
Floorplan Sizing by Linear Programming Approximation

Pinhong Chen
EECS Dept.

Univ. of California at Berkeley
Berkeley, CA94720, USA

pinhong@eecs.berkeley.edu

Ernest S. Kuh
EECS Dept.

Univ. of California at Berkeley
Berkeley, CA94720, USA

kuh@eecs.berkeley.edu

ABSTRACT
In this paper, we present an approximation algorithm by linear
programming(LP) for floorplan sizing problem. Given any topo-
logical constraints between blocks, we can formulate it as an LP
problem with a cost function for the minimum bounding box area.
Unlike slicing structures, this approach can handle any topological
constraints as well as soft/hard/preplaced blocks, and timing con-
straints. Empirically, our method needs few iterations to find the
optimum solution and shows one order of improvement over pre-
vious methods both in run time and capability to handle a larger
problem size even on a very limited computing resource PC.

1. INTRODUCTION
Floorplanning is essential for a chip performance, which is in terms
of the chip size and timing. It is more and more important for a hier-
archical layout style used in very deep sub-micron designs. The is-
sues have been studied([1] for an overview) for more than a decade.
In a floorplan, besides the topological relationship between blocks,
it is important to determine the aspect ratio of each module such
that the total area is minimized. In very deep sub-micron designs,
the issue of timing brings another dimension of complexity, which
is to meet the timing constraints of a design.

For slicing structures[1], it is easy to determine the aspect ratio for
each block. However, the topology it inherits is very restricted;
moreover, preplaced blocks and timing constraints are not so easy
to handle in a single framework. Here we focus on general topo-
logical constraints so that any topology can be handled properly.

In [2; 3], the authors propose a ln(�) function transformation to
formulate it as a convex programming, and they show the con-
vexity of this floorplan sizing problem. However, the size of the
problem it can handle is limited due to its computation-intensive
convex programming. In [4], the authors use the analogy between
the resistive network and a floorplan. The algorithm they use is
an unconstrained optimization with a penalty function. In [5], the
authors propose an effective way to deal with soft/hard/pre-placed
blocks using a constrained optimization algorithm for convex pro-
gramming.

All of the previous works suffer from the high complexity to solve
a convex programming problem. Also, none of them proposes any
approach to handling timing constraints. In this paper, we pro-
pose linearization of area constraints and introduce new variables
to handle timing constraints. Soft/hard/pre-placed blocks are also
considered in one framework. The underlying computation formu-
lation is just linear programming, and we prove how to obtain the
global optimum by solving several linear programs.

This paper is organized as follows. In Section 2, we describe the
definitions used in this paper, and define the floorplan sizing prob-
lem. Then, it is approximated as a linear programming problem
in Section 3. We discuss how to search for a local and the global
minimum in Section 4. Experimental results are shown in Section
5.

2. DEFINITION
A block is defined as a rectangle. A soft block is defined as a rect-
angle with area constraint but its width, wi, and height, hi, can be
flexible or under some aspect ratio constraints. A hard block is de-
fined as a rectangle with fixed width and height. A preplaced block
is defined as a rectangle with fixed X and Y coordinates. A pack-
ing is referred to as a non-overlapping placement of a set of blocks
B = fB1;B2; : : : ;Bng. Let (xi;yi) be the center coordinate of block
Bi. A horizontal constraint for two blocks is that the difference of
the X coordinates of the two blocks must be greater than or equal
to some distance so that the two blocks are not overlapping, such
as shown in Figure 1, where xi and xj are the center X coordinates

(x ,y)i i

(x ,y)j j

jw
wi

W

H

Figure 1: Horizontal Constraint

of block Bi and Bj respectively, and wi and wj are the width of
block Bi and Bj, respectively. The horizontal constraint imposes
the inequality xj � xi � (wi +w j)=2. A vertical constraint is sim-
ilarly defined. These horizontal/vertical(H/V) constraints form a
H/V constraint graph, in which each block is represented by a ver-
tex, and the weighted edges represent the X(Y) distance that the
two blocks must keep from each other horizontally(vertically). We
refer to the H/V constraint graphs as the topological constraints.

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

Each block is also a timing node if there are some nets routed to it.
Each timing node is associated with a timing variable, ti, which rep-
resents the latest signal arrival time. If there is some signal coming
from timing node j to timing node i, we have

t j +d j + kjxi � x j j+ kjyi � y jj � ti (1)

where dj is the inertial output delay for block Bj, and k is a con-
stant factor for transforming from distance to time domain. A latest
arrival time requirement therefore imposes on some timing nodes
as ti � TCi where TCi is a given required latest arrival time. We
call this inequality as well as Eq. 1 as timing constraints.

