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Abstract—Natural disasters affect hundreds of millions of people 

worldwide every year. Emergency response efforts depend upon 

the availability of timely information, such as information 
concerning the movements of affected populations. The analysis 
of aggregated and anonymized Call Detail Records (CDR) 

captured from the mobile phone infrastructure provides new 
possibilities to characterize human behavior during critical 
events. In this work, we investigate the viability of using CDR 
data combined with other sources of information to characterize 

the floods that occurred in Tabasco, Mexico in 2009. An impact 
map has been reconstructed using Landsat-7 images to identify 
the floods. Within this frame, the underlying communication 
activity signals in the CDR data have been analyzed and 

compared against rainfall levels extracted from data of the 
NASA-TRMM project. The variations in the number of active 
phones connected to each cell tower reveal abnormal activity 
patterns in the most affected locations during and after the floods 
that could be used as signatures of the floods - both in terms of 

infrastructure impact assessment and population information 
awareness. The representativeness of the analysis has been 
assessed using census data and civil protection records. While a 
more extensive validation is required, these early results suggest 

high potential in using cell tower activity information to improve 
early warning and emergency management mechanisms.  

Keywords— Emergency Service Allocation, Natural Disaster 

Response, Mobile Data Analysis, Human Behavior Modeling, Big 

Data for Development 

I. Introduction 

Natural disasters such as floods or earthquakes affect 
hundreds of millions of people worldwide every year1. The 
effectiveness of humanitarian response is limited, in part, due 
to the lack of timely and accurate information about the 
patterns of movement and communication of affected 
populations. Specifically, there is a need for dynamic in-situ 
information across the event timeline: a baseline 
understanding of regular behavior before the onset of an 
emergency, real-time information about the behavior of a 
disaster-affected population, and the capacity to  track return 
to normal behavioral patterns during the recovery phase. 
Governments, international organizations and humanitarian 
actors could potentially enhance the effectiveness of their 
response by gaining access to accurate geospatial and 

                                                           
1 EM-DAT database: http://emdat.be/disaster-trends 

temporal information of population displacements and 
communication patterns before, during and after a disaster 
occurs.  

Over the last few years, due to the exponential increase in 
the penetration of mobile phones, new opportunities for 
obtaining such indicators have emerged. In particular, the use 
of mobile phones as sensors of human behavior has yielded 
important research findings in large-scale social dynamics 
analysis in areas such as human mobility, information 
diffusion, social development, epidemiology and disaster 
response. A commonly used source of mobile phone data for 
these studies are aggregated and anonymized Call Detail 
Records (CDRs), which provide data about phone activity 
within a mobile network and are described in Section III.B. In 
the area of human mobility, various approaches have shown 
the viability of using CDR data to model mobility patterns in 
both developed and developing economies [1][2][3] and also 
the impact of population mobility during disease outbreaks 
[4]. Various studies have redefined our understanding of 
information propagation [5][6] to characterize cooperative 
human actions under external perturbations and have offered 
new perspectives on panic [7][8][9][10].  

 In the area of social development, CDR analysis has also 
shown promise to understand migration patterns in urban 
settlements (slums) in Kenya, enabling researchers to infer 
informal employment [11]; to infer demographic [12] and 
socioeconomic information in developing countries in Latin 
America [13]; or to characterize population movements [14]. 
Finally, CDR data has also been successfully applied to model 
and evaluate natural disasters. A study after an earthquake in 
Haiti found that a CDR-based estimation of population 
movements during disasters or disease outbreaks can be 
delivered rapidly and with high accuracy [15]. Similar studies 
using CDR data also showed the ability to measure the impact 
of earthquakes on communication patterns [16] and to build 
predictive models of areas of disruption following an 
earthquake [17]. In general, CDRs are expected to contain 
different signatures –spatial and temporal patterns– of social 
behavior during different type of events and emergencies [18] 
that could be used for early response. Moreover, mobile 
phones can also be used as sensors to obtain other data besides 
social variables, such as precipitation measurements [19]. 

