Flops and Poisson Deformations of Symplectic Varieties

Dedicated to Professor Heisuke Hironaka on his 77-th birthday

By
Yoshinori Namikawa*

§1. Introduction

In [Na] we have dealt with a deformation of a projective symplectic variety. This paper, on the contrary, deals with a deformation of a local symplectic variety. More exactly, we mean by a local symplectic variety, a normal variety X satisfying

1. there is a birational projective morphism from X to an affine normal variety Y,
2. there is an everywhere non-degenerate d-closed 2 -form ω on the regular part U of X such that, for any resolution $\pi: \tilde{X} \rightarrow X$ with $\pi^{-1}(U) \cong U, \omega$ extends to a regular 2-form on \tilde{X}.

In the remainder, we call such a variety a convex symplectic variety. A convex symplectic variety has been studied in $[\mathrm{K}-\mathrm{V}],[\mathrm{Ka} 1]$ and $[\mathrm{G}-\mathrm{K}]$. One of main difficulties we meet is the fact that tangent objects \mathbf{T}_{X}^{1} and \mathbf{T}_{Y}^{1} are not finite dimensional, since Y may possibly have non-isolated singularities; hence the usual deformation theory does not work well. Instead, in [K-V], [G-K], they introduced a Poisson scheme and studied a Poisson deformation of it. A Poisson deformation is the deformation of the pair of a scheme itself and a Poisson structure on it. When X is a convex symplectic variety, X admits a natural Poisson structure induced from a symplectic 2 -form ω; hence one can consider

[^0]its Poisson deformations. Then they are controlled by the Poisson cohomology. The Poisson cohomology has been extensively studied by Fresse [Fr 1], [Fr 2]. In some good cases, it can be described by well-known topological data (Corollary 10). The first application of the Poisson deformation theory is the following two results:

Corollary 25. Let Y be an affine symplectic variety with a good \mathbf{C}^{*} action and assume that the Poisson structure of Y is positively weighted. Let

$$
X \xrightarrow{f} Y \stackrel{f^{\prime}}{\leftarrow} X^{\prime}
$$

be a diagram such that,

1. f (resp. f^{\prime}) is a crepant, birational, projective morphism.
2. X (resp. X^{\prime}) has only terminal singularities.
3. X (resp. X^{\prime}) is \mathbf{Q}-factorial.

Then both X and X^{\prime} have locally trivial deformations to an affine variety Y_{t} obtained as a Poisson deformation of Y. In particular, X and X^{\prime} have the same kind of singularities.

A typical situation of Corollary 25 is a symplectic flop. At this moment, we need the "good \mathbf{C}^{*} condition" to make sure the existence of an algebraization of certain formal Poisson deformation. For the exact definition of a good \mathbf{C}^{*} action, see Appendix. But even if Y does not have such an action, one can prove:

Corollary 31. Let Y be an affine symplectic variety. Let

$$
X \xrightarrow{f} Y \stackrel{f^{\prime}}{\leftarrow} X^{\prime}
$$

be a diagram such that,

1. f (resp. f^{\prime}) is a crepant, birational, projective morphism.
2. X (resp. X^{\prime}) has only terminal singularities.
3. X (resp. X^{\prime}) is \mathbf{Q}-factorial.

If X is smooth, then X^{\prime} is smooth.
The proofs of Corollaries 25 and 31 are essentially based on [Ka 1], where he proved that the smoothness is preserved in a symplectic flop under certain
assumptions. Corollaries 25 and 31 are local versions of Corollary 1 of [Na]. More general facts can be found in Corollary 30.

The following is the second application:
Corollary 28. Let Y be an affine symplectic variety with a good \mathbf{C}^{*} action. Assume that the Poisson structure of Y is positively weighted, and Y has only terminal singularities. Let $f: X \rightarrow Y$ be a crepant, birational, projective morphism such that X has only terminal singularities and such that X is \mathbf{Q}-factorial. Then the following are equivalent.
(a) X is non-singular.
(b) Y is smoothable by a Poisson deformation.

In the proof of Corollary 28, we observe that the pro-representable hulls (= formal Kuranishi spaces) of the Poisson deformations of X and Y are isomorphic. Here we just use the assumption that Y has only terminal singularities. Thus, any formal Poisson deformation of Y is obtained from that of X by the contraction map; this makes it possible for us to obtain (a) from (b). But, what we really want, is just that the formal Kuranishi space for X dominates that for Y. The author believes that this would be true if Y does not have terminal singularities. So our final goal would be the following conjecture:

Conjecture ${ }^{1}$. Let Y be an affine symplectic variety with a good \mathbf{C}^{*} action. Assume that the Poisson structure of Y is positively weighted. Then the following are equivalent.
(1) Y has a crepant projective resolution.
(2) Y has a smoothing by a Poisson deformation.