2.1 Floorplan Sizing Problem
Floorplan Sizing Problem(FSP):
Given a set of soft block, a set of hard block, and a set of preplaced
block, optimize the bounding rectangle area such that every block
is inside it without any overlap. For ease of reference, we call FSP
a TFSP if it is required to meet timing constraints.

We assume here the topological constraints have been given, i.e.,
H/V constraint graphs have been given. Thus, we focus on the
sizing problem and honor the given topological constraints. Also,
we assume the timing constraints can be formulated just related to
linear distance only. The floorplan sizing is also subject to these
timing constraints.

3. LINEAR PROGRAMMING APPROXIMA-
TION

This problem can be simply formulated as a non-convex quadratic
program exactly. However, it is not easy to solve a non-convex
quadratic programming problem. It is known that a general quadratic
program is an NP-complete problem[6]. However, this sizing prob-
lem formulation can be further rewritten as a convex programming
problem proposed by [2] with a simple transformation. Solving
convex programming is also no easy task, since it takes lots of com-
putation time, and the size of the convex program can not handle
too many blocks efficiently.

3.1 Area Constraint Approximation
First, observe that the block area constraint, wihi = ai ,can be changed
as an inequality constraints, that is, wihi � ai. If the space is al-
located for more than the required amount, it is still feasible for
layout implementation, so this transformation is valid. Second, we
linearize it by Tayor expansion as

hi � h(0)i +
h(0)i

w
(0)
i

(wi�w(0)
i) (2)

This approximation can be done at several w(j) values, and the fig-
ure looks like Figure 2. The area bounded by these inequality con-
straints forms the approximation of wihi � ai. Also, given an error
bound ε, we can approximate the area constraint by a set of linear
inequalities, and the resulting area error can be bounded by ε for
some ranges of wi and hi, since the maximum area error always
occurs at the cross point of two lines.

LEMMA 1. The area constraint of each module can be approxi-
mated by linear inequalities.

After linear approximation of the area constraints, we refer to FSP
as a Relaxed Floorplanning Sizing Problem(RFSP). RFSP is there-
fore defined on a linear constrained set, which is a convex set[7].

w
(1)w(0)w

wh=a

h

w(2)

Figure 2: Block Area Constraint Approximation

3.2 Transformation of Timing Constraints
It is generally not easy to eliminate an absolute value function,
since two conditions have to be considered, and it becomes an ex-
ponential number of cases to check. However, the timing constraint
(1) can be transformed into a regular linear inequality by remov-
ing absolute function as xi � x j � Mi j and xj � xi � Mi j Then, we
can replace jxi � x jj by Mi j. The value of Mi j can be greater than
jxi � x jj, but it is not less. It does not matter since the timing con-
straint bounds the maximum value of ti and recursively constrains
Mi j . Actually, k(Mi j �jxi � x jj) can be regarded as a timing slack.
By modifying the objective function, it is also possible to optimize
for timing slacks instead of timing constraints.

4. FINDING THE OPTIMUM SOLUTION
4.1 Convex Solution Space
THEOREM 1. The feasible solution of RFSP is defined on a convex

set. And, the projection of the solution space on W-H plane is also
convex.

(Proof:) Since the constraints are all linear, the solution space of
RFSP is a convex set. The projection of solution space on W -H
plane does not change the convexity. 2

Let β be the projection of solution space on W -H plane, and it looks
like Figure 3.

W

H

-m 4
-m 3

-m 2

-m 1

-m 0

Figure 3: Projection of Solution Space

COROLLARY 1. The piecewise linear boundary on W-H plane forms
an ordered sequence,

�m0 � �m1 � : : :� �mn

where �mi is the slope for line segment i and mi � 0.

LEMMA 2. The optimal solution (W�
;H�) of RFSP must be on the

boundary of β.

(Proof:)Suppose (W�
;H�) is not on the boundary of β. We always

can find either (W0
;H�) or (W�

;H 0)with smaller costs, where W 0
<

W � and H0
< H�. 2

Given a point (W0 ;H0) along a line with slope �m, where m > 0,
we compute the cost function change when there is a ∆W . Specifi-
cally, we have

f (W;H) = W �H; ∆H = �m∆W

∆ f = f (W0 +∆W;H0 +∆H)� f (W0;H0)

= W0∆H+H0∆W +∆H∆W

= ∆W (�mW0 +H0�m∆W) (3)

Therefore, ∆ f > 0 if

0 < ∆W <

H0

m
�W0; and

H0

W0
> m (4)

or

0 > ∆W >

H0

m
�W0; and

H0

W0
< m (5)

THEOREM 2. The optimal solution of RFSP must be on the cross
points of the piecewise-linear boundary of β.