 



In this work, we are interested in exploring potential 
signatures implicit in CDR data as a means for characterizing 
real phenomena taking place during floods. These studies 
could one day be applied in ways that reduce mortality and 
improve outcomes for disaster-affected populations. 

II. Objectives 

The objective of this research is to develop and apply methods 
to  assess the suitability of using aggregated and anonymized 
CDR data to characterize the impact of floods on populations, 
using the Tabasco, Mexico floods in 2009 as a case study. Our 
ultimate goal is to contribute to the development of real-time 
CDR based decision-support tools for public sector response 
to floods and other natural disasters. 

The technical contributions of this work are (1) a multimodal 
data integration framework that facilitates the integration of 
CDR data with other data sources- remote sensing, rainfall 
activity, census and civil protection information and (2) the 
quantitative characterization of changes in communication 
patterns during the floods and their relation to external ground 
truth information. 

III. Problem description 

A. Context: Tabasco floods in 2009  

 
The state of Tabasco is located to the south of the Gulf of 
Mexico, covering 24,738 sqkm (1,3% of national total area). 
Due to its location and topographical features, Tabasco is 
subject to frequent flooding events, such as those that occurred 
in 2007, 2008 and 2009. On 28th October 2009, a cold front 
Nr. 9 entered northwest Mexico and reached Tabasco on the 
31st, where it remained for four days. It rained intensely until 
November the 3rd over the west of Tabasco, within the Tonala 
basin. The National Meteorological Service (SMN) recorded 
800mm of cumulated rain in three days, 4-fold the regular 
cumulated rain level for November. Due to these figures, the 
precipitation was classified as extraordinary.  

As the Tonala basin lacks hydraulic infrastructure for 
controlling river floods, the rain water flowed freely to the 
coastal plains, causing flooding. The greatest damage occurred 
in the Huimanguillo and Cardenas municipalities. On 
November the 3rd, after the heavy rain, the state of emergency 
was declared in Huimanguillo and Cardenas. Response 
activities coordinated by Civil Protection and the system for 
Integral Development of Families (DIF), with contributions 
from other state and federal entities, such as the Federal 
Preventive Police and the National Water Commission 
(CONAGUA). On November the 11th, a state of emergency 
was declared in Comalcalco, Cunduacán, and Paraíso 
municipalities.  

In January 2010, the National Center for Disaster Prevention 
(CENAPRED) carried out a mission to assess the damage 
caused by the floods, together with the Planificación State 
Secretariat and Civil Protection. They interviewed over 16 
state and federal agents in charge of coordinating recovery 
actions. CENAPRED collected all the information and 
compiled a report on the impact of the floods. According to 

the report, in economic terms, the total losses in the state of 
Tabasco reached 190 million USD, 50% of which were due to 
damage to road infrastructure (see Fig.1); 16% were related to 
productive activities (agriculture and ranching); and 7% of 
losses corresponded to social damage (dwelling, health, 
education). The floods also had a significant emotional and 
psychological impact on people’s lives.  

The CENAPRED report states that the total human, social and 
economic losses caused by the 2007, 2008 and 2009 stationary 
floods highlight the vulnerability of Tabasco to such natural 
events. Furthermore, this recurring situation hinders the state 
from achieving total recovery after each disaster. Hence it is 
recommended that resources be invested in designing and 
implementing mitigation plans and prevention actions rather 
than in covering post-event costs. 

 

Fig.1: Federal road 180D totally submerged. Transit 

problems complicated evacuation and emergency aid 

activities. Source: CENAPRED  

 

B. Call Detail Records (CDRs) 

 

Cell phone networks are built using a set of base transceiver 

stations (BTS) that facilitate communication between cell 

phone devices within the network. Each BTS has a 

geographical location represented by its latitude and longitude. 

