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Abstract

We introduce stochastic time-dependency in evolving graphs: starting from an arbi-
trary initial edge probability distribution, at every time step, every edge changes its state
(existing or not) according to a two-state Markovian process with probabilities p (edge
birth-rate) and q (edge death-rate). If an edge exists at time t then, at time t + 1, it dies
with probability q. If instead the edge does not exist at time t, then it will come into
existence at time t + 1 with probability p.
Such evolving graph model is a wide generalization of time-independent dynamic random
graphs [6] and will be called edge-Markovian dynamic graphs.

We investigate the speed of information dissemination in such dynamic graphs. We
provide nearly tight bounds (which in fact turn out to be tight for a wide range of prob-
abilities p and q) on the completion time of the flooding mechanism aiming to broadcast
a piece of information from a source node to all nodes. In particular, we provide: i) A
tight characterization of the class of edge-Markovian dynamic graphs where flooding time
is constant and, thus, it does not asymptotically depend on the initial probability distri-
bution. ii) A tight characterization of the class of edge-Markovian dynamic graphs where
flooding time does not asymptotically depend on the edge death-rate q.
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1 Introduction

The network model. There is a growing interest in the study of graphs that evolve over
time. Such dynamic structures arise from several areas such as computer networks, networks of
users exchanging e-mail or instant messages, citation networks, hyperlinks networks, peer-to-
peer networks, social networks (who-trust-whom, who-talks-to-whom, etc.), and many other
more [7]. One important line of research is the development of models that well approximate
some important specific features observed in real dynamic networks.
One of these observed features is the strong dependence between the existence (or the absence)
of a link between two nodes at a given time step and the existence (or the absence) of the
same link at the previous time step. Important examples of this behavior arise in faulty
communication networks, mobile networks, peer-to-peer networks, and social networks [7, 6,
17, 11, 18, 19] 1.

We introduce and study stochastic time-dependency in evolving graphs: starting from an
arbitrary initial edge probability distribution, at every time step, every edge changes its state
(existing or not) according to a two-state Markovian process with probabilities p(n) and q(n)
where n is the number of nodes. If an edge exists at time t then, at time t + 1, it dies with
probability q(n). If instead the edge does not exist at time t then it will come into existence
at time t + 1 with probability p(n).
For brevity’s sake, functions p(n) and q(n) will be simply denoted as p and q, respectively2.
Formally, let n ∈ N and 0 6 p, q 6 1, we say that the sequence of graphs (we use here notation
[n] = {1, . . . , n})

G = {Gt = ([n], Et) : t ∈ N}

is Markov G(n, p, q, g) (in symbols G ∼ G(n, p, q, g)) if

Et =

{

e ∈

(

[n]

2

)

: Xt(e) = 1

}

where {Xt(e) : e ∈
(

[n]
2

)

} are independent Markov chains with transition matrix

M =







0 1

0 1 − p p

1 q 1 − q







and g = g(n) is an arbitrary initial probability distribution over the set
([n]

2

)

yielding E0.
Notation g = ∅ will indicate the initial probability distribution assigning probability 0 to
every edge (i.e. E0 = ∅). A Markov G(n, p, q, g) sequence will be called edge-Markovian
dynamic graph.
Observe that setting q = 1−p yields the (time-independent) dynamic random graph model [6]
where links, at every time, are chosen independently at random. So, our dynamic graph model
is a wide generalization of dynamic random graphs. Other time-independent dynamic random
networks have been studied in the context of dynamic gossip-based mechanisms [12, 11, 18].
Very recently, a general Markovian (evolving) graph model has been introduced in [1]. The

1Notice that, in some of these settings, there is an underlying physical network that supports the abstraction
of point-to-point communication.

2Hence, any inequality p 6 (>)b(n) means that p(n) is eventually not larger (not smaller) than b(n). The
same holds for q = q(n).
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results in [1] concern covering and hitting time of random walks in specific, restricted cases of
this dynamic model that are not related with ours.

The flooding mechanism. In modern network architectures, global node outreach, i.e.
reaching all nodes from a source/initiator one, is a major challenge. Reaching all nodes from
a given source/initiator node is typically required to disseminate or retrieve information: this
task is performed via suitable protocols that aim to achieve low delay and message overhead.
However, when the network topology is highly dynamic and unknown, (e.g. unstructured peer-
to-peer networks, faulty/mobile networks, etc), it is very hard to design efficient protocols for
that task and, as a result, the flooding mechanism is adopted [4, 9, 10, 14]. In the flooding
mechanism, every informed node (i.e. any node that has the source message) always sends
the source message to all its neighbors. So, the source is clearly informed since the beginning
and any other node v gets informed at time step t if any of its neighbors in Et is informed at
time step t − 1.

The completion time of the flooding mechanism (or, simply, flooding time) is the first time
step in which all nodes of the network are informed. Given any edge-Markovian dynamic
graph G ∼ G(n, p, q, g), the random variable T (G) is defined as the maximum flooding time in
G over all possible choices of source s ∈ [n].

It is important to observe that flooding time in dynamic networks plays the same role of
diameter in static networks. Flooding time and diameter represent “natural” lower bounds
for broadcast protocols in dynamic networks and static ones, respectively. For this reason,
flooding is often used in order to evaluate the relative efficiency of alternative protocols,
especially in networks with unknown dynamic topology [4, 9, 17].

