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Floor decompositions of tropical curves:
the planar case

Erwan Brugallé and Grigory Mikhalkin

ABSTRACT. In [BMO7] we announced a formula to compute Gromov-Witten and
Welschinger invariants of some toric varieties, in terms of combinatorial objects called
floor diagrams. We give here detailed proofs in the tropical geometry framework, in
the case when the ambient variety is a complex surface, and give some examples of
computations using floor diagrams. The focusing on dimension 2 is motivated by the
special combinatoric of floor diagrams compared to arbitrary dimension.

We treat a general toric surface case in this dimension: the curve is given by an
arbitrary lattice polygon and include computation of Welschinger invariants with pairs
of conjugate points. See also [FM] for combinatorial treatment of floor diagrams in
the projective case.

1. Introduction

Let A be a lattice polygon in R?, g a non-negative integer, and w a generic configuration
of Card(0A N Z?%) — 1+ g points in (C*)2. Then, there exists a finite number N (4, g)
of complex algebraic curves in (C*)? of genus g and Newton polygon A passing through
all points in w. Moreover, N(A,g) doesn’t depend on w as long as it is generic. If the
toric surface Tor(A) corresponding to A is Fano, then the numbers N (A, g) are known as
Gromov- Witten invariants of the surface Tor(A). Kontsevich first computed in [KM94]
the series N(A,0) for convex surfaces Tor(A), and Caporaso and Harris computed in
[CH98] all N(A,g)’s where Tor(A) is Fano or a Hirzebruch surface.

Suppose now that the surface T'or(A) is equipped with a real structure conj, i.e. conj is
an antiholomorphic involution on T'or(A). For example, one can take the tautological real
structure given in (C*)? by the standard complex conjugation. Suppose moreover that w
is a real configuration, i.e. conj(w) = w. Then it is natural to study the set RC(w) of real
algebraic curves in (C*)? of genus g and Newton polygon A passing through all points in
w. It is not hard to see that, unlike in the enumeration of complex curves, the cardinal of
this set depends heavily on w. However, Welschinger proved in [Wel05] that when g = 0
and Tor(A) is Fano, one can define an invariant. A real nodal curve C' in Tor(A) has
two types of real nodes, isolated ones (locally given by the equation x? + y? = 0) and
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non-isolated ones (locally given by the equation ? — y? = 0). Welschinger defined the
mass m(C) of the curve C' as the number of isolated nodes of C, and proved that if g =0
and Tor(A) is Fano, then the number

WA )= Y (-1)m™@

CERC(w)

depends only on A and the number r of pairs of complex conjugated points in w.

Tropical geometry is an algebraic geometry over the tropical semi-field T =R U {—o0}
where the tropical addition is taking the maximum, and the tropical multiplication is the
classical addition. As in the classical setting, given A a lattice polygon in R?, g a non-
negative integer, and w a generic configuration of Card(0ANZ?) — 1+ g points in (R*)?2,
we can enumerate tropical curves in R? of genus ¢ and Newton polygon A passing through
all points in w. It was proved in [Mik05] that provided that we count tropical curves with
an appropriate multiplicity, then the number of tropical curves does not depend on w and
is equal to N (A, g). Moreover, tropical geometry allows also one to compute quite easily
Welschinger invariants W (A, r) of Fano toric surfaces equipped with the tautological real
structure (see [Mik05], [Shu06]). This has been the first systematic method to compute
Welschinger invariants of these surfaces.

In [BMO07], we announced a formula to compute the numbers N(A,g) and W(A,r)
easily in terms of combinatorial objects called floor diagrams. This diagrams encode de-
generacies of tropical curves passing through some special configuration of points. This
paper is devoted to explain how floor diagrams can be used to compute the numbers
N(A,g) and W(A,r) (Theorems 3.6 and 3.9), and to give some examples of concrete
computations (section 6). In [BMO7], we announced a more general formula comput-
ing Gromov-Witten and Welschinger invariants of some toric varieties of any dimension.
However, floor diagrams corresponding to plane curves have a special combinatoric com-
pared with the general case, and deserve some special attention. Details of the proof of
the general formula given in [BMO07] will appear soon.

In section 2 we remind some convention we use throughout this paper about graphs
and lattice polygons. Then, we state in section 3 our main formulas computing the
numbers N (A, g) and W(A,r) when A is a h-transverse polygon. We present tropical
enumerative geometry in section 4, and prove our main formulas in section 5. We give
some examples of computations using floor diagrams in section 6, and we end this paper
with some remarks in section 7.

2. convention

2.1. Graphs

In this paper, graphs are considered as (non necessarily compact) abstract 1 dimen-
sional topological objects. Recall that a leaf of a graph is an edge which is non-compact
or adjacent to a 1-valent vertex. Given a graph I', we denote by
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Vert(T") the set of its vertices,

End(T") the set of its 1-valent vertices,
Edge(T") the set of its edges,

Edge™(T') the set of its non-compact leaves.

If in addition I" is oriented so that there are no oriented cycles, then there exists a
natural partial ordering on I': an element a of T' is greater than another element b if
there exists an oriented path from b to a. In this case, we denote by Edge™™(T) (resp.
Edge™ *°(T")) the set of edges e in Edge™(T") such that no vertex of T' is greater (resp.
smaller) than a point of e.

We say that I is a weighted graph if each edge of I' is prescribed a natural weight, i.e.
we are given a function w : Edge(I") — N*. Weight and orientation allow one to define
the divergence at the vertices. Namely, for a vertex v € Vert(I') we define the divergence
div(v) to be the sum of the weights of all incoming edges minus the sum of the weights
of all outgoing edges.

2.2. Lattice polygons

We remind that a primitive integer vector, or shortly a primitive vector, is a vector
(a,3) in Z? whose coordinates are relatively prime. A lattice polygon A is a convex
polygon in R? whose vertices are in Z2. For such a polygon, we define

QA ={pecdA|Vt>0, p+ (—t,0) ¢ A},
A ={pedA|Vt>0, p+(t,0) ¢ A}.

A lattice polygon A is said to be h-transverse if any primitive vector parallel to an
edge of ;A or 0,A is of the form (o, +1) with « in Z.