The area covered by a BTS is called a cell, and can be 

approximated using Voronoi tessellation. At any given 

moment, one or more BTSs can provide coverage to a cell 

phone. The final BTS is assigned depending on the network 

traffic and on the geographic position of the phone. 

 

CDR (Call Detail Record) databases are generated when a 

mobile phone connected to the network makes or receives a 

phone call or uses a service (e.g., SMS, MMS, etc.). In the 

process, and for billing purposes, the information regarding 

the time of the event and the BTS tower that the phone was 

connected to the even occurred is logged, which gives an 

indication of the coarse geographical position of the phone at a 

given moment in time; no precise position of the phone is 

recorded or calculated. 

 

Among all the data contained in a CDR, our study uses the 

anonymized (encrypted) originating number, the anonymized 

(encrypted) destination number, the time and date of the call, 



the duration of the call, and the latitude and longitude of the 

BTS used by the originating cell phone number and the 

destination phone number when the interaction happened. The 

dataset available for this study contained only CDRs generated 

by the BTSs contained in the geographical area affected by the 

floods (roughly the state of Tabasco and parts of Veracruz). 

All the data was not only anonymized but also aggregated. No 

contract or personal data was collected, accessed or utilized 

for this study. No authors of this study participated in the 

extraction of the dataset. 

C. Additional data sources 

Additional data sources analyzed in this research include: 

 

a) Satellite imagery data  

Multispectral, medium resolution (15 to 60 meters) ETM+ 

Landsat72 satellite images have been used for detecting and 

delimitating the submerged land. The temporal resolution of 

this data source is 16 days, so it helps to approximate the 

flooded area with reasonable accuracy, at least before and 

after the flooding happened. The spatial resolution is high 

enough to segment broad floods, river overflows or lake 

leakages. The satellite imagery data allows us to spatially limit 

the affected regions with better accuracy than the vague 

approximations that could be inferred retroactivitly from news 

or historical documents.  

 

b) Precipitation data 

The Tropical Rainfall Measuring Mission project3 provides 

high resolution (3 hours of temporal resolution and 0.25 

squared degrees of spatial resolution) of precipitation levels 

worldwide. The spatial resolution of this data is lower than the 

satellite images used to segment the floods, but high enough to 

obtain a realistic precipitation level in the affected area. On the 

other hand, the temporal resolution is adequate to generate a 

time series comparable to the CDR data. 

 

c) Civil protection data 

Once the state of emergency was declared, Tabasco Civil 

Protection assisted affected people in Huimanguillo and 

Cardenas first, and in Comalcalco, Cunduacán, and Paraíso 

days later. People who directly suffered the effects of the 

floods were moved to emergency camps and received first aid 

and staple goods (like water, food, blankets). Civil Protection 

recorded the data from Table 1, which we have used to 

validate the results obtained from the other data sources. 

 

d) Census data 

The most recent official Census4 of Mexico (2010) has been 

used to assess the representativeness and validate the 

population distribution inferred with the CDR data. 

                                                           
2http://earthexplorer.usgs.gov/ 
3http:// http://trmm.gsfc.nasa.gov/ 
4http://www.censo2010.org.mx/ 

Table 1. Affected population and emergency camps in several 

municipalities of Tabasco. Source: SEGOB. 

 
 

 

e) The Global Administrative Areas Database (GADM) 

The GADM5 provides GIS-compatible maps of administrative 

areas worldwide. GADM was used to classify the antennas 

locations in the map and associate them to the administrative 

boundaries of the state of Tabasco.  

 

f) Other contextual information 

Diverse data sources were consulted in order to get a wider 

understanding of the situation: 

 

- The Tropical Cyclones Early Warning System (SIAT CT) 

from the Mexican Civil Protection website6. In this document, 

the different phases of a tropical storm are clearly explained, 

as well as the actions designed by Civil Protection to respond 

to each phase. The actions are detailed chronologically in the 

emergency plan. We used this information to define the time 

scale for the temporal analysis of CDRs and precipitation data, 

to be later correlated with the population’s behavior patterns. 

