the prescribed values using

Qnþ1
1=2 ¼ Qnþ1

UB and Frnþ1
UB ¼

Qnþ1
UB 1=2

Anþ1
1

ffiffiffiffiffiffiffiffi
gh1

q (26a)

where �h1 is evaluated as Anþ1
1 =Bnþ1

1 .

When the flow is subcritical only Qnþ1
UB is needed to

obtain

Qnþ1
1=2 ¼ Qnþ1

UB (26b)

In this process, the geometry of the virtual section at the

upstream boundary (position 1/2) has not to be defined

explicitly. As illustrated in Figure 6, the cross-section is

known at the locations i.
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For the finite-volume schemes with HLL fluxes, we

obtain, for supercritical flows

F�
1=2 ¼ Qnþ1

UB

Σnþ1
UB

 !
(27a)

where the momentum Σnþ1
UB ¼ f Qnþ1

UB , Frnþ1
UB

� �
is computed

using the known geometry of section at position 1 and the

prescribed discharge and Froude number. The treatment

for subcritical flow is defined by means of the characteristics

as (Soares-Frazão ):

F�
1=2 ¼ Qnþ1

UB

Σn
1 þ vþ cð Þn1 Qnþ1

UB �Qn
1

� �
 !

(27b)

The treatment of the downstream boundary conditions

follows directly.
Summary of the tested schemes

A total of five schemes with different source term discretiza-

tion have been tested: four of them use HLL numerical

solver. All the tested schemes are capable of maintaining

the water at rest when used on simple rectangular cross sec-

tions. The aim of this paper is to apply the considered

schemes to irregular geometries.

For clarity, the code names of each scheme are summar-

ised in Table 1. The discretization is either FV for

finite-volumes following Equation (16) or FD for the finite-

difference scheme of Equations (11)–(15). In the name of

the scheme HLL-XX, the first X-letter U or C describes the

source terms as uncoupled or coupled while the second X-

letter stands for centred or lateralized.
Table 1 | Summary of numerical schemes

Name Discretization Source terms

SANA FD Centered

HLL-UC FV Centered

HLL-UL FV Lateralized

HLL-CC FV Centered

HLL-CL FV Lateralized

om http://iwaponline.com/jh/article-pdf/15/1/120/386906/120.pdf
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For all the tests that will follow, a constant value of

CFL¼ 0.8 will be used to guarantee stability.
CLASSICAL VALIDATION TEST CASES

Bump

The schemes listed in Table 1 are applied to simulate steady

flow in the well-known ‘bump’ test case that was proposed

by Goutal & Maurel () in the CADAM project – Con-

certed Action on Dam Break Modelling – (Soares-Frazão

et al. ) and by many other researchers (Vazquez-

Cendon ; Zhou et al. ; Valiani et al. ; Ying

et al. ; Aricò & Tucciarelli ). One of the challenges

of this test concerns the computed discharge: indeed, many

first and second order accurate, one- and two-dimensional

schemes fail in reproducing the constant discharge across

the bump: see for example Schippa & Pavan (), Kuiry

et al. (), Wang et al. (), Pu et al. (), and Ying &

Wang ().

The shape of the bump is illustrated in Figures 8(a)

and 8(b). A mesh interval of Δx¼ 0.1 m was used in the

computations. A discharge Q¼ 0.18 m3 s�1 was imposed

at the upstream boundary and a water level of 0.33 m

was specified as the downstream boundary condition.

The case is frictionless, the initial water elevation is

0.33 m and the discharge is nil. The simulation continued

until the steady state is achieved. The semi-analytical

reference solution is given, for example, in Goutal &

Maurel () and is obtained by solving the Bernoulli

equation.

For the sake of shortness of the paper, in Figures 8(a)

and 8(b) the computed water-surface profile and energy

grade line are compared to the analytical solution (black

lines) only for SANA and HLL-CL schemes. All the com-

puted results are in good agreement with the semi-

analytical solution for the water level, regardless of the topo-

graphical source terms discretization, except for some

irregularities at the beginning and at the end of the bump.