If e is a lattice segment in R?, we define the integer length of e by l(e) = Card(enZ?)—1.
If A is a h-transverse polygon, we define its left directions (resp. right directions), denoted
by d;(A) (resp. d,.(A)), as the unordered list that consists of the elements « repeated I(e)
times for all edge vectors e = £i(e)(a, —1) of QA (resp. 0,A). If A has a bottom (resp.
top) horizontal edge e then we set d_(A) = [(e) (resp. dy(A) = l(e)) and d_(A) =0
(resp. dy(A) = 0) otherwise.

There is a natural one-to-one correspondence between quadruples (d;, d,.,d_,d) and
h-transverse polygons A considered up to translation as the polygon can be easily recon-

structed from such a quadruple.
We have

Card(d)(A)) = Card(d,(A)) = Card(QANZ?*) —1 = Card(0,ANZ*) —1 (1)

and
2Card(dy(A)) +d_(A) +dy(A) = Card(0A NZ?). (2)
We call the cardinality Card(d;(A)) the height of h-transversal polygon A.

Example 2.1. Some h-transverse polygons are depicted in Figure 1. By abuse of nota-
tion, we write unordered lists within brackets {}.
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a) di = {070’0} b) dy = {070} C) dy = {an} d) dy = {170707 *2}
dr ={1,1,1} dr = {17 1} dr = {272} d. ={-1,-1,0, 1}
d_=3 d_=3 d_=5 d_=0
dy, =0 dy =1 dy =1 dy =0

FiGURE 1. Examples of h-transverse polygons

Remark 2.2. If A is a lattice polygon and if v is a primitive integer vector such that
for any edge e of A we have |det(v,e)| < I(e), then A is a h-transverse polygon after a
suitable change of coordinates in SLo(Z).

In this paper, we denote by Ay the lattice polygon with vertices (0, 0), (d,0), and (0, d).

3. Floor diagrams

Here we define the combinatorial objects that can be used to replace the algebraic
curves in real and complex enumerative problems. In this section, we fix an h-transverse
lattice polygon A.

3.1. Enumeration of complex curves

Definition 3.1. A (plane) floor diagram D of genus g and Newton polygon A is the data
of a connected weighted oriented graph T' and a map 0 : Vert(I') — Z which satisfy the
following conditions

the oriented graph T is acyclic,

the first Betti number by (') equals g,

there are exactly d+(A) edges in Edgeioo(I‘), and all of them are of weight 1,
the (unordered) collection of numbers 0(v), where v goes through vertices of T',
coincides with dj(A),

e the (unordered) collection of numbers 0(v) + div(v), where v goes through vertices
of T, coincides with d,.(A).

In order to avoid too many notation, we will denote by the same letter D a floor
diagram and its underlying graph I'. Here are the convention we use to depict floor
diagrams: vertices of D are represented by ellipses. We write 6(v) inside the ellipse v only
if (v) # 0. Edges of D are represented by vertical lines, and the orientation is implicitly
from down to up. We write the weight of an edge close to it only if this weight is at least
2. In the following, we define s = Card(0A NZ?) + g — 1.
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Example 3.2. Figure 2 depicts an example of floor diagram for any h-transverse polygon
depicted in Figure 1.

a)g=0 b)g=1 c)g=0 d) g=2

F1GURE 2. Examples of floor diagrams whose Newton polygon are de-
picted in Figure 1

Note that Equations (1) and (2) combined with Euler’s formula imply that for any
floor diagram D of genus g and Newton polygon A we have

Card(Vert(D)) + Card(Edge(D)) = s.
A map m between two partially ordered sets is said increasing if
m(i) >m(j) =i>j
Definition 3.3. A marking of a floor diagram D of genus g and Newton polygon A is

an increasing map m : {1,...,s} — D such that for any edge or vertex x of D, the set
m~1(x) consists of exactly one element.

A floor diagram enhanced with a marking is called a marked floor diagram and is said
to be marked by m.

Definition 3.4. Two marked floor diagrams (D, m) and (D',m’) are called equivalent
if there exists a homeomorphism of oriented graphs ¢ : D — D' such that w = w' o ¢,
0 =0 0¢, and m=m' o ¢.

Hence, if m(i) is an edge e of D, only the knowledge of e is important to determine
the equivalence class of (D, m), not the position of m(i) on e. From now on, we consider
marked floor diagrams up to equivalence. To any (equivalence class of) marked floor
diagram, we assign a sequence of non-negative integers called multiplicities : a complex
multiplicity, and some r-real multiplicities.

Definition 3.5. The complex multiplicity of a marked floor diagram D, denoted by u© (D),
is defined as
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Note that the complex multiplicity of a marked floor diagram depends only on the
underlying floor diagram. Next theorem is the first of our two main formulas.

Theorem 3.6. For any h-transverse polygon A and any genus g, one has
N(A,g) = u“(D)
where the sum is taken over all marked floor diagrams of genus g and Newton polygon A.
Theorem 3.6 is a corollary of Proposition 5.9 proved in section 5.
Example 3.7. Using marked floor diagrams depicted in Figures 3 and 4 we verify that
N(As5,1) =1 (see Figure 3a), N(As,0) = 12 (see Figure 3b,c,d).

N(A,0) = 84 (see Figure 4), where A is the polygon depicted in Figure lc.

a)MC:L b):u(C:47 C)NC:L d);u'(czlv
1 marking 1 marking 5 markings 3 markings

FiGure 3. Floor diagrams of genus 1 and 0, and Newton polygon Ag

3.2. Enumeration of real curves

First of all, we have to define the notion of real marked floor diagrams. Like before,
we define s = Card(0A N ZQ) 4 g — 1. Choose an integer r > 0 such that s —2r > 0, and
D a floor diagram of genus 0 and Newton polygon A marked by a map m.

The set {i,i 4+ 1} is a called r-pair if i = s — 2k + 1 with 1 < k& < r. Denote by
S(m, r) the union of all the r-pairs {i,7 + 1} where m(7) is not adjacent to m(i+ 1). Let
Pm.r s {1,...,8} — {1,...,s} be the bijection defined by py, (i) = i if i ¢ S(m,r), and
by pm.r(i) = j if {i,j} is a r-pair contained in S(m, ). Note that p,, , is an involution.

We define o, to be the half of the number of vertices v of D in m(S(m,r)) with odd
divergence div(v), and we set A = Edge(D) \ m({1,...,s—2r}).