The contents of this paper are as follows. In $\S 2$ we introduce the Poisson cohomology of a Poisson algebra according to Fresse [Fr 1], [Fr 2]. In Propositions 5, we shall prove that a Poisson deformation of a Poisson algebra is controlled by the Poisson cohomology. In particular, when the Poisson algebra is smooth, the Poisson cohomology is computed by the Lichnerowicz-Poisson complex. Since the Lichnerowicz-Poisson complex is defined also for a smooth Poisson scheme, one can define the Poisson cohomology for a smooth Poisson scheme. In §3, we restrict ourselves to the Poisson structures attached to a convex symplectic variety X. When X is smooth, the Poisson cohomology can be identified with the truncated De Rham cohomology (Proposition 9). When X

[^1]has only terminal singularities, its Poisson deformations are the same as those of the regular locus U of X. Thus the Poisson deformations of X are controlled by the truncated De Rham cohomology of U. Theorem 14 and Corollary 15 assert that, the Poisson deformation functor of a convex symplectic variety with terminal singularities, has a pro-representable hull and it is unobstructed. These are more or less already known. But we reproduce them here so that they fit our aim and our context. (see also [G-K], Appendix). Kaledin's twistor deformation is also easily generalized to our singular case; but this generalization is very useful in the proof of Corollary 25. At the end of this section we shall prove the following two key results:

Theorem 17. Let X be a convex symplectic variety with terminal singularities. Let $(X,\{\}$,$) be the Poisson structure induced by the symplectic$ form on the regular part. Assume that $X^{a n}$ is \mathbf{Q}-factorial. Then any Poisson deformation of $(X,\{\}$,$) is locally trivial as a flat deformation (after forgetting$ Poisson structure).

Theorem 19. Let X be a convex symplectic variety with terminal singularities. Let L be a (not necessarily ample) line bundle on X. Then the twistor deformation $\left\{X_{n}\right\}_{n \geq 1}$ of X associated with L is locally trivial as a flat deformation.
$\S 4$ deals with a convex symplectic variety with a good \mathbf{C}^{*}-action. The main results of this section are Corollary 25 and Corollary 28 explained above. These are actually corollaries to Theorem 19 and Theorem 17 respectively. In $\S 5$ we consider the general case where Y does not have a good \mathbf{C}^{*}-action. Corollary 30 is a similar statement to Corollary 25 in the general case; but for the lack of algebraizations, it is not clear, at this moment, how the singularities of X^{\prime} are related with those of X. Finally, we shall prove Corollary 31 explained above. In $\S 6$ one can find a concrete example of a Poisson deformation (Example 32). Example 33 is an example of a singular symplectic flop. The final section is Appendix, where some well-known results on good \mathbf{C}^{*}-actions are proved. The main result of Appendix is Corollary A.10. For a non-compact variety, the analytic category and the algebraic category are usually quite different. However, Corollary A. 10 asserts that when we have a good \mathbf{C}^{*}-action, both categories are well-matched.

The author would like to thank A. Fujiki for the discussion on Lemma A. 8 in the Appendix, and D. Kaledin for pointing out that Corollary 30 is not sufficient for us to claim that X and X^{\prime} have the same kind of singularities.

§2. Poisson Deformations

(i) Harrison cohomology (cf. [Ge-Sc]): Let S be a commutative Calgebra and let A be a commutative S-algebra. Let S_{n} be the n-th symmetric group. Then S_{n} acts from the left hand side on the n-tuple tensor product $A \otimes_{S} \ldots \otimes_{S} A$ as

$$
\pi\left(a_{1} \otimes \ldots \otimes a_{n}\right):=a_{\pi^{-1}(1)} \otimes \ldots \otimes a_{\pi^{-1}(n)}
$$

where $\pi \in S_{n}$. This action extends naturally to an action of the group algebra $\mathbf{C}\left[S_{n}\right]$ on $A \otimes_{S} \ldots \otimes_{S} A$. For $0<r<n$, an element $\pi \in S_{n}$ is called a pure shuffle of type $(r, n-r)$ if $\pi(1)<\ldots<\pi(r)$ and $\pi(r+1)<\ldots<\pi(n)$. Define an element $s_{r, n-r} \in \mathbf{C}\left[S_{n}\right]$ by

$$
s_{r, n-r}:=\Sigma \operatorname{sgn}(\pi) \pi
$$

where the sum runs through all pure shuffles of type $(r, n-r)$. Let N be the S-submodule of $A \otimes_{S} A \ldots \otimes_{S} A$ generated by all elements

$$
\left\{s_{r, n-r}\left(a_{1} \otimes \ldots \otimes a_{n}\right)\right\}_{0<r<n, a_{i} \in A} .
$$