Indeed, the water level is correctly predicted as well as the

shock position, except for SANA (Figure 8(a)) that antici-

pates its location.



Figure 8 | (a) Water level (lower curve) and total head (upper dashed curve) for the bump

test case: SANA (grey line) and analytical solution (black line). (b) Water level

(lower curve) and total head (upper dashed curve) for the bump test case:

HLL-CL (grey line) and analytical solution (black line).
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However, the discharge is not perfectly constant with

the consequence that the energy grade line is not well repro-

duced. This can be seen in Table 2 providing the mean

square errors of water level, discharge and total head, com-

puted across the bump for the portion of the flume between

8.0 and 12.5 m, as indicated in Figures 8(a) and 8(b) with the

vertical lines. It is interesting to note that while SANA fails

in computing the right position for the hydraulic jump, it

reproduces perfectly the constant discharge.
Table 2 | Bump case. Mean square errors for the water level zw, the computed discharge

Q and the hydraulic head H

SANA HLL-UC HLL-UL HLL-CC HLL-CL

zw (m) 0.038 0.004 0.013 0.004 0.008

Q (m³/s) 0.000 0.008 0.010 0.008 0.008

H (m) 0.016 0.006 0.005 0.005 0.003

://iwaponline.com/jh/article-pdf/15/1/120/386906/120.pdf
Water at rest

The schemes listed in Table 1 were then applied to verify the

static equilibrium condition, testing the ability for the

schemes to maintain water at rest over an irregular topogra-

phy. As introduced by Vasquez-Cendon (), a necessary

condition for the static equilibrium, also called C-property,

is to perfectly balance the hydrostatic pressure term and

the topographical source term.

A reach with a particularly uneven bed was chosen; the

river’s topography was modelled by 129 cross-sections,

spaced approximately 50 m, with cross-sections width ran-

ging from 40 to 321 m in 5.67 km, with abrupt changes in

the bed slope (see Figure 9). The condition of water at rest

was imposed with a water elevation of 490 m a.s.l. and wall

boundary conditions at the upstream and downstream end.

A constant Manning coefficient of 0.04 m s�1/3 was adopted.

Among all the presented schemes only SANA is capable

of keeping water at rest without giving unrealistic oscil-

lations, as can be seen in Figure 10. This will be discussed

in the next section.
CONSERVATIVE FORMULATION OF THE MASS FLUX

Among the pioneering work in the field of well-balanced

schemes, Nujic () proposed a simple and practical sol-

ution to avoid unrealistic oscillations of the free surface

for water at rest on irregular topographies. His solution

was developed for the 1D shallow-water equations written

for unit-width rectangular channels. Although originally pre-

sented for Lax scheme, this solution has been adapted to

most classical schemes (e.g. Capart et al. ; Lee &

Wright ). Instead of considering the difference of the

water depth in Equation (18) of the mass flux, he suggested

to use the difference in water levels. For the HLL scheme,

this would be:

q� ¼ λRqL � λLqR þ λLλR zw,R � zw,L
� �

λR � λL
(28)

with q* the unit-width mass flux, qL and qR the unit-width

discharges in the left and right cells, respectively, and zw,L

and zw,R the corresponding water levels.



Figure 10 | Results for the water at rest test case.

Figure 11 | Difference in wetted area.

Figure 9 | Initial conditions for the water at rest test case.

Table 3 | Bump case. Mean square errors for the water level zw, the computed discharge

Q and the hydraulic head H computed according to (30)

HLL-UC
mod(30)

HLL-UL
mod(30)

HLL-CC
mod(30)

HLL-CL
mod(30)

zw (m) 0.014 0.004 0.008 0.004

Q (m3 s�1) 0.003 0.007 0.003 0.005

H (m) 0.003 0.006 0.003 0.004
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The proposed solution consists of transposing this tech-

nique to the shallow-water equations written in terms of

wetted area A and discharge Q. Following (18) the mass

flux expression should be:

Q� ¼ λRQL � λLQR þ λLλR AR �ALð Þ
λR � λL

(29)