69



Erwan Brugallé and Grigory Mikhalkin

o il T

a)uf=4, by pt=1, out=4 dpt=1,
3 markings 23 markings 7 markings 21 markings

F1GURE 4. Floor diagrams of genus 0 and Newton polygon depicted in
Figure 1c

Definition 3.8. A marked floor diagram (D,m) is called r-real if the two marked floor
diagrams (D,m) and (D, m o pp, ) are equivalent.
The r-real multiplicity of a r-real marked floor diagram, denoted by (D, m), is defined

as
i (D,m) = (1) [] we)
ecA
if all edges of D of even weight contains a point of m(S(m,r)), and as
iy (D, m) =0
otherwise.

For convenience we set uX(D,m) = 0 also in the case when (D, m) is not r-real.

Note that p&(D,m) = 1 or 0 and is equal to u®(D) modulo 2, hence doesn’t depend
on m. However, u=(D,m) depends on m as soon as r > 1. Next theorem is the second
main formula of this paper.

Theorem 3.9. Let A be a h-transverse polygon such that Welschinger invariants are
defined for the corresponding toric surface Tor(A) equipped with its tautological real struc-
ture. Then for any integer r such that s — 2r > 0, one has

W(A,r)= ZMB(D,m)
where the sum is taken over all marked floor diagrams of genus 0 and Newton polygon A.
Theorem 3.9 is a corollary of Proposition 5.9 proved in section 5.

Example 3.10. All marked floor diagrams of genus 0 and Newton polygon Ajs are de-
picted in Table 1 together with their real multiplicities. The first floor diagram has an
edge of weight 2, but we didn’t mention it in the picture to avoid confusion. According
to Theorem 3.9 we find W(As,7) =8 — 2r.
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TABLE 1. Computation of W (As,r)

4. Enumerative tropical geometry

4.1. Tropical curves

Definition 4.1. An irreducible tropical curve C is a connected compact metric graph
whose leaves are exactly the edges of infinite length. This means that C'\ End(C) is a
complete metric space with inner metric. In other words the 1-valent vertices are at the
infinite distance from all the other points of C'. The genus of C' is defined as its first Betti
number by (C).

Example 4.2. Examples of tropical curves are depicted in Figure 5. 1-valent vertices
are represented with bullets.

a)g:]- b)g:]_ C)g:O

FIGURE 5. Examples of tropical curves

Given e an edge of a tropical curve C, we choose a point p in the interior of e and a unit
vector u of the tangent line to C' at p. Of course, the vector u, depends on the choice of p
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and is not well defined, but this will not matter in the following. We will sometimes need
u, to have a prescribed direction, and we will then precise this direction. The standard
inclusion of Z? in R? induces a standard inclusion of Z? in the tangent space of R? at any
point of R2.

Definition 4.3. A map f : C\ End(C) — R? is called a tropical morphism if the following
conditions are satisfied
e for any edge e of C, the restriction f|. is a smooth map with df (ue) = wy cuf .
where wy, is a non-negative integer and ug . € Z* is a primitive vector,
o for any vertex v of C whose adjacent edges are e, ..., e, one has the balancing

condition
k
Y whetfe, =0
i=1

where u., is chosen so that it points away from v.

Let f: C'\ End(C) — R? be a tropical morphism, and define L(C, f) as the unordered
list composed by elements uy . repeated wy . times where e goes through leaves of C
and u. is chosen so that it points to the 1-valent vertex. Then, there exists a unique,
up to translation by a vector in Z?2, lattice polygon A(C, f) such that the unordered list
composed by the primitive vector normal to e and outward to A(C, f) repeated [(e) times
where e goes through edges of A(C, f) equals the list L(C, f).

Definition 4.4. The polygon A(C, f) is called the Newton polygon of the pair (C, f).

Not any tropical curve admits a non-constant tropical morphism to R2. The tropical
curve depicted in Figure 5a does not admit any tropical morphism since a circle cannot be
mapped to a segment in R? by a dilatation. However, up to modification, every tropical
curve can be tropically immersed to R? (see [Mik]).

The pair (C, f) where f : C \ End(C) — R? is a tropical morphism with Newton
polygon A is called a parameterized tropical curve with Newton polygon A. The integer
wy,e is called the weight of the edge e. The genus of (C, f) is naturally defined as the
genus of C.

Example 4.5. If C is the tropical curve depicted in Figure 5b (resp. ¢) then an example
of the image f(C) for some parameterization with Newton polygon Aj is depicted in
Figure 6a (resp. b). The second tropical morphism has an edge of weight 2.

Definition 4.6. A tropical curve with n marked points is a (n+ 1)-tuple (C,x1,...,z,)
where C' is a tropical curve and the x;’s are n points on C.

A parameterized tropical curve with n marked points is a (n+2)-tuple (Cyx1,...,2n, f)
where (C,x1,...,x,) is a tropical curve with n marked points, and (C, f) is a parameter-
ized tropical curve.

Note that in this paper we do not require the marked points on a marked tropical
curve to be distinct. In the following, we consider tropical curves (with n marked points)
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a) b)

FI1GURE 6. Images of tropical morphisms with Newton polygon Aj

up to homeomorphism of metric graphs (which send the i** point to the i** point). The
notions of vertices, edges, Newton polygon, ... also make sense for a parameterized marked
tropical curve as the corresponding notions for the underlying (parameterized) tropical
curve.

4.2. Complex multiplicity of a tropical curve

Let us now turn to tropical enumerative geometry, and let’s relate it first to complex
enumerative geometry. More details about this section can be found in [Mik05] or [GMO7].

Fix a lattice polygon A, a non-negative integer number g, and define the number
s = Card(0A NZ?% — 1+ g. Choose a collection w = {p1,...,ps} of s points in
R?, and denote by C(w) the set of parameterized tropical curves with s-marked points
(C,x1,...,xs f) satisfying the following conditions

e the tropical curve C is irreducible and of genus g,
e A(C, f) = A,
o forany 1 <i<s, f(x;) = p;.

Proposition 4.7 (Mikhalkin, [Mik05]). For a generic configuration of points w, the
set C(w) is finite. Moreover, for any parameterized tropical curve (C,x1,...,xs, ) in
C(w), the curve C' has only 1 or S-valent vertices, the set {x1,..., x5} is disjoint from
Vert(C), any leaf of C is of weight 1, and f is a topological immersion. In particular,
any neighborhood of any 3-valent vertexr of C is never mapped to a segment by f.