Define $\operatorname{ch}_{n}(A / S):=\left(A \otimes_{S} A \ldots \otimes_{S} A\right) / N$. Let M be an A-module. Then the Harrison chain $\{\operatorname{ch} .(A / S ; M)\}$ is defined as follows:

1. $\operatorname{ch}_{n}(A / S ; M):=\operatorname{ch}_{n}(A / S) \otimes_{S} M$
2. the boundary map $\partial_{n}: \operatorname{ch}_{n}(A / S ; M) \rightarrow \operatorname{ch}_{n-1}(A / S ; M)$ is defined by $\partial_{n}\left(a_{1} \otimes \ldots \otimes a_{n} \otimes m\right):=$

$$
\begin{aligned}
a_{1} \otimes \ldots \otimes a_{n} m & +\Sigma_{1 \leq i \leq n-1}(-1)^{n-i} a_{1} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{n} \otimes m \\
& +(-1)^{n} a_{2} \otimes \ldots \otimes a_{n} \otimes a_{1} m .
\end{aligned}
$$

We define the n-th Harrison homology $\operatorname{Har}_{n}(A / S ; M)$ just as the n-th homology of ch. $(A / S ; M)$.

The Harrison cochain $\left\{\operatorname{ch}^{(}(A / S ; M)\right\}$ is defined as follows

1. $\operatorname{ch}^{n}(A / S ; M):=\operatorname{Hom}_{S}\left(\operatorname{ch}_{n}(A / S), M\right)$
2. the coboundary map $d^{n}: \operatorname{ch}^{n}(A / S ; M) \rightarrow \operatorname{ch}^{n+1}(A / S ; M)$ is defined by $\left(d^{n} f\right)\left(a_{1} \otimes \ldots \otimes a_{n+1}\right):=(-1)^{n+1} a_{1} f\left(a_{2} \otimes \ldots \otimes a_{n+1}\right)$

$$
+\Sigma_{1 \leq i \leq n}(-1)^{n+1-i} f\left(a_{1} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{n+1}\right)+f\left(a_{1} \otimes \ldots \otimes a_{n}\right) a_{n+1}
$$

We define the n-th Harrison cohomology $\operatorname{Har}^{n}(A / S ; M)$ as the n-th cohomology of $\operatorname{ch}^{(}(A / S ; M)$.

Example 1. Assume that $S=\mathbf{C}$. Then $\operatorname{ch}_{2}(A / \mathbf{C} ; A)=\operatorname{Sym}_{\mathbf{C}}^{2}(A) \otimes_{\mathbf{C}} A$ and $\operatorname{ch}_{1}(A / \mathbf{C} ; A)=A \otimes_{\mathbf{C}} A$. The boundary map ∂_{2} is defined as

$$
\partial_{2}\left(\left[a_{1} \otimes a_{2}\right] \otimes a\right):=a_{1} \otimes a_{2} a-a_{1} a_{2} \otimes a+a_{2} \otimes a_{1} a
$$

We see that $\operatorname{im}\left(\partial_{2}\right)$ is a right A-submodule of $A \otimes_{\mathbf{C}} A$. Let $I \subset A \otimes_{\mathbf{C}} A$ be the ideal generated by all elements of the form $a \otimes b-b \otimes a$ with $a, b \in A$. Then we have a homomorphism of right A-modules $I \rightarrow\left(A \otimes_{\mathbf{C}} A\right) / \operatorname{im}\left(\partial_{2}\right)$. One can check that its kernel coincides with I^{2}. Hence we have

$$
\Omega_{A / \mathbf{C}}^{1} \cong \operatorname{Har}_{1}(A / \mathbf{C} ; A)
$$

In fact, the Harrison chain ch. $(A / \mathbf{C} ; A)$ is quasi-isomorphic to the cotangent complex $L_{A / \mathbf{C}}$ for a C-algebra A (cf. [Q]).