As illustrated in Figure 11, significant variations are

observed in the wetted area between two consecutive cross-

sections with very comparable water levels. As a conse-

quence, the large difference (AR–AL) induces spurious

variations of the computed mass flux (29) that results in a

wrong balance of the mass conservation equation, leading

to an incorrect computed water surface. The proposed
om http://iwaponline.com/jh/article-pdf/15/1/120/386906/120.pdf
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transposition of Nujic’s technique to (29) considers the differ-

ence of the hatched areas only. If we define AL,�z and AR,�z as

the wetted area in cross-sections L and R respectively, calcu-

lated with the mean water level �z ¼ zw,R þ zw,L
� �

=2, the

expression for the mass flux becomes:

Q� ¼ λRQL � λLQR þ λLλR AR �AR,�z
� �� AL �AL,�z

� �
 �
λR � λL

(30)

Applying this modification to the four HLL schemes of

Table 1 yields the results presented in Table 3. All schemes

now reproduce the correct position of the hydraulic jump,

with an improvement at the upstream and downstream

ends of the bump. Figures 12 shows the results computed



Figure 12 | Water level (lower curve) and total head (dashed upper curve) for the Bump

case: HLL-CL modified according to (30) (grey line) and analytical solution

(black line).
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with the modified mass flux Equation (30) for the HLL-CL

scheme applied to the bump case.

HLL-CC and HLL-CL schemes modified by Equation

(30) reduce the errors in computed discharge. Also the cal-

culated water profile and the energy grade line better

match the reference solution.

Since the modification of Equation (30) brought signifi-

cant improvements to the bump test case, it was also

tested on the water at rest test case (see Figures 13(a) and

13(b)). The proposed modification improves the results for
Figure 13 | (a) Water at rest with the improved mass flux. (b) Discharge with the

improved mass flux.

://iwaponline.com/jh/article-pdf/15/1/120/386906/120.pdf
all the schemes even if the most significant improvement

is found for HLL-CL that now keeps the water completely

at rest.

The uncoupled formulations (HLL-UC and HLL-UL) do

not satisfy the equilibrium condition when the cross-sections

are very irregular, regardless of the discretization used for

the topographical source terms. The reason is as follows:

for water at rest, the momentum equation in system (1)

with source term written with the uncoupled formulation

(4) reduces to:

g
@I1
@x

¼ gAS0 þ gI2 (31)

If the topography is very uneven, the discretization of

(31) such as (22a–22b) or (23a–23b) will not provide the

right balance. This reason was already invoked by Capart

et al. () to prefer the coupled formulation (9) in the

case of irregular topography.

Regarding the coupled formulations (HLL-CC and HLL-

CL), as introduced by Fraccarollo et al. (), only the later-

alized discretization HLL-CL of the source term allows to

perfectly balance the momentum equation (Soares-Frazão

). Indeed, in the HLL-CC scheme, the source term is dis-

cretized over 2Δx, leading to an imbalance with the

hydrostatic pressure terms in the momentum fluxes if the

differences between the successive cross-sections are too

important.

From the preceding results, it appears that the HLL-CL

scheme with modification (30) is the most appropriate

among the finite-volume schemes. This modified scheme

will be from now on denoted CLHLL, the acronym standing

for Conservative Lateralized HLL scheme.
BREMBO RIVER CASE STUDY: STEADY-STATE FLOW

To check the different considered numerical integration

schemes of the SWE when applied to very uneven and

steep water courses, a steady flow in the Brembo River is

investigated. This steady flow is calculated by means of the

unsteady flow schemes CLHLL, SANA and HLL-CL by

imposing a constant discharge at the upstream boundary

and starting from a dry bed initial condition.
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The reference solution on the other hand is obtained by

means of the steady-state version of HEC-RAS (Brunner

), which integrates the Energy equation with the stan-

dard step method and the Momentum equation to

evaluate head losses (flow through bridges or culverts)

and to locate hydraulic jumps. These steady-flow results

were compared to the results obtained using the research

code FRESCURE developed by Natale & Savi () that

is also based on the same equations. No differences were

found between these two sets of steady-flow results, allow-

ing the use of the HEC-RAS solution as a reference

solution.

