OF-GUARD: A DoS Attack Prevention Extension in
Software-Defined Networks

Haopei Wang, Lei Xu and Guofei Gu (Texas A&M University)

1 Motivation: Stopping the threats of DoS attack

Software Defined Networking (SDN) is becoming widely discussed in recent years and many researchers are
using OpenFlow which is a reference implementation. It is a physically distributed but logically centralized
framework. Decoupling the control plane from data plane, SDN is designed to support fine-grained policy.
In OpenFlow protocol, network devices handle network flows based on the flow rules sent by the controller.
When new packets that data plane does not know how to handle (table-miss) are coming, the data plane
has to ask the control plane for actions and flow rules. So a table-miss consumes much resource in SDNs.

Challenge and Threat Model: OpenFlow “southbound” protocol leads to a scalability challenge. New
data plane events may flood the control plane and far exceed the throughput of control plane. An attacker
could exploit it by launching dedicated denial of service attack (or data-to-control plane saturation attack)
that floods SDN networks [2]. The attacker may generate a large number of fake packets, which means all or
part of fields of each packet are spoofed as random value. These coming packets will trigger table-miss and
send a lot of packet-in messages to controller. As a result, this attack could overload the buffer memory of
network devices, generate amplified traffic to occupy the data-to-control plane bandwidth and consume the
computation resource of controller in a short time. This paper aims to solve above three research challenges.

Problem Statement: Our work aims to design a framework in SDNs to prevent data-to-control plane
saturation attacks. In our problem domain, the flooding traffic includes a small amount of normal packets
and large number of fake packets. Our design has two functional objectives. The first one is to keep
both control plane and data plane working when suffering from data-to-control plane saturation attacks.
For this, we introduce an extension called packet migration. The second objective is to distinguish fake
packets from normal packets and discard them in order to reduce table-miss. To achieve this, we introduce
another extension called data plane cache. Our design has the following advantages. First, our framework is
attack-driven, i.e., under normal circumstances, only monitoring component works but others keep dormant.
Second, our design does not change controller applications and end hosts. Third, we merely add ignorable
overhead and latency.

Related Work: Avant-Guard [3] tries to halt the same threat but could only defeat TCP based flooding
attack. Our approach aims to defeat all kinds of malicious flooding packets. DIFANE [4] focuses on the
general scalability problem. However, it is not easy to directly apply its approach to our problem. Generated
fake packets may still cause large communication and computation burden. DIFANE needs to work all the
time, while our design is attack-driven. DIFANE keeps flow rule update in data plane, which may lose
information about new incoming flows from controller’s point of view. In our design, packet migration
guarantees transparency to controller applications and end users. Because this DoS attack does not target
on specific server, traditional DoS prevention solutions seem not suitable. Our work focuses on data-to-
control plane saturation attack and provides a new approach to address it.

2 Approach Overview

Our basic idea is, when attack happens, we migrate table-miss packets and use proactive flow rules to
distinguish fake packets. We introduce OF-GUARD, a scalable, efficient and lightweight framework for
SDN networks to prevent data-to-control plane saturation attack by using packet migration and data plane

cache. Figure 1 shows the architecture and defense process of our approach. Packet migration detects flooding
attacks and aims to protect switch and controller when attack occurs. Data plane cache is a machine that
stores proactive flow rules, caches table-miss packets and distinguishes fake packets from normal packets.

Packet migration uses a controller applica-
tion to keep monitoring the rate of packet_in

Controller Data plane cache
messages from data plane. From the rate, we
can calculate current usage percentage of the | Monitor |——{ s EJI T e
capacity of our SDN network. We identify e
there may be potential flooding attack based == . % Simbok: ot L
on certain anomaly threshold. Then this ap- mg of packetin [EEEEHY | fow rles
plication will write a wildcard flow rule which i e e 4N NET

has the lowest priority to ingress switch. Since
wildcard rule matches all matching space, so fe—
it will redirect all table-miss packets in data Ingress Switch peceets 6. Lookup
plane to a remote machine we call it data plane

cache. Our design is attack-driven. Only when

suffering from flooding attack, our tool will Figure 1: OF-GUARD architecture
shift all table-miss packets and protect Open-

Flow switch and controller. After being checked in data plane cache, filtered packets will be set VLAN tag
and forwarded back to ingress switch to recreate packet-in messages to controller. This process guarantees
the transparency to controller applications and end hosts.

Table-miss packets
trie

Data plane cache stores proactive flow rules, caches table-miss packets and distinguishes fake packets. The
primitive of resource consumption attack lies in that OpenFlow network needs to generate actions and flow
rules for every table-miss packet. Hence, when network is under attack, our solution is to leverage the logic of
applications in controller to generate proactive flow rules, which, to great extent, covers the possible upcoming
packets. The challenge here is how to dynamically generate proactive flow rules. Symbolic Execution is a
means of program analysis approach, which bears symbol variables as input other than concrete ones. It is
capable to efficiently traverse possible branches in a program. In this sense, it is helpful for us to derive the
logic of a specific controller application. So first we collect current controller state to initialize the variable
of each application. Then we symbolize the packet header of packet-in event and feed it to packet_in handler
which normally acts as trigger of flow rule update. By symbolically exploring the packet_in handler, we can
get correlation between a chain of constraints (a.k.a., path conditions) and the final handling decision. The
handling decision is limited to a small set which is generating Modify State Message and Packet Out Message
(defined in OpenFlow Spec. 1.4.0). Finally we get proactive flow rules based on current controller state.

As mentioned above, using the packet migration extension, all table-miss packets will be forwarded to data
plane cache. Data plane cache also stores proactive flow rules. One packet is considered as a normal packet
if its header matches any flow rule. We design an efficient data structure to store matching rules and fast
check every incoming packet. Inspired by VeriFlow [1] we utilize an improved trie. The trie in VeriFlow has
some limitations. Each level in the trie corresponds to a specific bit in a forwarding rule. So the number of
levels in the trie will be very large. A path from the tries root to a leaf represents the set of packets that
a rule matches. But in fact most levels in one path may be * (wildcard). That inspires us to optimize the
data structure. In our trie design, each node stores one bit value of a matching rule. Each node has three
fields: the order of bit in the matching rule, the value of this bit (0 or 1) and if it is a leaf of the trie (Y or
N). We do not store wildcard value. Here is an example. Suppose we have three matching rules: ***010%***
FREOO1*** and 10***#%** the trie is shown in Figure 1. Our figure highlights the path for the matching
rule ¥***010***. Actually the total number of nodes in our trie is equal to the number of non-wildcard nodes
in the trie designed in VeriFlow. We reduce the depth and the total number of nodes in the trie.

References

[1] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow: Verifying network-wide invariants in
real time. In NSDI’13.

[2] S. Shin and G. Gu. Attacking software-defined networks: A first feasibility study (short paper). In HotSDN’13.

[3] S. Shin, V. Yegneswaran, P. Porras, and G. Gu. Avant-guard: Scalable and vigilant switch flow management in
software-defined networks. In CCS’13.

[4] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable flow-based networking with DIFANE. In SIGCOMM’10.