Given a generic configuration w, we associate a complex multiplicity ,uc(é) to any

element C' = (C,z1,..., 25, f) in C(w). Let v be a vertex of C'\ End(C) and e; and ez two
of its adjacent edges. As v is trivalent, the balancing condition implies that the number
pE (v, f) = Wy e Wi e, | det(tus e, , use,)| does not depend on the choice of e; and es.
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X .04 [
X
X .p3 7/ /
X .
><p2
X
X ><p1
a) b)puf=4 opt=1 dpt=1 e)pt=1 =1

FIGURE 7. N(A3,0) =12

Definition 4.8. The complex multiplicity of an element C of C(w), denoted by uc(é), is
defined as
O = I w5

ve Vert(C)
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Theorem 4.9 (Mikhalkin, [Mik05]). For any lattice polygon A, any genus g, and any
generic configuration w of Card(0A NZ2) — 1+ g points in R?, one has

N9 = > uo(C)

Cec(w)

Example 4.10. Images f(C) of all irreducible tropical curves of genus 0 and Newton
polygon Aj in C(w) for the configuration w of 8 points depicted in Figure 7a are depicted
in Figure 7b, ..., j. We verify that N(Ag,0) = 12 (compare with Table 1).

4.3. Real multiplicities of a tropical curve

We explain now how to adapt Theorem 4.9 to real enumerative geometry. Naturally,
we need to consider tropical curves endowed with a real structure.

Definition 4.11. A real parameterized tropical curve with n marked points is an
(n + 3)-uplet (C,x1,...,zy, f,¢) where (Cyx1,...,x,,f) is a parameterized marked
tropical curve and ¢ : C'— C' is an isometric involution such that

e there exists a permutation o such that for any 1 <i <n, ¢(x;) = T3,
«f=Jo0.

The real and imaginary parts of a real parameterized tropical curve with n marked

points C' = (C,x1,...,%y,, f, @) are naturally defined as
R(C) = Fix(¢) and S(C)=C\R(C)

Example 4.12. Two examples of real parameterized tropical curves with 4 marked points
are depicted in Figure 8, the abstract curve is depicted on the left and its image by f
in R? is depicted on the right. Very close edges in the image represent edges which are
mapped to the same edge by f. The parameterized tropical curve in Figure 8a has 2
equal marked points, and ¢ is the symmetry with respect to the non-leaf edge. In Figure
8b, ¢ exchanges the edges containing x; and .

As usual, we fix a lattice polygon A and define s = Card(0ANZ?)—1. Let 7 be an non-
negative integer such that s — 2r > 0, and choose a collection w, = {p1,...,ps—r} of s—7
points in R2. We should think of w,. as the image under the map (z,w) — (log|z|, log |w|)
of a configuration {q1,...,qs—2rqs—2r+1,@s—2r415- - ->qs—r>qs—r} Of s points in (C*)?2,
where Z is the complex conjugated of z. Hence, points p; with s —2r+1 <i < s—r
represent pairs of complex conjugated points. Denote by RC(w,.) the set of irreducible
real parameterized tropical curves with s marked points C' = (C,x1,... 25, f, ) of genus
0 and Newton polygon A satisfying the following conditions
for any 1< i< s—2r f(z:) = pi,
for any 1 <i <7, f(xs—2r42i—1) = f(Ts—2r42i) = Ds—2r+i>
if 1 <i<randifxs 9,491 = Ts_2r+2;, then x5 9,9, is a vertex of C,
any edge in §R(C~’) has an odd weight.
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f(x
fx ) = f(x ) )

f f(xg)

() = f(x )

f(xg) = f(x )

Ficure 8. Real tropical curves

Proposition 4.13. For a generic configuration of points w,., the set RC(w,) is finite.

Moreover, for any real parameterized curve C = (C,x1,...,zs, f,$) in RC(w,.), the curve
C has only 1, 3 or 4 valent vertices, any neighborhood of any 3 or 4-valent vertex of C' is

never mapped to a segment by f, any 4-valent vertex of C' is adjacent to 2 edges in I(C)
and 2 edges in R(C), and any leaf of C is of weight 1.

Proof. Let C be an element of RC (w,). Passing through s — r points in R? in general
position imposes 2(s — r) independent conditions on a tropical curve. Since all tropical
maps are piecewise-linear, to prove the proposition it suffices to show that the dimension
of the space of all real parameterized tropical curves with the same combinatorial type as
C has dimension 2(s — r), and that any curve with this combinatorial type satisfies the
proposition.

Recall that the space of all parameterized irreducible tropical curves (C, f) of genus 0
with x leaves and of a given combinatorial type is a polyhedral complex of dimension

x—1- Z (val(v) — 3) — ne

veVert(C)\End(C)

where val(v) is the valence of a vertex v, and n. is the number of edges of C' contracted by

f (see [Mik05]). Let C = (C,x1,...,2s, f,0) be an element of RC(w,.). We may prepare
two auxiliary tropical curves f7 : C" — R? and f' : C* — R? from f: C — R%. We say

that v € C' is a junction vertex if any small neighborhood of v intersects both $(C) and

I(C). We denote by J the number of junction vertices of C'. Since any edge of R(C') has
odd weight, a junction vertex is at least 4-valent.
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We define C” to be the result of adding to R(C') an infinite ray at each junction vertex
of C. We define f" so that it coincides with f on §R(5) The values of f" at the new rays
are determined by the balancing condition.

Connected components of J(C) are naturally coupled in pairs exchanged by the map
¢. To define C?, we take %(5) /¢ and replace all edges adjacent to a junction vertex with
an infinite ray. We let f? : C* — R? to be the tropical map that agrees with f on %(5’)/(1)
We denote by n' the number of connected components of C?. Note that n’ > .J, and that
equality holds if and only if each junction vertex is 4-valent.

We denote by 2" (resp. z*) the number of leaves of C' which are also leaves of C" (resp.
C"). Since the curve C has genus 0, the curve C" is connected and each component of
(' is adjacent to exactly one junction vertex. Hence, the space of parameterized tropical
curves with the same combinatorial type as (C", f") has dimension

"4 J -1 > (val(v) — 3) — ner
veVert(C™)\End(C")

and the space of parameterized tropical curves with the same combinatorial type as
(C*, f*) has dimension

zt — Z (val(v) — 3) — n

vEVert(C*)\End(C?)