 

- Flood hazard, vulnerability and risk maps from the National 

Center for Disaster Prevention7, were used to become 

acquainted with the prevention and mitigation flood risk 

studies carried out in the country. 

 

- News and photos about the consequences of the floods from 

local digital newspapers and blogs, such as El Economista8, La 

Jornada9, Informador10, among others. We geo-located 

relevant events like injured people, damaged infrastructure, 

river overflows and isolated towns, in order to gain a 

preliminary sense of the affected areas and the spatial 

distribution of damages. 

 

 

                                                           
5http://www.gadm.org/ 
6http://www.proteccioncivil.gob.mx/work/models/ProteccionCivil/Resource/6

2/1/images/siatct.pdf 
7http://www.atlasnacionalderiesgos.gob.mx/index.php/biblioteca/category/17-

hidrometeorologicos 
8http://eleconomista.com.mx/politica/2009/11/08/inundaciones-tabasco-

suman-200000-damnificados 
9 http://www.jornada.unam.mx/2009/11/11/estados/034n2est 
10http://www.informador.com.mx/mexico/2009/151290/6/inundacion-deja-

siete-mil-115-damnificados-en-tabasco.htm 



IV. METHODOLOGY 

 

The methodological framework proposed in this study 

comprises three main steps (see Fig.2): (1) Evaluation of the 

Representativeness of the Data: In order to study social 

behavioral patterns within CDR data it is necessary to evaluate 

how representative the mobile subscribers within it are of the 

target populations. We used the 2010 census of Tabasco as the 

ground truth to measure the representativeness of the signals 

extracted from the CDR data depicted in III.B; (2) Data 

Integration: additional data sources described in III.C have 

been gathered, homogenized and integrated into a Geographic 

Information System (GIS) creating a geo-spatial frame 

enabling interpretations of the CDR data analysis. The CDR 

data serves as the higher resolution substrate in which we 

integrate other independent data with different spatial and 

temporal resolutions;  

 
  

Fig.2: Overview of the methodological framework and data 

sources 

 

(3) Data-driven Event Analysis: In order to perform the 

analysis of CDR and remote sensing data, we have developed 

custom processing methods. For the CDR data analysis, a 

library of tools in Python has been implemented to parse CDR 

database files, filter them according to their associated GPS 

coordinates, reconstruct displacement trajectories, measure 

statistical descriptors, and visualize them together with geo-

referenced data. In order to analyze remote sensing images 

and identify the flooded area we have implemented an image 

processing pipeline that uses mathematical morphology (see 

Fig.3) and a maximum likelihood per-pixel classification 

method --available in ArcGIS software—to detect small water 

concentrations and to refine the boundaries of the wider 

previously segmented regions. The raw precipitation data 

described in III.C.b has been analyzed with MATLAB and 

Python scripts. A GPS conversion transformation has been 

applied to retrieve precipitation data at the antenna position 

(see Fig.4). As expected, the accumulated rainfall information 

matches with the segmented floods with the methodology 

described above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3: a) Six panels of the data described in III.C.a were 

needed to cover Tabasco. b) A set of images pre-floods was 

used as a reference for comparison to another set of images 

obtained right after the floods in order to identify floods. c) 

Gaussian filtering and morphological geodesic reconstruction 

from seeds were used to semi-automatically segment flooded 

areas.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig.4: Top: TRMM project raw data [-180,-50] to [180,50] 

degrees at one-day accumulation resolution (Nov 1st). Bottom: 

Accumulated precipitation during the first two weeks of 

November in Tabasco overlaid with the segmentation using 

satellite imaging. 