Our results. We study flooding time on edge-Markovian dynamic graphs for all possible
functions p and q and provide asymptotic bounds that are tight or nearly tight.
- For any 0 6 p, q 6 1 and for any initial probability distribution g, we prove that for
G ∼ G(n, p, q, g), it holds with high probability3 (w.h.p.) that

T (G) = O

(

log n

log(1 + np)

)

(1)

- Then, we prove that for any 0 6 p, q 6 1 and for initial probability distribution g = ∅, it
holds w.h.p. that

T (G) = Ω

(

log n

np

)

(2)

- When p > log n/n, 0 6 q 6 1, and g = ∅, we prove that

T (G) = Ω

(

log n

log(1 + np)

)

(3)

We emphasize that, when the edge-Markovian dynamic graph is “almost dense”, i.e. when
p > 1/nδ for some constant 0 < δ < 1 and arbitrary q, Bound (1) implies that flooding
time is constant, so it does not asymptotically depend on the initial probability distribution
g. Another important consequence of Bound (1) is that flooding time is logarithmic even for
p = o(log n/n) (whatever is q), i.e. even below the connectivity threshold4 of (static) random

3Here in the sequel, the term with high probability means that the event holds with probability at least
1 − (1/n)α, for some constant α > 0.

4Notice that below this threshold, flooding time in static random graphs is clearly infinite.
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graphs Gn,p [3]. In particular, flooding time is logarithmic even when the expected node degree
is 1. By comparing this bound with flooding time (i.e. diameter) of static random graphs Gn,p,
it turns out that random dynamic changes significantly speed-up information dissemination
even when such changes are not time-independent but follow an arbitrary Markov law.

For p > log n/n, Bounds (1) and (3) are tight in the standard “computational-complexity”
sense: the upper bound holds for any initial probability distribution while the lower bound
is satisfied by at least one initial probability distribution and they are asymptotically tight.
By comparing Bounds (1) and (2), we can state the same tightness for p 6 1/n since, in this
case, np = Θ(log(1 + np)).

An important consequence of the above tight results is that the “death-rate” q might play
an asymptotically-relevant role only when 1/n 6 p 6 log n/n. However, when log log n/n 6

p 6 log n/n, we prove that w.h.p. T (G) = Ω( log n
log log n) for g = ∅. By combining this lower

bound with Bounds (1) and (2) we get that flooding time lies w.h.p. in the “small” ranges

• c1
log n

log log n 6 T (G) 6 c2 log n

for 1
n 6 p 6

log log n
n

• c1
log n

log log n 6 T (G) 6 c2
log n

log log log n

for log log n
n 6 p 6

log n
n

where c1 and c2 are some positive constants. In the same range 1/n 6 p 6 log n/n, we have
also investigated the special interesting case of densifying graphs [7, 13], i.e. the case q = 0,
where an existing edge never dies. We get the following tight5 bounds that hold w.h.p.:

T (G) = Θ

(

log n

np

)

for p 6
log log n

n
(4)

T (G) = Θ

(

log n

log log n

)

for
log log n

n
6 p 6

log n

n
(5)

Rather interestingly, the second bound shows that flooding time in that range has a plateau
behaviour: it is not a decreasing function in p.

Related works. A large number of previous works deals with the issue of flooding (and
broadcasting) in communication networks. However, we are not aware of analytical results
concerning flooding in time-dependent stochastic models of dynamic networks. Some works
deal with dynamic random graphs where edge probability at a given time is fully independent
from the previous topology [6, 12, 11, 18]. In particular, in [11, 18] it is proved that flooding
is w.h.p. completed in O(log n) steps even when every node is connected to a constant num-
ber of random neighbors. Furthermore, radio broadcasting in (time-independent) dynamic
random graphs has been recently studied in [6]: at every time step, an independent graph
is selected according to the standard random graph model Gn,p [3]. They show that, despite
the interference phenomenon, fully-independence yields w.h.p. logarithmic broadcasting time
for any p > 1/n. We also mention the analytical study of highly-dynamic networks in [6, 16]
where edges are managed by a worst-case adversary.

Road map. In Section 2, we present (upper) Bound (1); Section 3 is devoted to (lower)
Bounds (2) and (3). In Section 4, we study densifying networks. Finally, open problems are
discussed in Section 5.

5Tightness is intended in the same “computational-complexity” sense of our previous tight bounds.
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2 The upper bound

In this section we prove the upper bound (1) stated in the Introduction. The proof has
two main ingredients: (i) expansion properties of edge-Markovian dynamic graphs (proved in
Subsection 2.1) that are then used (ii) to evaluate the average-rate of new informed nodes as
time goes on (Subsection 2.2).

2.1 Expansion properties

Let us consider an edge-Markovian dynamic graph G ∼ G(n, p, q, g). Let I ⊆ [n]. For t0, t ∈ N,
define the set of nodes (not in I) that have been connected to I in at least one time step
i ∈ {t0 + 1, . . . , t0 + t}

Ht0,t(I) =







v ∈ [n] \ I :
{u, v} ∈ Ei

for some u ∈ I and for
some i = t0 + 1, . . . , t0 + t







(6)

For brevity’s sake, we will use Ht0,t instead of Ht0,t(I) when set I is clear from the context.
The following Lemma is a key-ingredient in proving our upper bound (1): roughly speaking,
it states that the probability that a non-informed node is not informed within time step t
decreases exponentially in t, even though there is a Markovian dependence between the graph
topologies of consecutive time-steps.