To get f from f" and f* these maps must agree at each junction. Thus each connected
component of C" imposes one condition, and the space of real parameterized tropical
curves with the same combinatorial type as (C, f) has dimension

ot T —nt—1— Z (val(v)—3)— Z (val(v)—=3) —ner —ngi

veVert(C7)\End(C") veVert(C*)\End(C?)

If we consider, in addition, a configuration of s points on C' then our dimension increases
by s. Recall though that our points are constrained by the condition that the last 2r
points are split into pairs invariant with respect to the involution ¢. Furthermore, recall
that if such a pair consists of the same point taken twice then it must be a vertex of C.

Denote with p the number of pairs of distinct points in C' invariant with respect to ¢
and with ¢ the number of pairs made from the vertices of C. Clearly we have p+ g =,
and the dimension of allowed configurations is s — p — 2¢. Since f*(C?) passes through p
generic points in R?, we have z; > p, and since 2" +22° < s+1 we have 2" +2° < s+1—p.
Hence, the space of real parameterized tropical curves with s marked points with the same
combinatorial type as C has dimension at most

2(s—r)+J—n'— Z (val(v) —3) — Z (val(v) = 3) = ner —ng
veVert(C)\End(C") veVert(C?)\End(C?)

Since C is in RC(w,), its space of deformation must have dimension at least 2(s — r).
Hence the curve C has exactly s 4+ 1 leaves, n* = J, and any vertex of C' which is not an
end or a junction vertex is trivalent. (]
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For a generic configuration w, and (C,z1,...,zs, f,¢) in RC(w,), Proposition 4.13
implies that the real structure ¢ on C'is uniquely determined by the marked parameterized
tropical curve (C, x1,. .., x5, f). Hence we will often omit to precise the map ¢ for elements
of RC(w,). Moreover, $(C)/é is a (possibly disconnected) non-compact graph, and a
vertex v (resp. edge) inside $(C)/¢ has a natural complex multiplicity uC(v, f) (resp.
weight) induced by the corresponding multiplicity of vertices (resp. edges) of C. If v is a

4-valent vertex of C, then by Proposition 4.13, there exist an edge e; € R(C') and an edge

ez € §(C) adjacent to v. Define pu(v, f) = wy e,y e,|det(vy e, ,v5e,)|. Define the integer

o® to be the number of vertices v in R(C) satisfying one of the following conditions

e v is 3-valent and p®(v, f) = 3 mod 4,
e v is 4-valent adjacent to an edge e € (C), and p®(v, f) = wy + 1 mod 2.

Finally, define the integer of to be the number of vertices v of S(C)/¢ with odd
C
= (v, f).

Definition 4.14. The r-real multiplicity of an element C of RC(w,), denoted by ,ulf(é),
is defined as

~ R, C
pr (C) = (=1)ter 11 pCw. ) I K h) I #wn
ve Vert(g(é)/iﬁ) ve Vert(C), vE Vert(C),
f(v)€wr v is 4-valent

The tropical curves and their multiplicity we are considering here differ slightly from
the one in [Shu06]. This difference comes from the fact that we are dealing with para-
meterization of tropical curves, and that Shustin deals with the cycles resulting as the
images of the curves rather than parameterized curves.

Remark 4.15. If r = 0, then for any real parameterized curve (C,xz1,...,zs, f,¢) in
RC(w;), we have ¢ = Id, and the map (C,x1,...,2s, f,¢) — (C,x1,..., x5, f) is a bijec-
tion from the set RC(w,) to the set of elements of C(w,) with odd complex multiplicity.

Theorem 4.16 (Mikhalkin, [Mik05], Shustin, [Shu06]). Let A be a lattice polygon such
that Welschinger invariants are defined for the corresponding toric surface Tor(A)
equipped with its tautological real structure. Then for any integer r such that s — 2r > 0,
and any generic configuration w, of s —r points in R?, one has

WA= > ui(C)

CeRC(w,)

Remark 4.17. Theorem 4.16 implies that the right hand side of last equality does not
depend on w, for smooth Del Pezzo toric surfaces Tor(A). However, this is not true in
general and one can easily check that the sum of r-real multiplicities over all tropical
curves in RC(w,) in the case of r > 0 does not have to be invariant if T'or(A) is singular
(see also [ABLdM, Section 7.2]).
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Example 4.18. If ws = {p1, p2, p3, p4, 5} is the configuration depicted in Figure 9a, then
images of all parameterized tropical curves of genus 0 and Newton polygon Az in RC(w3)
are depicted in Figures 9b, ¢, d, e, and f (compare with Table 1). Figure 9e) represents
the image of 2 distinct marked parameterized tropical curves in RC(ws), depending on

the position of marked points on the connected components of I(C). Hence we verify
that W(A&?)) =2.

Ps
. I . /1
3 ]
i / /
sz N
X
Py
a) bypus =1 cjps=1 dpi=1 epuj=-1 fuj=1

2 choices

FIGURE 9. W(A3,3) =2

5. Proof of Theorems 3.6 and 3.9

Theorems 3.6 and 3.9 are obtained by applying Theorems 4.9 and 4.16 to configurations
w which are stretched in the direction (0, 1).

5.1. Floors of a parameterized tropical curve

As we fixed a preferred direction in R2, it is natural to distinguish between edges
of parameterized tropical curves which are mapped parallely to this direction from the
others.

Definition 5.1. An elevator of a parameterized tropical curve (C, f) is an edge e of C
with uy . = +(0,1). The set of elevators of (C, f) is denoted by E(f). If an elevator e is
not a leaf of C, then e is said to be bounded. A floor of a parameterized tropical curve
(C, f) is a connected component of the topological closure of C'\ (E(f) U End(C)).
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Naturally, a floor of a parameterized marked tropical curve is a floor of the underlying
parameterized tropical curve.

Example 5.2. In Figure 10 are depicted some images of parameterized tropical curves.
Elevators are depicted in dotted lines.

—
/ — —/
a) One floor b) Two floors ¢) One floor d) Three floors

Ficure 10. Floors of tropical curves

Let us fix a h-transverse polygon A, and a non-negative integer number ¢g. Define
s = Card(0A NZ?) — 1+ g, and choose a generic configuration w of s points in R2. If
moreover g = 0, choose r an non-negative integer such that s — 2r > 0, and choose a
collection w, of s — 7 points in R2.