V. RESULTS 

A. Assessing the representativeness of CDR data  

 

In this study, we considered a subset of the CDRs comprising 

only the phone calls (social baseline) made from Tabasco 

during the month prior to the onset of the reported floods on 

November 1st, 2009 (baseline period). Figure 6 shows the 

spatial distribution of the antennas covering the study area. In 

order to evaluate how representative this data is of the real 

population of Tabasco, we have compared the population 

distribution derived from the antenna activity with the 2010 

census of Tabasco, used as the ground truth. The underlying 

hypothesis here is that CDR- based analysis may be 

extrapolated to measurements over the full population if the 

subscribers are homogeneously distributed compared to the 

real census, provided that the sampling of CDR data in the 

region is sufficient.  

 

 

Fig.5: Top: map of 2010 census (green bars) vs CDRs based 
population estimation (purple bars) in several cities of 
Tabasco (red=affected cities, blue=other cities) and 
surroundings. Bottom: The plot shows linear correlation 
between the CDR census and the real census (r-square 0.97). 

 

The social baseline has been characterized by assigning the 

home antenna tower (HAT) for each phone, meaning the 

antenna tower most used at night during the baseline (BL) 

period [21]. The number of users per city (or administrative 

boundary) was inferred by cross-referencing the users’ HAT 
with the GADM database. We then compared the 2010 census 

information with the CDR population estimation for the main 
cities of the regions affected by the 2009 floods: Cárdenas, 
Huimanguillo, Paraíso, Comalco, Cunduacán and other nearby 
cities (see Fig.5). Results showed a linear relation between 

both variables with a relative homogeneity of around the 20%. 

Hence, this analysis provides preliminary results that support 

the assumption of a homogeneous representativeness of the 

CDR-based data in the affected cities, enabling us to use the 

proposed hypothesis in this study. 

 

B. Population response to the floods based on variations in 

cell tower activity 

 

For the analysis, the CDR data of the baseline has been 

aggregated by day and by antenna to understand how the 

floods modulated the normal communication patterns 

observed at the antenna level [18].  In particular, we measured 

the number of unique phones placing or receiving calls in each 

antenna and for each day. We refer to this raw measurement as 

the BTS communication activity x(t) (see Fig.6 Top) 

 

To detect abnormalities in this activity, such as those produced 

by the floods, we propose the BTS variation metric that relies 

on the comparison x(t) against their characteristic variation 

obtained during the baseline period. Mathematically, the BTS 

variation metric -xnorm(t)- is defined as the z-score from x(t) 

referred to the normal distribution characterizing the baseline 

pattern as follows: 

 
where the pair (µBL,σBL) statistically characterizes the activity 

during the BL period (the month before the flooding onset). A 

static z-score has been previously used to characterize calling 

behaviors in large scale time sensitive emergency events like 

bombings, earthquakes or brief storms [18]. Here, we have 

computed xnorm(t) from the beginning of the BL period until 

the end of January (~2 months later the rainfall finished), 

generating temporal series of this z-score for the BTSs in the 

areas affected as shown in the Appendix-Figure. The spatial 

distribution of the maximum value of the BTS variation metric 

xnorm(t) -derived from the CDRs- is shown in an impact map 

(see Fig.6 and Appendix-Video) that combines the metric with 

other contextual indicators: the municipalities have been 

colored according to the official number of affected 

population and the segmentation of the flooded area generated 

from the Landsat-7 images. The impact map is consistent with 

our ground truth evidence (flood segmentation and civil 

protection records), since the BTS activity spikes in the most 

affected municipalities: Cárdenas and Huimanguillo (Fig.6 

Bottom). 

The BTSs featuring high variations of the metric outside of the 



affected regions are mainly those BTSs located near the 

ground transportation system. This might be a useful indicator 

for resource allocation in future emergencies. For example, 

very high variations are observed along Federal Road 180D, 

which was eventually completely covered by water (see 

Fig.1). Note that the temporal series of the Appendix-Figure 

also shows strong variations during a segment representing 

Christmas, where most of the sampled BTSs in the region 

spike, whereas the floods only trigger changes in the nearby 

BTSs.  