Lemma 2.1 Let v ∈ [n] \ I, then, for any t0 > 0 and t > 1, it holds

P (v /∈ Ht0,t) 6
[

(1 − ξ)(1 − p)t−1
]m

where ξ = min{p, 1 − q} and m = |I|.

Proof. Let u ∈ I and eu = {u, v}. Then

P

(

t0+t
⋂

i=t0+1

{eu /∈ Ei}

)

= P (eu /∈ Et0+1)

t0+t
∏

i=t0+2

P



eu /∈ Ei |
i−1
⋂

j=t0+1

{eu /∈ Ej}





= P (eu /∈ Et0+1)

t0+t
∏

i=t0+2

P (eu /∈ Ei | eu /∈ Ei−1)

= P (eu /∈ Et0+1) (1 − p)t−1

Furthermore,

P (eu /∈ Et0+1) = P (eu /∈ Et0+1 | eu /∈ Et0)P (eu /∈ Et0) + P (eu /∈ Et0+1 | eu ∈ Et0)P (eu ∈ Et0)

= (1 − p)P (eu /∈ Et0) + q (1 − P (eu /∈ Et0))

= q + (1 − p − q)P (eu /∈ Et0)

6 max{q, 1 − p} 6 1 − ξ

We thus get

P

(

t0+t
⋂

i=t0+1

{eu /∈ Ei}

)

6 (1 − ξ)(1 − p)t−1
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Since Markov chains of different edges are independent, it holds that

P (v /∈ Ht0,t) = P

(

⋂

u∈I

(

t0+t
⋂

i=t0+1

{eu /∈ Ei}

))

=
∏

u∈I

P

(

t0+t
⋂

i=t0+1

{eu /∈ Ei}

)

6
[

(1 − ξ)(1 − p)t−1
]m

�

In what follows we will always assume that p+q 6 1. Case p+q > 1 can be managed similarly
by using a simple fact shown in Appendix A. When p+q 6 1 then ξ = p and the above lemma
implies that

P (v /∈ Ht0,t) 6 (1 − p)mt (7)

In the next three lemmas, we define m = |I|.

Lemma 2.2 Let 1 6 m 6 n
2 , t0 > 0, and t > c log n

nmp for some constant c > 0. Then, it holds
that

P (|Ht0,t| 6 α log n) 6
1

nγ

where α = c/8 and γ = c/32.

Proof. Let v ∈ [n] \ I, then (7) implies that

P (v /∈ Ht0,t) 6 (1 − p)mt 6 e−pmt

Hence

P (v ∈ Ht0,t) > 1 − e−pmt > 1 − e−c log n

n

>
c log n

n

1 + c log n
n

>
c

2

log n

n

where we used the lemma’s hypothesis on t and Bound (22) in the Appendix.
Fix t > 1, for any v ∈ [n] \ I define the random variable Yv so that Yv = 1 if v ∈ Ht0,t

and Yv = 0 otherwise. We thus have that |Ht0,t| =
∑

v∈[n]\I Yv, and we obtain the following
inequality for its expected value

E [|Ht0,t|] =
∑

v∈[n]\I

E [Yv] > (n − m)
c

2

log n

n
>

c

4
log n

Since the Markov chains of different edges are independent, random variables {Yv : v ∈ [n]\I}
are independent as well. By applying Chernoff’s bound (Lemma B.2) with µ = c

4 log n and
ε = 1/2, we get

P
(

|Ht0,t| 6
c

8
log n

)

6 e−
c
32

log n

�

Lemma 2.3 Assume that t0 > 0, 1 6 m 6 n
2 , and mp > 1. Then it holds that

P (|Ht0,1| 6 αn) 6 e−γn

with α = 1/8 and γ = 1/32.
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Proof. Let v ∈ [n] \ I, Inequality (7) implies

P (v /∈ Ht0,1) 6 (1 − p)m 6 e−mp 6
1

e
6

1

2

where we exploit Lemma’s hypothesis mp > 1. Then

P (v ∈ Ht0,1) >
1

2

As in the proof of Lemma 2.2, we can give a lower bound on the expected size of H1

E [|Ht0,1|] >
1

2
(n − m) >

1

4
n

where we used lemma’s hypothesis m 6 n/2. By applying Chernoff’s bound (Lemma B.2)
with µ = 1

4n and ε = 1/2 we finally obtain

P

(

|Ht0,1| 6
1

8
n

)

6 e−
1
32

n

�

Lemma 2.4 Assume that t0 > 0, c log n
np 6 m 6 n

2 for some constant c > 0, and mp 6 1.
Then,

P (|Ht0,1| 6 αnmp) 6
1

nγ

where α = 1/8 and γ = c/32.