Proposition 5.3. Let I = [a;b] be a bounded interval of R. Then, if w (resp. wy) is a
subset of I X R, then any vertex of any curve in C(w) (resp. RC(w;)) is mapped to I x R.

Proof. Suppose that there exists an element (C,z1,...,zs, f) in C(w) or RC(w,), and a
vertex v of C such that f(v) = (zy,y,) with 2, < a. Choose v such that no vertex of C
is mapped by f to the half-plane {(z,y) | < z,}. Suppose that v is a trivalent vertex
of C, and denote by ey, es and ez the three edges of C' adjacent to v. For 1 < i < 3,
choose the vector u., pointing away from v (see section 4.1). By assumption on v, this
vertex is adjacent to a leaf of C, for example ey, and since A is h-transverse we have
Ufe, = (—1,). Moreover, according to Propositions 4.7 and 4.13, we have wy., = 1. By
the balancing condition, up to exchanging e; and es, we have uy ., = (—f,7) with 8 > 0,
and uye, = (6,¢) with § > 0. Moreover, as no vertex of C' is mapped to the half-plane
{(z,y) | © < m,}, the edge f(ez2) is a leaf of C'if § > 0. Then, by translating the vertex
f(v) (resp. and possibly ¢(v)) in the direction uy¢ .., we construct a 1-parameter family
of parameterized tropical curves in C(w) (resp. RC(w)), as depicted in two examples
in Figure 11. This contradicts Propositions 4.7 and 4.13. If v is a 4-valent vertex of
C, then we construct analogously a 1-parameter family of parameterized tropical curves
in RC(w,). Alternatively, the contradiction may be derived from [Mik05, Lemma 4.17].
Hence, no vertex of C' is mapped by f in the half-plane {(z,y) | z < a}.

The case where there exists an element (C,z1,...,zs, f) in C(w) or RC(w,), and a
vertex v of C' such that f(v) = (zy,y,) with x, > b works analogously. O
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FIGURE 11. l-parameter family of tropical curves

Corollary 5.4. Let I be a bounded interval of R. If w (resp. w,) is a subset of I x R
and if the points of w (resp. w,.) are far enough one from the others, then any floor of
any curve in C(w) (resp. RC(wy)) can not contain more than one (resp. two) distinct
marked point. If a floor of an element C in RC(w,) contains two distinct marked points,
then they are contained in %(5’)

Proof. Let (C,21,...,zs, f) be an element of C(w) or RC(w,) and choose a path v in
C'\ £(C). The number of edges of C' is bounded from above by a number which depends
only on A and g, and according to the tropical Bézout Theorem, absolute value of the
coordinates of the vector wy cuy . for any edge e of C is bounded from above by a number
which depends only on A. According to Proposition 5.3, all vertices of C' are mapped by
f to the strip I xR, so the length (for the Euclidean metric in R?) of f(v) is bounded from
above by a number .. (A, g) which depends only on A and g. Hence, if the distance
between the points p; is greater than 1,4, (A, g), two distinct marked points x; which are
not mapped to the same p; cannot be on the same floor of C. O

For the remaining of this section, let us fix a bounded interval I of R, a configuration
w = {p1,...,ps}, or possibly a configuration w, = {p1,...,ps—r}, such that the point
p; is very much higher than the points p; if j < i. Here, very much higher means that
we can apply Corollary 5.4. Actually, we prove in next corollary that any floor of any
curve in C(w) or RC(w,) contains ezactly one marked point. More precisely, we have the
following statement.

Corollary 5.5. Let C be an element of C(w) or RC(w,). Then, any floor of C contains

exactly one marked point. Moreover, the curve C has ezactly Card(di(A)) floors and
Card(di(A)) + g+ d_(A)+di(A) =1 elevators.

Proof. Let us denote by f; (resp b;, JZ) the number of floors (resp. bounded elevators,
elevators) of C' containing ¢ marked points. According to Corollary 5.4, f; = 0 as soon
as i > 3, and since the points p; are in general position, we have b; = d; = 0 as soon as
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i > 2. What we have to prove is that fy = fo = by = (io = 0. We have two expressions
for the number s which gives us the equation
fi+2fs+dy = di(A) +d_(A) + 2Card(d;(A) — 1+ g (3)

According to tropical Bézout Theorem and Corollary 5.4, if a floor of C' contains two
marked points, then the intersection number of this floor with a generic tropical line is at
least 2. Hence we have

fo+ fi+2f < Card(d;(A)) (4)
According to Propositions 4.7 and 4.13, we have d +d_ leaves of C' which are elevators,
thus

bo + b1 = do+di — (d(A) +d_(A)) (5)
An Euler characteristic computation shows us that
Jotfitfo—bo—b1=>1—g (6)

Combining Equations (3) with (4), then with Equation (5), and finally with Equation
(6), we obtain

fi+ f2 = Card(di(A))
which is compatible with Equation (4) if an only if fy = fo = 0. Moreover, in this case
inequalities (6) and (4) are actually equalities, which implies by = dy = 0. O

5.2. From tropical curves to floor diagrams

To a parameterized tropical curve (C, f), we associate the following oriented weighted
graph, denoted by F(C, f) : vertices of F(C, f) correspond to floors of (C, f), and edges
of F(C, f) correspond to elevators of (C, f). Edges of F(C, f) inherit a natural weight
from weight of (C, f). Moreover, R is naturally oriented, and edges of F(C, f) inherit this
orientation, since they are all parallel to the coordinate axis {0} x R. Note that we do
not consider the graph F(C, f) as a metric graph and that some leaves are non-compact.

Example 5.6. The graphs corresponding to parameterized tropical curves depicted in
Figure 10 are depicted in Figure 12. Floors are depicted by ellipses, and elevators by seg-
ments. As all elevators have weight 1, we do not precise them on the picture. Orientation
is implicitly from down to up.

Let C' be a parameterized tropical curve in C(w) or RC(w;). Since C has exactly
Card(d;(A)) floors, any floor € of C' has a unique leaf e with u; . = (—1, —a) where uy .
points to infinity. Hence the following map is well defined

0: Vert(F(C)) — Z

9 — @

The following lemma follows directly from Corollary 5.5 and Definition 3.1 of a floor
diagram.
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a) b) c) d)

Ficure 12. Graphs associated to tropical curves

Lemma 5.7. The graph F(C) equipped with the map 0 is a floor diagram of genus g and
Newton polygon A.