 
 

 

 

 

 

 

 

 

 

 

Fig.6: Top: “Impact Map” of Tabasco for the 2009 floods. 

The map shows the most critical day featuring the highest 

values of the BTS variation metric. See Appendix-Figure for 

the temporal series of these BTSs. Bottom: Signal x(t) 

aggregated for all antennas in Tabasco (left) and for the 

antennas close to the floods segmentation (right). 

 

During the floods, the distribution of the maximum in the BTS 

variation metric is wider than the BL period distribution, 

featuring more BTS with higher variation metric (see Fig.7).  

 

The real-time nature of mobile phone signals allows us to 

compare social patterns against their modulating factors. Here, 

we compare the proposed metric with rainfall levels. These 

precipitation levels are obtained from the NASA TRMM 

project’s day-resolution estimations of the rainfalls. The six 

hottest BTS that also feature different metric profile have been 

taken to observe the rainfall levels at the BTS level (see Fig.8 

Top). As shown, the typical delay between the maximum level 

of precipitations and the peak in the variations of the hot BTS 

indicator is 4 days. One possible explanation is that a 

population might not react in a way that alters the 

communication activity globally even under extreme 

climatological conditions. Instead, the response captured in the 

communication activity could have occurred due to the initial 

flooding effects, after the rivers and water reserves overflowed 

around November 5th and 6th as was reported in different news 

(see section III.C.f).  

 

 

 
 

Fig.7: Distribution of the maximum of the BTS variation 

metric for the BL period (gray) and floods (red). The curves 

show the percentage of antennas (y-axis) whose maximum 

metric value is higher than a given value (x-axis).  

 

The civil protection warning was issued on the day of 

maximum precipitations (November 3rd). It would be expected 

that this warning would result in a spike in communications 

activity, but this reaction can only be observed in two BTSs 

located along Federal Road 180D that eventually suffered an 

outage (see Fig.8 Bottom). These sudden variations and the 

following outage may indicate the point of the highest rain 

impact, likely causing a severe traffic jam on 180D. The 

increase of the BTS occupancy time due to the jam would 

eventually generate the shown communication activity peaks 

(although further analysis would be required).  

 

On the other hand, the maximum of the BTS variation in the 

antennas with higher population happens on November 6th 

when the rain was already vanishing. Several sources also 

raised the estimates of the affected population from 50,000 to 

100,000 people that day. Thus, the hypothesis would be that 

for gradual-onset disasters (due to a cumulative effect of some 

potential factor), the proposed metric might provide an 

estimation of the population’s awareness and subsequent 

reaction rather than a means to detect the onset of the event. 

The delayed spike in BTS variation in this case may indicate 

that while the civil protection warning did not produce the 

sufficient level of awareness in the population, the initial 

consequences of the flooding did. 

 



 
Fig.8: Top: BTS variation metric (red) vs the precipitation 

level (blue) for the six hottest BTS. The slashed line shows the 

emergency warning date as notified in the news. Bottom: Map 

featuring the position and date (e.g. 6N is 6th November) 

where the maximum of the BTS variation metric was observed. 

 

VI. DISCUSSION 

This work is a retrospective study that leverages the footprints 

of mobile phone activity during floods to propose data-driven 

indicators with potential to support decision making during 

emergencies. In particular, we have proposed a methodology 

based on integrated analysis of CDRs with several data 

sources, including remote sensing imagery and rainfall 

information. We have first tested the representativeness of the 

CDR data, observing a homogeneous penetration of mobile 

phones in the affected cities enabling us to use the hypothesis 

that CDR-based analysis may be extrapolated to estimate 

measurements over the full population. Therefore, it would be 

possible to estimate population changes in regions with 

sufficient density of BTSs (as remote sensors of 

communication activity), provided that changes in the size of 

the population outpace changes in mobile carrier penetration. 