Proof. Let v ∈ [n] \ I. As in the proof of the previous Lemma, we have that

P (v ∈ Ht0,1) > 1 − e−mp >
mp

1 + mp
>

1

2
mp

where we used mp 6 1. So, it holds that

E [|Ht0,1|] >
1

2
mp(n − m) >

1

4
nmp

where we used m 6 n/2. Again, by applying Chernoff’s bound (Lemma B.2) with ε = 1/2
and µ = 1/4nmp, we get

P

(

|Ht0,1| 6
1

8
nmp

)

6 e−
1
32

nmp
6 e−

c
32

log n

where we used hypothesis nmp > c log n. �

2.2 Flooding time: the upper bound

Thanks to the expansion properties shown in the previous subsection, we are now able to
investigate the flooding process in an edge-Markovian dynamic graph G ∼ G(n, p, q, g).
The flooding process can be represented by the sequence {It : t ∈ N} where It ⊆ [n] is the
subset of nodes defined recursively as follows

{

I0 = {s}
It+1 = It ∪ Ht,1(It)

Nodes in It are thus the informed nodes at time step t and we define mt = |It|.
Notice that from the above definition and from the definition of set Ht0,t in (6), it holds that
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1. For any t ∈ N, It−1 ⊆ It;

2. For any t0, t ∈ N, It0 ∪ Ht0,t(It0) ⊆ It0+t.

In order to evaluate the size of It0+t, we will always use Property 2 above.
Flooding is completed within time t if It = [n], and flooding time is defined as the smallest t
for which flooding is completed.

Proposition 2.5 After t = O
(

log n
log(1+np)

)

time steps, the number mt of informed node is at

least βn w.h.p., where β is a positive constant.

Proof. We consider two cases. Let c be a positive constant.

Case 1. p 6 2c log n
n2 . We “organize” the flooding process in phases. Every phase is a finite

sequence of consecutive time steps. Let Mk be the number of informed node at the beginning
of Phase k (we set M0 = 1). From Lemma 2.2, if Mk 6 n/2 then, after tk time steps with

tk =

⌈

c
log n

npMk

⌉

(8)

there will be at least Mk + α log n informed nodes, w.h.p. The value tk will denote the length
of Phase k.
Notice that if p 6 2c log n

n2 then c log n
npMk

> 1, and so

c
log n

npMk
6 tk =

⌈

c
log n

npMk

⌉

6 2c
log n

npMk

Now, consider the recurrence
Mk+1 > α log n + Mk (9)

Its explicit form, since M0 = 1, is
Mk > kα log n (10)

The recurrence (9) holds for every Mk < n/2, w.h.p. Then, it is possible to prove that
Inequality (10) holds w.h.p. at least for those k we are interested in, i.e., until k = k̂ = O( n

log n)
so that Mk > n/2. This is formally stated in next claim.

Claim 1 For every k 6 1
2α

n
log n , it holds that Mk > kα log n, w.h.p.

Proof. Define the events

Ek = “ Mk > α log n + Mk−1 ”

Zk = “ Mk−1 < n/2 ”

Fk = “ Mk < kα log n ”

Let us first observe how the above events are mutually related. It holds that

Zk ⊆ Zk−1 (11)

Indeed, if the informed nodes are less than n/2 in phase k, then they were less than
n/2 in phase k − 1 too. Moreover, it holds that

k
⋂

i=1

Ei ⊆ Fk (12)

8



Indeed, if Recurrence (9) holds for every phase from 1 to k, then its explicit form (10)
must hold. As for complementary sets, (12) implies that

Fk ⊆

(

k
⋂

i=1

Ei

)

=

k
⋃

i=1

E i (13)

Observe also that, for every k 6 n
2α log n , Fk ⊆ Zk and hence Fk = Fk ∩ Zk.

Finally, Lemma 2.2 implies that

P
(

Ek | Zk

)

6
1

nγ

with γ = c/32 and c positive constant that we can choose arbitrarily. Thanks to the
above facts, we can conclude that, for every k 6 n

2α log n ,

P (Fk) = P (Fk ∩ Zk)

From (13) 6 P

((

k
⋃

i=1

E i

)

∩ Zk

)

= P

(

k
⋃

i=1

(

E i ∩ Zk

)

)

6

k
∑

i=1

P
(

E i ∩ Zk

)

From (11) 6

k
∑

i=1

P
(

E i ∩ Zi

)

=

k
∑

i=1

P
(

E i | Zi

)

P (Zi) 6

k
∑

i=1

P
(

E i | Zi

)

From Lemma 2.2 6 k
1

nγ
6

n

2α log n

1

nγ
6

1

nγ−1

�

After k̂ = 1
2α

n
log n phases, there are thus at least n/2 informed nodes w.h.p. Since the length

of Phase k is tk, the overall time to get at least n/2 informed nodes is

k̂
∑

k=1

tk =

k̂
∑

k=1

⌈

c
log n

npMk

⌉

6

k̂
∑

k=1

2c
log n

npMk

6

k̂
∑

k=1

2c
log n

npαk log n
=

2c

αnp

k̂
∑

k=1

1

k

6
4c

α

1

np
log k̂ 6 ĉ

log n

np

for a suitable constant ĉ > 0.
Since np > log(1 + np) for any choice of p > 0, after O

(

log n
log(1+np)

)

time steps, there are at

least n/2 informed nodes w.h.p.

Case 2. p > 2c log n
n2 . Observe that we cannot follow the same line of reasoning of the first case.

Indeed, we cannot achieve n/2 informed nodes from (8): when Mk grows, the term c log n
npMk

becomes smaller than 1 and we cannot apply the inequality

tk =

⌈

c
log n

npMk

⌉

6 2c
log n

npMk

We thus need to analyze the flooding process in three consecutive periods.