Steady-state simulations are run with a constant

400 m3 s�1 discharge – corresponding to the 35-year

return period peak flood for the upstream station of

Lenna – on the whole 50 km long reach discretized by

1,135 cross-sections, obtained by interpolating the 274

cross-sections obtained by land survey: the reaches where

the flow is supercritical (grey colour) and the positions

of the 49 bridges and 11 diversion weirs (arrows) crossing

the river are illustrated in Figure 14. This Figure clearly

shows that transitions from sub- to supercritical flow and

vice versa are very frequent.
Water level

All schemes provide at first sight a good estimate of the water

elevation. However, closer looks reveal significant differences

at some locations featuring strong variations of the
Figure 14 | Identification of the supercritical flow areas in the Brembo River for a dis-

charge of 400 m3 s�1 (grey areas) and bridge positions (arrows).
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topography. Four reaches (1.8–2.3, 23.0–24.0, 34.7–37.0

and 43.0–48.0 km) representative of the most difficult situ-

ations encountered in the river, are analysed in more

detail. Results for the second and the third reach are illus-

trated in Figures 15(a) and 15(b).

In the above mentioned figures the critical elevation

(F¼ 1) and the reference solution are also shown.

We note that SANA and CLHLL provide smooth sol-

utions, while the HLL-CL scheme produces unphysical

irregularities of the free-surface elevation, located

where either bed elevation or cross-section width rapidly

change.

In the reach shown in Figure 15(b), the check dam

located at x¼ 35.1 km results in an abrupt lowering of the

river bottom, followed by an adverse step; downstream the

river maintains an almost critical slope. Following the refer-

ence solution, the water surface is almost horizontal in the

pond downstream from the dam. This is reproduced by the

finite-difference scheme SANA that however overestimates

the water level, and predicts a wrong spilling of the water

over the check dam, as illustrated by the sudden drop in

water level. The HLL-CL scheme completely fails the simu-

lation, while the CLHLL scheme provides results that are

very close to the reference solution, with a realistic spilling

over the check dam.

The results for all the schemes listed in Table 1 are given

in Table 4 as the mean square error, in metres, between the

reference solution and the scheme considered.

Dimensional errors are easily compared with the 1.00 m

hydraulic freeboard of the Brembo River. The mean square

errors listed in Table 4 are lower than 1 m, but in some

locations errors exceed the prescribed hydraulic freeboard,

as shown in Table 5.

Discharge

Discharges computed by SANA, HLL-CL and CLHLL

schemes are illustrated in Figure 16. The discharge com-

puted by the finite-volume schemes is far from being

constant. SANA on the other hand reproduces the pre-

scribed value of 400 m3 s�1.

The different behaviours of the finite-volume and

finite-difference schemes can be explained as follows. In

the finite-volume discretization of the shallow-water



Table 4 | Brembo River. Mean square error of the computed water elevations (in metres)

Reach Length SANA HLL-CL CLHLL

1 km 1.8–km 2.3 0.493 0.744 0.581

2 km 23.0–km 24.0 0.446 0.622 0.508

3 km 34.7–km 37.0 0.431 0.765 0.528

4 km 43.0–km 48.0 0.259 0.375 0.282

Table 5 | Brembo River. Maximum error of the computed water elevations (in metres)

Reach Length SANA HLL-CL CLHLL

1 km 1.8–km 2.3 1.333 �1.526 0.950

2 km 23.0–km 24.0 1.166 1.847 1.099

3 km 34.7–km 37.0 1.560 3.293 �1.932

4 km 43.0–km 48.0 1.644 1.188 �1.491

Figure 15 | (a) Longitudinal profile from x¼ 23 km to 24 km; above: width variation. (b) Longitudinal profile from x¼ 34.7 km to 37 km.