(Proof:) Suppose the minimum point is on a line segment with
slope �m. ∆ f is required to be greater than 0 for ∆W > 0 and
∆W < 0. According to (4) and (5), it can not happen at the same
m. That is to say, one of the two sides must be decreasing. With
Lemma 2, the theorem follows. 2

COROLLARY 2. A sufficient condition for local minimum is�mi �

�
H�

W � � �mi+1, where �mi and �mi+1 are the slopes of two con-
secutive line segments on the boundary of β.

4.2 Cost Function Approximation
Here we approximate the cost function W �H by linear approxi-
mation(Taylor expansion):

f (W;H) = W0H0+H0(W �W0)

+ W0(H�H0)+(W �W0)(H�H0) (6)

� W0H0+H0(W �W0)+W0(H�H0) (7)

Since it is a cost function, we can delete all the constant terms:

min f (W;H)�min f̂ = min H0W +W0H

If (W�
�W0)(H

�
�H0) is small enough, this is a good approxima-

tion.

4.3 Finding a Local Minimum
The cost function approximation above thus implies a simple algo-
rithm for minimization:

ALGORITHM 1. Starting from some initial value (W0;H0), solve a
linear programming problem with cost function H0W +W0H, re-
place (W0 ;H0) by the optimal solution of LP, (W�

;H�), and repeat
solving the LP problem until it converges.

LEMMA 3. The search algorithm in Algorithm 1 finds a local min-
imum.

(Proof:)The optimal solution of LP for the solution space like β is
always on the cross point of 2 line segments of the boundary of β.

The slopes form a relation �mi � �
H�

W � � �mi+1, where �mi and
�mi+1 are the slopes of two consecutive line segments. This con-
dition matches the sufficient condition in Corollary 2. Also, it can
be shown Algorithm 1 finds the solution monotonically decreasing
at each step. Hence, the algorithm finds a local minimum. 2

4.4 Finding the Global Minimum
A local minimum may not be satisfactory. It is desired to know how
far we are from the global minimum given some local minima.

THEOREM 3. Given two local minima (Wa;Ha) and (Wb ;Hb), such
as shown in Figure 4, the lower bound of the cost function inside
the triangle a, b and t is Wt �Ht, where (Wt ;Ht) is the cross point of
line La and Lb with slopes �Ha=Wa and �Hb=Wb, respectively.

(Proof:)Suppose we have a point (Wa+∆W;Ha+∆H)moving along
La. Since La has a slope �Ha=Wa, we have ∆H = �(Ha=Wa)∆W ,
so

∆ f = (Wa +∆W)(Ha+∆H)�WaHa = �
Ha

Wa
∆W 2

That is to say, point t has a minimum value along line segment from
point a to point t. It is similar for the line segment from point b to
point t. Following the argument similar to Lemma 2, we have the
minimum value over the triangle a, b and t. 2

This theorem implies a search algorithm for finding the global min-

(W ,H)a a

-m 2

(W ,H)t t

b b(W ,H)

c

a

bLb

La

t

Figure 4: The lower bound of the cost function between two
minimum points

imum.

ALGORITHM 2. Use two initial conditions W0 �H0 and W1 �H1
to search for two local minima a = (Wa;Ha) and b = (Wb;Hb) by
Algorithm 1. Compute the lower bound using Theorem 3. If the
lower bound is close enough to either one of two local minima, out-
put the optimum solution. Otherwise, use Algorithm 1 with initial
cost function (Ha�Hb)W +(Wb �Wa)H to find a local minimum
c = (Wc;Hc). Repeat the previous steps and recursively search the
regions between a and c and the region between c and b, using
most updated lower bound to terminate redundant computations.
See Figure 4 for graphical interpretation.

At the first step, this algorithm reaches two local minima, if the two
local minimum points are close enough or the lower bound com-
puted by these two minimum points is close to one of the two mini-
mum values, then it is the solution, or we can recursively search the
two regions separated by c in Figure 4, and bound the computation
by Theorem 3 until the accuracy is acceptable.

5. EXPERIMENTAL RESULTS
We test our algorithm on several artificial problems and MCNC
benchmark circuits. The platform is based on a Linux OS sys-
tem on a 233Mhz Pentium PC with 64M bytes memory. An LP
solver, LPAKO 4.3f(http://ORLAB.snu.ac.kr/), is used to solve
the linear programming problem, and a simple script (Perl code) is
used to generate the constraints and interface with the LP solver.