- Period 1: If Mk 6 c log n
np then Recurrence (9) holds w.h.p.6. We now make use of the following

claim whose proof is similar to Claim 1.

6The actual condition would be Mk 6 min{c log n

np
, n

2
} but we have c log n

np
6 n

2
since p > 2c log n

n2 .

9



Claim 2 For every k 6 c
α

1
np , it holds that Mk > kα log n, w.h.p.

Proof. Define the events Ek and Fk as in Claim 1, i.e.,

Ek = “ Mk > α log n + Mk−1 ”

Fk = “ Mk < kα log n ”

and events Zk as follows

Zk = “ Mk < c
log n

np
”

Observe that Inclusions (11), (12), and (13) hold as well. By using Lemma 2.2 and
reasoning like in the proof of Claim 1, it is easy to see that, for each k 6 c

αnp , it holds

P (Fk) 6
1

nγ−1

�

So, after k̂ = c
α

1
np phases, there are at least c log n

np informed nodes w.h.p. Then, the overall
number of time steps will be

k̂
∑

k=1

tk = ĉ
log
(

1 + 1
np

)

np

- Period 2: If c log n
np 6 Mk 6 min{1/p, n/2}, Lemma 2.4 implies that the recurrence

Mk+1 > (1 + αnp)Mk (14)

holds w.h.p. where the phase length tk = 1 for any k > 0. Its explicit form is

Mk > (1 + αnp)kM0 > (1 + αnp)k (15)

Next claim can be proved similarly to Claims 1 and 2.

Claim 3 For every k 6
log(min{1/p,n/2})

log(1+αnp) , it holds that Mk > (1 + αnp)k, w.h.p.

Proof. Define the events

Ek = “ Mk > (1 + αnp)Mk−1 ”

Fk = “ Mk < (1 + αnp)k ”

Zk = “ Mk−1 < min{1/p, n/2} ”

Observe that Inclusions (11), (12), and (13) hold as well, and Lemma 2.4 implies

P
(

Ek | Zk

)

6
1

nγ

with γ = c/32 and c being a positive constant we can choose arbitrarily.

Reasoning like in previous claim proofs, it is easy to see that, for every k 6
log(min{1/p, n/2})

log(1+αnp) ,

it holds

P (Fk) 6
1

nγ−1

�
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It follows that, after log(min{1/p, n/2})
log(1+αnp) = O

(

log n
log(1+np)

)

time steps, at least min{1/p, n/2} nodes

are w.h.p. informed.

- Period 3: Observe that if min{1/p, n/2} = n/2 (i.e. p 6 2/n), then after Period 2, at least
n/2 nodes are informed and the proposition is proved. Otherwise the number of informed
nodes w.h.p. satisfies the hypothesis of Lemma 2.3: Indeed 1 6 Mk̂ 6 n/2 and Mk̂p > 1. So,
thanks to Lemma 2.3, after next time step, at least αn nodes will be informed w.h.p., where
α is a positive constant.

Finally, even in this second case (p > 2c log n
n2 ), O

(

log n
log(1+np)

)

time steps suffice to get βn

informed nodes, for some constant β > 0. �

Proposition 2.6 Let 0 < β < 1 be any constant and m > βn be the number of informed

nodes at time step t0 > 0. Then, after O
(

log n
np

)

time steps, all nodes will be informed w.h.p.

Proof. Let I be the set of informed nodes and |I| = m > βn. Let t > c log n
np with c be a

constant to be fixed later. Consider set Ht0,t defined as in (6). For any v ∈ [n] \ I, it holds
that

P (v /∈ Ht0,t) = (1 − p)mt
6 e−pmt

6 e−βc log n =
1

nβc

where the last inequality follows from the hypothesis on m and t. Then the probability there
exists a node v ∈ [n] \ I such that v /∈ Ht0,t can be bounded as follows

P (∃v ∈ [n] \ I : v /∈ Ht0,t) 6 P





⋃

v∈[n]\I

{v /∈ Ht0,t}





6
∑

v∈[n]\I

P (v /∈ Ht0,t)

6 (n − m)
1

nβc
6 (1 − β)n

1

nβc
6

1

nβc−1

Finally, the thesis follows by fixing c > 1/β. �

Theorem 2.7 Let G ∼ G(n, p, q, g) be any edge-Markovian dynamic graph. Then, flooding

time is w.h.p. O
(

log n
log(1+np)

)

.

Proof. Proposition 2.5 states that, after the first O
(

log n
log (1+np)

)

time steps, at least βn nodes

will be informed w.h.p. Then, thanks to Proposition 2.6, after further O
(

log n
np

)

time steps,

all nodes will be informed w.h.p. Since np > log(1 + np), we get

O

(

log n

np

)

⊆ O

(

log n

log(1 + np)

)

that completes the proof. �

3 The lower bounds

In this section, we will prove lower Bounds (2) and (3) stated in the Introduction. We will
make use of the following “monotonicity” property: flooding time decreases as birth-rate p
increases while it increases as death-rate q increases.
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Proposition 3.1 Consider two edge-Markovian dynamic graphs G ∼ G(n, p, q, ∅) and G′ ∼
G(n, p′, q′, ∅) where

p 6 p′ ; q′ 6 q ; p + q′ 6 1

Then, it holds that

P (T (G) 6 t) 6 P
(

T (G′) 6 t
)

for any t ∈ N

Observe that the above result requires the somewhat “artificial” condition p + q′ 6 1. Indeed,
its proof relies on a suitable application (stated in next lemma) of the coupling technique of
Markov chains [15] that works only under the above condition. Proving the monotonicity
property without this condition by using any other technique is an open problem which seems
far from easy.