  

We also tested a CDR-based measurement to discover 

abnormal communication patterns at the cell tower level. The 

information on abnormal cell tower activity as a result of 

floods could be used to trigger further investigations and to 

potentially locate damaged areas, assess needs and allocate 

resources in the short term (for example sending additional 

supplies to nearby centers).  In particular, this would allow 

improved resource allocation in the first 24-48 hours when 

resources are scarce. The identification of relevant affected 

cell towers might also serve to better target public 

communications. Our findings show that results are relevant at 

the BTS-level. While the data is fully anonymized and 

aggregated, changes in the activity in the cell towers proves of 

utility for emergency operations. 

 

Abnormal communication activity might also be used to 

measure the awareness of at-risk populations indicating those 

insufficiently responsive to early warning announcements. 

Note that the population’s reaction --in terms of increased 

communication and hence increased activity in the cell 

towers—took place when the emergency was declared, rather 

than during the previous alert stage, as expected. This could be 

an indicator of the skepticism or lack of awareness of the 

population regarding the heightened risk of floods. If this is 

the case, a systematic study of the reasons for such behavior is 

recommended, since a lack of awareness of the existence of a 

hazard implies an increase in vulnerability to its effects. This 

study suggests that, in the future, the citizens’ reactions to a 
catastrophe during the emergency phase could be assessed and 

incorporated into an evolving emergency management 

strategy.  

 

Note that the proposed indicators are candidates for further 

exploration; these methods ideally need fine-grained 

validation with precise high resolution gold standard 

information issued from official channels (which given the 

emergency nature of the studied phenomena might not exist in 

most of the cases). In order to validate the utility of the 

temporal series of z-score measurements to detect floods and 

potentially other disasters, an exhaustive benchmark against 

several datasets should be made. Indeed, there are factors that 

would need special consideration as the difference in the 

response depends on cultural traits, geographical 

characteristics and socio-economic status. 

 

While it is clear that there is a need for further development of 

these methods and techniques, it must also be recognized that 

the operational implementation of these methodologies also 

implies institutional capacities, policy frameworks and 

technological infrastructure that may not be currently in place 

within local or national disaster management offices.  

 

Potential angles for future research include further validation 

by combining information from CDRs with data from other 

sensors, such as traffic video cameras, or by monitoring the 

time it takes for CDR indicators to stabilize and return to 

normal levels, as a potential measurement of the rate of 

recovery. This could be helpful for planning and contributing 

to measures of resilience [21]. We could compare this 

indicator across different areas and understand where 

protracted support may be required. In addition, it would be 

interesting to combine this passive analysis with actively 

solicited input from disaster-affected communities when 

feasible, e.g., by conducing live or automated phone surveys 

that yield information on outcomes -- health, food security, 

etc. [22]. In sum, the work presented in this paper is small 



example of a how a public-private partnership could add value 

to humanitarian response, working always with anonymized 

data at an aggregated level to eliminate risks to privacy and be 

in full compliance with national data protection regulations. 
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Appendix-Figure: Time series of BTS variation per BTS. The gray 

stripes indicate the floods and Christmas where the metric spikes. The 

top-right labels in each chart indicate the municipality where the BTS is 

located (see Fig.6). Charts have been ordered and colored according to 

the maximum value of the metric for each BTS within the floods 

segment (hot map from the smallest to the highest variation). 

 
Appendix-Video: Time-lapse of the Tabasco impact map 

(https://www.youtube.com/watch?v=0str5UXDQEU)  

The video displays the absolute value of the BTS variation metric from 

Oct’09 to Jan’10 as in the temporal series. Each antenna is represented 

by a circle with color and size proportional to the daily metric value. 

The segmented flooded area has been colored in light blue. 

https://www.youtube.com/watch?v=0str5UXDQEU