Figure 16 | Discharge profile for the entire Brembo River.
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equations the variable Qi shown in Figure 16 is evaluated to

conserve the momentum or specific force in the discrete

form of Equations (1) and (2). This value is generally differ-

ent from the discharge that flows from one computational
://iwaponline.com/jh/article-pdf/15/1/120/386906/120.pdf
cell to another, which is calculated as the flux Q�
iþ1=2 in

the discrete mass balance Equation (16). As a result the dis-

charge value computed as Qi is irregular since it is strongly

influenced by the topographical source terms which

depend on cross-section variation that can be strong in

very irregular valleys. Clearly this is not the case for a
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simple and smooth topography. The mass flux Q�
iþ1=2 on the

other hand that represents the discharge computed

between the computational cells, does not present this pro-

blem even for the finite volume schemes, as illustrated in

Figure 17.
Total head

Even though the energy grade line should decrease in the

downstream direction, the calculated total head sometimes

increases owing to errors in computing water elevations

and, mainly, water discharges. In particular, SANA wrongly

computes reversed total head 76 times, HLL-CL 127 times,

and CLHLL 76 times, almost at the same locations than

SANA.
Figure 18 | Water elevation between x¼ 15 km and x¼ 20 km.
BREMBO RIVER CASE STUDY: 2003 FLOOD
SIMULATION

The propagation of the 25th June 2003 flood wave along the

Brembo river, having an estimated return period of 50 years,

was simulated with HLL-CL, CLHLL and SANA schemes,

using the boundary conditions defined above. This intro-

duced set of 1,134 cross-sections including 49 bridge

sections (shown in Figure 14) was used.

In the present work the bridge piers were added in the

cross-section geometry. In all the performed simulations

the bridges were never overtopped. However, future work

will focus on bridges and the way to include them maybe

more efficiently in numerical simulations as already intro-

duced by some of the authors in (Natale et al. ).

The water mark elevations surveyed soon after the pas-

sage of flood are compared to the water elevations
Figure 17 | Mass flux profile for the entire Brembo River.

om http://iwaponline.com/jh/article-pdf/15/1/120/386906/120.pdf

022
envelopes: the general agreement is good. Looking into

the details, Figures 18 and 19 show that at some locations

the numerical model does not reproduce correctly the

flood marks, mainly in the critical reaches that already

posed some difficulties in the steady-flow case.

Figures 18 and 19 show a good agreement between

measurements and simulations, for all the proposed

schemes.
CONCLUSIONS

Generally, the studies of flood wave propagation in natural

rivers consider almost regular geometries, even though the

majority of water courses in the densely populated Euro-

pean mountain valleys present very uneven topographies.
Figure 19 | Water elevation between x¼ 40 km and x¼ 50 km.
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Based on a first series of test cases with analytical sol-

utions, it could be shown that: (i) a coupled formulation of

the topographical source terms is best suited for accurate

water level predictions on variable topographies; (ii) for

finite-volume schemes, discharge predictions should be

based on the mass flux Q* of the flux vector F*(U) rather

than on the variable Q in the vector U of conserved vari-

ables; and (iii) in finite-volume scheme, the lateralization

of the topographical source terms, written in terms of the

coupled formulation, produces smooth water surfaces

instead of unrealistic discontinuities.

Then, the authors considered the results of the 1Dmodels

tested on a real challenging case: theBremboRiver, anAlpine

water course characterized by steep slopes, abrupt cross-

section changes and hydraulic singularities. The study of the

Brembo River, first under steady flow conditions then in an

unsteady case, demonstrated that the numerical simulations

are not always accurate and consistent.

When a reduced number of land surveyed river sections

is available, the unevenness of river-bed geometry is artifi-

cially emphasized and the application of 1-D numerical

schemes becomes more difficult. To overcome the problem,

the river-bed variations are usually smoothed including

some interpolated sections between the surveyed ones;

thus creating an artificial geometry. However, even though

the sections are smoothed, the finite volume numerical

schemes are not able to reproduce realistic results in the dis-

charge profiles. Only the representation of the mass flux Q*

of the flux vector F*(U) is applicable to real word cases.

Finally, conclusions drawn from the Brembo River

application, support and enhance the conclusions from the

test cases with analytical solutions. Application of the pro-

posed CLHLL scheme to the 2003 flood showed not only

a good agreement to the few available measured water

levels, but also realistic results all over the valley. For prac-

tical applications the use of the mass flux has to be

preferred to the discharge.
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