Lemma 3.2 (Markov-coupling Lemma.) Let {Zt = (Xt, Yt) : t ∈ N} be a Markov chain
with state space {(0, 0), (0, 1), (1, 1)} and transition matrix

MZ =













(0, 0) (0, 1) (1, 1)

(0, 0) 1 − p′ p′ − p p

(0, 1) q′ 1 − p − q′ p

(1, 1) q′ q − q′ 1 − q













(16)

where p 6 p′, q > q′ and p + q′ 6 1. Then, {Xt : t ∈ N} and {Yt : t ∈ N} are Markov chains
with state space {0, 1} and transition matrices, respectively,

MX =







0 1

0 1 − p p

1 q 1 − q






MY =







0 1

0 1 − p′ p′

1 q′ 1 − q′







Proof. By definition of Markov chain it holds

P ((Xt+1, Yt+1) = j | (Xt, Yt) = it, . . . , (X0, Y0) = i0) = P ((Xt+1, Yt+1) = j | (Xt, Yt) = it)

for every j, i0, . . . , it ∈ {(0, 0), (0, 1), (1, 1)}. So in particular we have

P (Xt+1 = k | (Xt, Yt) = it, . . . , (X0, Y0) = i0) = P (Xt+1 = k | (Xt, Yt) = it) (17)

P (Yt+1 = k | (Xt, Yt) = it, . . . , (X0, Y0) = i0) = P (Yt+1 = k | (Xt, Yt) = it) (18)

for every k ∈ {0, 1} and for every i0, . . . , it ∈ {(0, 0), (0, 1), (1, 1)}. Now observe that for every
k0, . . . , kt, kt+1 ∈ {0, 1}

P (Xt+1 = kt+1 | Xt = kt, . . . , X0 = k0) =

=
∑

h0,...,ht∈{0,1}

P

(

Xt+1 = kt+1 |
(Xt, Yt) = (kt, ht), . . . ,
(X0, Y0) = (k0, h0)

)

·

·P (Yt = ht, . . . , Y0 = h0 | Xt = kt, . . . , X0 = k0)

=
∑

h0,...,ht∈{0,1}

P (Xt+1 = kt+1 | (Xt, Yt) = (kt, ht)) ·

·P (Yt = ht, . . . , Y0 = h0 | Xt = kt, . . . , X0 = k0)
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where in the last equality we used (17). If P (Xt+1 = kt+1 | (Xt, Yt) = (kt, ht)) does not depend
on ht, we have the Markov property for {Xt : t > 0}.
By proceeding in the same way for {Yt : t > 0} (and using (18) instead of (17)), if
P (Yt+1 = ht+1 | (Xt, Yt) = (kt, ht)) does not depend on kt, then Markov property holds for
this random process as well. In conclusion, we have to carry out the following two checks,
starting from the given transition matrix MZ :

1.
∑

h′ MZ
(k,h),(k′,h′) does not depend on h and equals MX

k,k′ ;

2.
∑

k′ MZ
(k,h),(k′,h′) does not depend on k and equals MY

h,h′ .

Check 1:

• (k, k′) = (0, 0):

– 〈h = 0〉 : MZ
(0,0),(0,0) + MZ

(0,0),(0,1) = 1 − p′ + p′ − p = 1 − p;

– 〈h = 1〉 : MZ
(0,1),(0,0) + MZ

(0,1),(0,1) = q′ + 1 − p − q′ = 1 − p;

• (k, k′) = (0, 1):

– 〈h = 0〉 : MZ
(0,0),(1,1) = p;

– 〈h = 1〉 : MZ
(0,1),(1,1) = p;

• (k, k′) = (1, 0):

– 〈h = 1〉 : MZ
(1,1),(0,0) + MZ

(1,1),(0,1) = q′ + q − q′ = q;

• (k, k′) = (1, 1):

– 〈h = 1〉 : MZ
(1,1),(1,1) = 1 − q.

Check 2:

• (h, h′) = (0, 0):

– 〈k = 0〉 : MZ
(0,0),(0,0) = 1 − p′;

• (h, h′) = (0, 1):

– 〈k = 0〉 : MZ
(0,0),(0,1) + MZ

(0,0),(1,1) = p′ − p + p = p′;

• (h, h′) = (1, 0):

– 〈k = 0〉 : MZ
(0,1),(0,0) = q′;

– 〈k = 1〉 : MZ
(1,1),(0,0) = q′;

• (h, h′) = (1, 1):

– 〈k = 0〉 : MZ
(0,1),(0,1) + MZ

(0,1),(1,1) = 1 − p − q′ + p = 1 − q′;

– 〈k = 1〉 : MZ
(1,1),(0,1) + MZ

(1,1),(1,1) = q − q′ + 1 − q = 1 − q′.