We do some passes of 1-D compaction for each case before run-
ning Algorithm 2. Each module has an aspect ratio constraint,
0:3333 � hi=wi � 3. The total area of the blocks in a circuit is
normalized to 1. All blocks are soft for ease of comparison, since
soft blocks dominate the run time. The results are shown in Table 1,
where the first column is the name of the circuit, the second column
is the number of soft blocks, the third column is the number of lin-
ear inequality constraints, the 4th column is the total number of LP
runs, the 5th column is the total run time, the 6th column is the total
area error due to the approximation of area constraints, and the last
column shows the input normalized area versus the output normal-
ized area. The area errors arise from the linear constrained set to
approximate a block area Eq. 2. It is possible to bound it , or reduce
it by more approximating lines. An alternative approach could be
used to conservatively approximate the block area by designing the
cross points of lines falling on the hyperbola. Atpe, C20, C100 and

Ckt #Blks #Cntr #LP Run Area In./Out.
Runs Time Error Area

xerox 10 148 12 4s 1.07% 1.24/1.00
atpe 10 147 10 4s 1.08% 1.11/0.96
hp 11 165 11 4s 1.13% 1.25/1.02
c11 11 167 15 6s 1.79% 1.19/1.07
c20 20 343 11 8s 2.91% 1.23/0.98
ami33 33 656 11 18s 1.53% 1.31/1.03
ami49 49 1072 10 34s 0.87% 1.21/1.00
c55 55 1312 13 57s 1.75% 1.24/1.09
c100 100 2806 11 185s 1.81% 1.31/0.99
c200 200 6504 8 636s 1.75% 1.83/0.99
c400 400 19458 10 5345s 1.47% 1.22/1.00
c500 500 23011 10 7684s 1.78% 2.49/1.17

Table 1: The results of Algorithm 2

C200 have an output area less than 1.00 due to the area constraint
approximation. All the area constraints are approximated by 5 lin-
ear inequalities. All the results shown are at the stopping criteria
that the final result can not be greater than the lower bound by 3%.
More than 500 blocks could be done on a more powerful platform
without any problem. The LP solver capability is the major factor
for the size of the problems it can handle.

Compared with the results shown in [2], although our platform and
memory space is much more limited, our results still shows 3X to
5X improvement and no difficulty for 500 blocks, while the largest
size of problem they can handle is just 106 blocks and it also suf-
fers from no feasible solution found sometimes due the nonlinear
programming initialization. Compared with the results shown in
[5], their run time is almost one order greater than our results, even
if they use much more powerful platform and larger memory space.

One result of Algorithm 2 on the experimental circuits is shown in
Figure 5.

6. FUTURE WORK

Figure 5: The result for MCNC benchmark circuit ami49.

More aggressive approach may be integration of the LP solver and
Algorithm 1 and 2, since the LP runs are always on the same con-
strained space and only the cost function is changed in Algorithm
1. It is also possible to use some LP techniques like parameterized
LP, in which the width of a chip is taken as a parameter, and the
min function of the height can be derived as a piecewise linear and
convex function of the width[7]. For that many constraints, it is
possible to add constraints when it is necessary to reduce the LP
solving work. The dual simplex method is ideal for this[7].

7. SUMMARY AND CONCLUSION
We propose an efficient and powerful algorithm to solve the floor-
plan sizing problem, and only linear programming is required to
find the global optimum. Also, our method can handle not just
soft/hard/pre-placed blocks but also consider timing constraints with-
out any problem. The problem size we can handle and run time is
shown favorably compared with any existing approaches.

8. REFERENCES
[1] N. Sherwani. “Algorithms for VLSI Physical Design

Automation”. Kluwer Academic Publishers, 1995.

[2] T. S. Moh, T. S. Chang, and S.L.Hakimi. “Globally optimal
floorplanning for a layout problem”. IEEE Trans. on Circuit
and Systems - I: Fundamental Theory and Applications,
Vol.43:pp.713–720, Sep. 1996.

[3] T. Chen and M. K. H. Fan. “On Convex Formulation of the
Floorplan Area Minimization Problem”. In Proc. of
International Symposium of Physical Design, pages 124–128,
Apr. 1998.

[4] K. Wang and W.K. Chen. “Floorplan Area Optimization using
Network Analogous Approach”. In Proc. of IEEE
International Symposium on Circuits and Systems, pages
167–170, 1995.

[5] H. Murata and E. S. Kuh. “Sequence-Pair Based Placement
Method for Hard/Soft/Pre-placed Modules”. In Proc. of
International Symposium of Physical Design, pages 167–172,
Apr. 1998.

[6] M. R. Garey and D. S. Johnson. “Computers and
Intractability: A Guide to the Theory of NP-Completeness”.
W. H. Freeman, 1979.

[7] C. H. Papadimitriou and K. Steiglitz. “Combinatorial
Optimization-Algorithms and Complexity”. Prentice-Hall,
Inc., 1982.