Let us denote by D(C') this floor diagram. Finally we associate to a parameterized
tropical curve with n marked points C' = (C,z1,...,2n, f) in C(w) or RC(w,) a marking
m of the floor diagram D(é) The natural idea is to map the points i to the floor or
elevator of C' containing x;. However, it can happen if C is in RC(w,) that x; = x;y1 is
a vertex v of C'. In this case, according to Proposition 4.13 and Corollary 5.5, v is on a
floor € and is adjacent to an elevator e of D(C). If use = (0,1) points away from v (resp.
to v), then we define m(i) = ¢ and m(i + 1) € e (resp. m(i +1) = ¢ and m(i) € e). If z;
is not a vertex of C, then we define m(i) as the floor or a point on the edge of C' which
contains x;. _

The map m : {1,...,Card(0ANZ)— 1+ g} — D(C) is clearly an increasing map,
hence it is a marking of the floor diagram ’D(é) In other words, we have a map
®: C — (D(C),m) from the set C(w) (resp. RC(w,)) to the set of marked floor dia-
grams (resp. r-real marked floor diagrams with non-null r-real multiplicity) of genus g
and Newton polygon A.

Example 5.8. All marked floor diagrams with a non-null complex multiplicity (resp.
3-real multiplicity) in Table 1 correspond exactly to parameterized tropical curves whose
image in R? are depicted in Figure 7 (resp. 9).

Theorems 3.6 and 3.9 are now a corollary of the next proposition.

Proposition 5.9. The map ® is a bijection. Moreover, for any element C in C(w)
(resp. RC(wr)), one has uS(C) = pE(@(C)) (resp. 1 (C) = pE(®(C)) ).

Proof. The fact that ® is a bijection is clear when Card(d;(A)) = 1. Hence the map ® is
always a bijection since an element of C(w) (resp. RC(w,)) is obtained by gluing, along
elevators, tropical curves with a single floor which are uniquely determined by the points
p; they pass through.
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Let C = (C,x1,...,2s, f) be an element of C(w), and v a vertex of C. According to
Corollary 5.4 and Corollary 5.5, v is adjacent to an elevator of weight w and to an edge
e on a floor with uy, = (+1,a) and wy. = 1. Hence, u€(v, f) = w. Since any leaf of C
is of weight 1, it follows that MC(CN') is the product of the square of the multiplicity of all
elevators of C, that is equal to uC(®(C)).

Let C = (Cix1,...,2s, f,®) be an element of RC(w,). The same argument as before
shows that 4&(C) and & (®(C)) have equal absolute values. It remains us to prove that
both signs coincide, and the only thing to check is that the number o is even. If v is a

4-valent vertex of C' adjacent to an edge e in (C), then pu®(v) = wy.. If v is a 3-valent

vertex in R(C) adjacent to an elevator e, then u(v) = wye. Soif u€(v) = 3 mod 4, then
e is bounded and the other vertex v’ adjacent to e satisfy also u(v) = 3 mod 4. Hence
the number of is even as announced. (]

6. Some applications

Here we use floor diagrams to confirm some results in classical enumerative geometry.

6.1. Degree of the discriminant hypersurface of the space of plane

curves
—_—
d

F1GURE 13. Unique floor diagram of maximal genus and Newton polygon Ay

Proposition 6.1. For any d > 3, one has

(d—1)(d-2)

N(Aq, 5

—1)=3(d—1)?
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Proof. We see easily that the unique floor diagram D, of genus W and Newton
polygon Ay is the one depicted in Figure 13. Moreover, all floor diagrams of genus
W — 1 and Newton polygon Ay are obtained by decreasing the genus of D, 4, via
one of the 2 moves depicted in Figure 14. There are ¢ — 1 different markings of the floor
diagram obtained via the move of Figure 14a, and 2i 4+ 1 different markings of the floor

diagram obtained via the move of Figure 14b. Then we get

N(d =2 1) = S A1) + 0,2 1)
= 3(d—1)?
|
)i edges — ¢ — 1 edges ) ¢ outgoing edges — 4 — 1 outgoing edges
uC =4 puC =1

FIGURE 14. Decrease by 1 the genus of the floor diagram of maximal genus

6.2. Asymptotic of Welschinger invariants

In [Mik05], a combinatorial algorithm in terms of lattice paths has been given to enu-
merate complex and real curves in toric surfaces. The idea is that when we consider (the
right number of) points which are sufficiently far one from the other but on the same
line L with irrational slope, then all tropical curves passing through these points can be
recovered inductively. Hence, if L is the line with equation x 4+ ey with y a very small
irrational number, then lattice paths and floor diagrams are two ways to encode the same
tropical curves. However, in our opinion, floor diagrams are much easier to deal with. In
particular, one does not have to consider reducible curves using floor diagrams.

As an example, we give a floor diagram proof of the following theorem that was initially
proved with the help of the lattice paths.

Theorem 6.2 (Itenberg, Kharlamov, Shustin [IKS03] [IKS04]). The sequence
(W(Ag,0))a>1 satisfies the following properties:

e it is a sequence of positive numbers,
e it is an increasing sequence, and strictly increasing starting from d = 2,

e one has mW(Ay4,0) ~In N(Ay4,0) ~ 3dInd when d goes to infinity.
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Proof. As we have ui = 1 for any floor diagram, the numbers W(Ag4,0) are all non-
negative. Moreover, we have W(A1,0) = 1 so the positivity of these numbers will follow
from the increasingness of the sequence (W (Ag,0))g>1.