�
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Proof of Proposition 3.1. Consider the family

{

Zt(e) : e ∈

(

[n]

2

)}

of independent Markov chains where, for every e ∈
([n]

2

)

, Zt(e) = (Xt(e), Yt(e)) has transition
matrix (16) and initial probability distribution P (Z0(e) = (0, 0)) = 1. Define

EX
t =

{

e ∈

(

[n]

2

)

: Xt(e) = 1

}

EY
t =

{

e ∈

(

[n]

2

)

: Yt(e) = 1

}

and GX = {([n], EX
t ) : t ∈ N} and GY = {([n], EY

t ) : t ∈ N}. Thanks to Lemma 3.2, GX and
GY are edge-Markovian dynamic graphs with the same probability distributions of G and G′,
respectively. By definition of Markov Chain {Zt : t ∈ N}, we have EX

t ⊆ EY
t for any t > 0.

It thus holds that T (GX) > T (GY ). Hence, for any t ∈ N, we obtain

P (T (G) 6 t) = P
(

T (GX) 6 t
)

6 P
(

T (GY ) 6 t
)

= P
(

T (G′) 6 t
)

�

Observation 3.3 In order to prove a general lower bound on flooding time, we can prove it
in the special case q = 0 and then apply Proposition 3.1 to extend it to any q ∈ [0, 1].

Notice that, in G ∼ G(n, p, 0, ∅), for each e ∈
([n]

2

)

and t ∈ N, it holds that

P (e ∈ Et) = 1 − (1 − p)t

Hence, we get the following equivalence result.

Observation 3.4 Consider any edge-Markovian dynamic graph G ∼ G(n, p, 0, ∅), then ran-
dom variable Gt and random variable Gn,pt (i.e. random graph [3]) where pt = 1− (1− p)t are
identically distributed.

We can thus use the following properties of random graphs

Property 3.5 [[8],[5]] For random graph Gn,p:

1. If p 6 1
2

log n
n , then w.h.p. Gn,p is not connected;

2. There is a constant c > 1 such that for p > c log n
n , Gn,p is connected and has diameter

Θ
(

log n
log(np)

)

w.h.p.

Lemma 3.6 If G ∼ G(n, p, 0, ∅), then T (G) = Ω( log n
np ), w.h.p.

Proof. As for p > log n
n , it is sufficient to note that T (G) > 1 > log n

np . Assume now p 6
log n

n .
We will prove that in this case there is w.h.p. a node v such that v and the source node are

in different components in each graph Gt where t 6 t̃ =
⌊

1
4

log n
np

⌋

. This implies that flooding

w.h.p. requires more than t̃ = Ω
(

log n
np

)

time steps.
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Notice that Et−1 ⊆ Et for q = 0. So, in order to prove the existence of node v, it is sufficient
to prove that Gt̃ is w.h.p. not connected. Moreover, from Observation 3.4, this is equivalent
to prove that Gn,pt̃

is w.h.p. not connected. This is a consequence of Property 3.5-1 since, for

p 6
log n

n , it holds

pt̃ = 1 − (1 − p)t̃ 6 1 − e
− pt̃

1−p 6
pt̃

1 − p

6
1

4

log n

n

1

1 − p
6

1

2

log n

n

where in the last inequality we use 1
1−p 6 2 that holds because p 6

log n
n . �

Lemma 3.7 If G ∼ G(n, p, 0, ∅) and p >
log n

n , then T (G) = Ω( log n
log(np)), w.h.p.

Proof. Let c be the constant occurring in Property 3.5-2. For p > 1
2c it is sufficient to note

that for n sufficiently large we have

T (G) > 1 >
log n

2c log
(

n
2c

) >
log n

2c log(np)
= Ω

(

log n

log(np)

)

Assume now p 6 1
2c . We use the following simple

Claim 4 If q = 0 and flooding terminates in t steps, then Gt has diameter at most 2t.

Proof. We will prove that any informed node in Gt has distance at most t from the source.
We argue by induction on t. For t = 0 the claim is obvious so assume it holds for t − 1
and prove it for t. Let v be an informed node in Gt. If v is informed also in Gt−1, then
the thesis follows by inductive hypothesis noticing that Et−1 ⊆ Et for q = 0. If on the
contrary v is informed for the first time in Gt, then v has an informed neighbour in Gt−1.
By inductive hypothesis this neighbor has distance at most t− 1 from the source in Gt−1.
Thus v has distance from the source at most t in Gt−1 and since Et−1 ⊆ Et for q = 0 the
same is true in Gt. �

Due this claim, in order to prove the lemma we show that w.h.p. graphs Gt, with t 6 t̃ =
⌊

4c log n
log(np)

⌋

, are not connected or have diameter Ω
(

log n
log(np)

)

. Since Et ⊆ Et+1 for q = 0, it is

sufficient to show that Gt̃ has w.h.p. diameter Ω
(

log n
log(np)

)

. Moreover, from Observation 3.4,

this is equivalent to prove that Gn,pt̃
has this property. This follows from Property 3.5-2:

indeed, for log n
n 6 p 6 1

2c , we get

pt̃ = 1 − (1 − p)t̃ > 1 − e−pt̃ >
pt̃

1 + pt̃

> c
log n

n

4 log n

2 log(np) + 2 log n
> c

log n

n
(19)

Thus Gn,pt̃
has w.h.p. diameter

d > c′
log n

log(npt̃)
(20)

for a given constant c′.
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Moreover, from (19), log n
n 6 p 6 1

2c and n sufficiently large, we have

pt̃ = 1 − (1 − p)t̃ 6 1 − e
− pt̃

1−p 6
pt̃

1 − p

6
3

2
p

(

4c log n

log(np)
+ 1

)

6
3

2
p

(

4c log n

log log n
+ 1

)

6 p log n 6 np2

Hence, from (20) and the above inequality, we conclude

d > c′
log n

log(np)2
= Ω

(

log n

log(np)

)

�

We can now consider arbitrary death-rate q. Indeed, from Observation 3.3, Proposition 3.1,
Lemma 3.6, and Lemma 3.7, we obtain the lower bounds stated in the Introduction.

Theorem 3.8 If G ∼ G(n, p, q, ∅), then T (G) = Ω( log n
np ), w.h.p.

Theorem 3.9 If G ∼ G(n, p, q, ∅) and p >
log n

n , then T (G) = Ω( log n
log(1+np)), w.h.p.

4 Densifying networks

We now consider the case q = 0, i.e. densifying networks.

Lemma 4.1 If G ∼ G(n, p, 0, ∅) and p 6
log log n

n , then T (G) = Θ
(

log n
np

)

w.h.p.

Proof. The lower bound follows from Lemma 3.6. As for the upper bound, notice that
Et−1 ⊆ Et for q = 0. Hence, if at a given step t the graph Gt is connected and has diameter d,
then at step t+d flooding is surely complete. Thus, we can prove the Lemma by showing that

graph Gt̃, t̃ =
⌈

4c log n
np

⌉

(where c is the constant occurring in Property 3.5-2) is connected and

has diameter O
(

log n
np

)

, w.h.p. From Observation 3.4, this is equivalent to prove that Gn,pt̃
is

connected and has diameter O
(

log n
np

)

, w.h.p. For n sufficiently large, we get

pt̃ = 1 − (1 − p)t̃ > 1 − e−pt̃ >
p · t̃

1 + pt̃

> c
log n

n
·

4

2 + 4c log n
n

> c
log n

n

So, Property 3.5-2 implies that Gn,pt̃
is connected and has diameter d 6 c′ log n

log(npt̃)
for some

constant c′, w.h.p. Finally, from (21) and p 6
log log n

n , we have

d 6 c′
log n

log log n
6 c′

log n

np
= O

(

log n

np

)

�

Lemma 4.2 If G ∼ G(n, p, 0, ∅) and log log n
n 6 p 6

log n
n , then T (G) = Θ

(

log n
log log n

)

w.h.p.
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Proof. Let G ∼ G(n, p, 0, ∅) and G′ ∼ G(n, p′, 0, ∅) be two edge-Markovian dynamic graphs
where p 6 p′. Proposition 3.1 implies that, for each t > 1 and p 6 p′,

P (T (G) 6 t) 6 P
(

T (G′) 6 t
)

Thus, to prove the Lemma, it is sufficient to show that

T (G) =







Ω
(

log n
log log n

)

if p = log n
n

O
(

log n
log log n

)

if p = log log n
n

The lower bound follows from Lemma 3.7 since for p = log n
n we get log n

log(np) = log n
log log n . The

upper bound follows from Lemma 4.1 since for p = log log n
n we get log n

np = log n
log log n . �

5 Open problems

An important consequence of our results is that flooding time does not asymptotically depend
on the “death-rate” q whenever p does not fall into the range [1/n, log n/n]. An interesting
open question is thus that of determining the dependence of flooding time w.r.t. q inside that
range.

We also proved that whenever the edge-Markovian dynamic graph is almost dense, i.e.
when p > (1/n)δ , flooding time does not depend on the initial probability distribution. An-
other challenging research issue is to study flooding time, as function of the initial probability
distribution, in edge-Markovian dynamic graphs that are not almost dense. A relevant sce-
nario is that yielded by choosing the initial graph according to the stationary distribution of
the Markov chain.

As for more general research issues, we mention that of investigating constrained com-
munication mechanisms in our dynamic network model: multi-access channel (e.g the radio
network model [2]), and the telephone-call model [12].
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Appendix

A Case p + q > 1

Going back to Lemma 2.1, we can see that if ξ = min{p, 1−q} = 1−q then the Lemma states
that

P (v /∈ Ht0,t) 6 [q(1 − p)t−1]m

for each v ∈ [n] \ I. Since q 6 1, we get [q(1 − p)t−1]m 6 (1 − p)m(t−1); so

P (v /∈ Ht0,t+1) 6 (1 − p)mt

In other words, we can obtain the same inequalities of Section 2 just waiting one more time
step, and of course this fact does not change the asymptotic behaviour of flooding time.

B Known inequalities

Lemma B.1 If |x| < 1 then the following inequalities hold

e−
x

1−x 6 1 − x 6 e−x (21)

x

1 + x
6 1 − e−x

6 x (22)

Lemma B.2 (Chernoff’s bound) Let be X =
∑n

i=1 Xi where X1, . . . ,Xn are independent
Bernoulli random variables and let be 0 < ε < 1. If 0 < µ 6 E[X], then it holds

P{X 6 (1 − ε)µ} 6 e−
ε2

2
µ
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