Let (Do, mg) be a marked floor diagram of genus 0 and Newton polygon A,. For
convenience we use marking mg : {4,...,3d + 2} — Dy (instead of the “usual” marking
{1,...,3d—1} — Dy). Note that the point 4 has to be mapped to an edge in Edge™ > (Dy).
Out of Dy, we can construct a new marked floor diagram D of genus 0 and Newton polygon
Agy1 as indicated in Figure 15a. Both real multiplicities (Do) and (D) are the same,
and two distinct marked floor diagrams Dy and D) give rise to two distinct marked floor
diagrams D and D’. Hence, we have W (Ag41,0) > W (A4, 0) for all d > 1. Moreover, if
d > 2 then there exist marked floor diagrams with Newton polygon A7 which are not
obtained out of a marked floor diagrams with Newton polygon A, as described above.
An example is given in Figure 15b, hence W (Ag41,0) > W(Ay,0) if d > 2.

a) From Ay to Agqq b) Not obtained from A,

FIGURE 15. The numbers W(Ay, 0) are increasing

We study now the logarithmic asymptotic of the sequence (W (Ag, 0))a>1. Let (Dg)a>1
be the sequence of floor diagrams constructed inductively in the following way: D; is the
floor diagram with Newton polygon Ay, and Dy is obtained out of D;_1 by gluing to each
edge in Edge™ *°(D,4_1) the piece depicted in Figure 16a. Floor diagrams Dy, Da, D3, and
D, are depicted in Figures 16b, ¢, d et e. The floor diagram D, is of degree 29~ and we
have g (Dg) = 1. If v(Dy) denotes the number of distinct markings of Dy, then we have
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Vi>2  y(Dy) = U osx2iio2

(3 x 29-1 —4)1 & 1

2T S (Bx 2t —2)(3x 24 —3)F

Hence we get

(3 x 2971 —4)!
924 H?:1(3 x 2d—i)2!
The Stirling Formula implies that Ind! ~ dInd, and we see easily that both right
and left hand side of the inequality have the same logarithmic asymptotic, namely 3 x
24=11n(2971). As we have Inv(Dy) < InW(Aza-1,0) < In N(Age1,0), the result fol-
lows from the increasingness of the sequence (W(Ay,0))4>1 and from the equivalence
In(N(Ag4,0)) ~ 3dInd proved in [DFI95]. |

<v(Dy) < (3 x 2971 —4)!

FIGURE 16. Asymptotic of the numbers W (A, 0)

6.3. Recursive formulas

Floor diagrams allow one to write down easily recursive formulas in a Caporaso-Harris
style (see [CH98]) for both complex and real enumerative invariants. The recipe to extract
such formulas is explained in [ABLdM] in the particular case of the numbers W (Ay, 7).

As an example we briefly outline here how to reconstruct Vakil’s formula [Vak00],
which relates some enumerative invariants of Hirzebruch surfaces.

The Hirzebruch surface F,, of degree n, with n > 0, is the compactification of the
line bundle over B = CP' with first Chern class n. If F,, D F ~ CP' denotes the
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compactification of a fiber, then the second homology group of F,, is the free abelian
group generated by B and F. In a suitable coordinate system, a generic algebraic curve
in [, of class aB + bF, with a,b > 0, has the h-transverse Newton polygon A, ,; with
vertices (0,0), (na+0b,0), (0,a), and (b, a) (see [Bea83] for more details about Hirzebruch
surfaces).

Before stating the theorem, we need to introduce some notations. In the following,
a = (a1, as,...) denotes a sequence of non-negative integers, and we set

oo o0 o0
la] = E oy, Ia= E 10, I“ = Hz“’
i=1 i=1 i=1

Z ) denotes the binomial coefficient. If a and

If a and b are two integer numbers, (

b1,bs, ..., by are integer numbers then < b “ b ) denotes the multinomial coefficient,
1,---5Vk

i.e.

k

(o ) =TI %)

i=1

Theorem 6.3 (Vakil, [Vak00]). For any n >0, any g > 0, and any b > 1, one has
N(An2p,9) = N(Ant12,5-1,9)

on+2b+g+2 Bi+b 1B+ b 28
+ Z < n—Iﬁ )( b ><ﬁ1+b7ﬁ27ﬁ37"'>1
I3 <n

1Bl=9g+1

Proof. We want to enumerate marked floor diagrams of genus g and Newton polygon
Ay 2p. As these floor diagrams have only two floors, our task is easy. Let D be such a
marked floor diagrams of genus g and Newton polygon A, 5. Then, the marking m is
defined on the set {1,...,s} where s =2(n+2)+2b—1+g.

Suppose that m(s) is a floor of D. These marked floor diagrams are easy to enumerate,
their contribution to the number N (A, 2,¢) is the second term on the right hand side
of the equality.

Suppose that m(s) is on an edge e in Edget™ (D). Define a new floor diagram D’
as follows: Vert(D') = Vert(D’), Edge(D’) = (Edge(D) \ {e}) U {€'}, where €’ is in
Edge™*°(D) and is adjacent to the other floor than e. Define a marking m’ on D’ as
follows: m/(i) =m(i—1) if i > 2 and m(1) € ¢’. Now, the marked floor diagram (D', m’)
is of genus ¢ and Newton polygon A, 41251 (see Figure 17a). Moreover, we obtain in
this way a bijection between the set of marked floor diagrams of genus g and Newton
polygon A, 5 such that m(s) € Edge™(D), and marked floor diagrams of genus g and
Newton polygon A, 112,—1. Hence, we get the first term of the right hand side of the
equality, and the theorem is proved. (|
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Ficure 17. From F,, to F,, 41

Remark 6.4. Our proof of Theorem 6.3 is a combinatorial game on marked floor
diagrams that can be obtained as the translation to the floor diagram language of Vakil’s
original proof: take the highest point p of the configuration, and specialize it to the ex-
ceptional section E. Then, either a curve C' we are counting breaks into 2 irreducible
components, which give the second term, or C' has now a prescribed point on E. Blowing
up this point and blowing down the strict transform of the fiber, the curve is transformed
to a curve in [F,, ;1 with a prescribed point on B (which is the image under the blow down
of the second intersection point of C' with the fiber).

The effect of such a blow up and down in tropical geometry can be easily seen, since
intersection points with E correspond to leaves going up, and intersection with B corre-
spond to leaves going down. An example is given in Figure 17b which correspond to the
operation on marked floor diagram depicted in Figure 17a.

7. Further computations

One can adapt the technics of this paper to compute other real and complex enumer-
ative invariants of algebraic varieties. In addition to genus 0 Gromov-Witten invariants
and Welschinger invariants of higher dimensional spaces, as announced in [BMO07], one
can compute in this way characteristic numbers of the projective plane (at least in genus
0 and 1), as well as Gromov-Witten and Welschinger invariants of the blown up projective
plane. Details will appear soon.
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