Let A and S be the same as above. We put $S[\epsilon]:=S \otimes_{\mathbf{C}} \mathbf{C}[\epsilon]$, where $\epsilon^{2}=0$. Let us consider the set of all $S[\epsilon]$-algebra structures of the $S[\epsilon]$-module $A \otimes_{S} S[\epsilon]$ such that they induce the original S-algebra A if we take the tensor product of $A \otimes_{S} S[\epsilon]$ and S over $S[\epsilon]$. We say that two elements of this set are equivalent if and only if there is an isomorphism of $S[\epsilon]$-algebras between them which induces the identity map of A over S. We denote by $D(A / S, S[\epsilon])$ the set of such equivalence classes. Fix an $S[\epsilon]$-algebra structure ($\left.A \otimes_{S} S[\epsilon], *\right)$. Here $*$ just means the corresponding ring structure. Then we define $\operatorname{Aut}(*, S)$ to be the set of all $S[\epsilon]$-algebra automorphisms of $\left(A \otimes_{S} S[\epsilon], *\right)$ which induces the identity map of A over S.

Proposition 2. Assume that A is a free S module.
(1) There is a one-to-one correspondence between $\operatorname{Har}^{2}(A / S ; A)$ and $D(A / S, S[\epsilon])$.
(2) There is a one-to-one correspondence between $\operatorname{Har}^{1}(A / S ; A)$ and $\operatorname{Aut}(*, S)$.

Proof. We shall only give a proof to (1). The proof of (2) is left to the readers. Denote by $*$ a ring structure on $A \otimes_{S} S[\epsilon]=A \oplus A \epsilon$. For $a, b \in A$, write

$$
a * b=a b+\epsilon \phi(a, b)
$$

with some $\phi: A \times A \rightarrow A$. The multiplication of an element of $S[\epsilon]$ and an element of $A \otimes_{S} S[\epsilon]$ should coincide with the action of $S[\epsilon]$ as the $S[\epsilon]$-module;
hence $a * \epsilon=a \epsilon$ and $a \epsilon * \epsilon=0$. Then

$$
\begin{gathered}
a *(b \epsilon)=a *(b * \epsilon)=(a * b) * \epsilon \\
=\{a b+\phi(a, b) \epsilon\} * \epsilon=a b \epsilon+\phi(a, b) *(\epsilon * \epsilon)=a b \epsilon .
\end{gathered}
$$

Similarly, we have $(a \epsilon) *(b \epsilon)=0$. Therefore, $*$ is determined completely by ϕ. By the commutativity of $*, \phi \in \operatorname{Hom}_{S}\left(\operatorname{Sym}_{S}^{2}(A), A\right)$. By the associativity: $(a * b) * c=a *(b * c)$, we get

$$
\phi(a b, c)+c \phi(a, b)=\phi(a, b c)+a \phi(b, c) .
$$

This condition is equivalent to that $\phi \in \operatorname{Ker}\left(d^{2}\right)$, where d^{2} is the 2 -nd coboundary map of the Harrison cochain. Next let us observe when two ring structures $*$ and $*^{\prime}$ are equivalent. As above, we write $a * b=a b+\epsilon \phi(a, b)$ and $a *^{\prime} b=a b+\epsilon \phi^{\prime}(a, b)$. Assume that a map $\psi: A \oplus A \epsilon \rightarrow A \oplus A \epsilon$ gives an equivalence. Then, for $a \in A$, write $\psi(a)=a+f(a) \epsilon$ with some $f: A \rightarrow A$. One can show that $\psi(a \epsilon)=a \epsilon$. Since $\psi(a) *^{\prime} \psi(b)=\psi(a * b)$, we see that

$$
\phi^{\prime}(a, b)-\phi(a, b)=f(a b)-a f(b)-b f(a) .
$$

This implies that $\phi^{\prime}-\phi \in \operatorname{im}\left(d^{1}\right)$.
Remark 3. Assume that S is an Artinian ring and A is flat over S. Then A is a free S-module and for any flat extension A^{\prime} of A over $S[\epsilon], A^{\prime} \cong A \otimes_{S} S[\epsilon]$ as an $S[\epsilon]$-module.
(ii) Poisson cohomology (cf. [Fr1], [Fr2]): Let A and S be the same as (i). Assume that A is a free S-module. Let us consider the graded free S-module ch. $(A / S):=\oplus_{0<m} \mathrm{ch}_{m}(A / S)$ and take its super-symmetric algebra $\mathcal{S}(\operatorname{ch} .(A / S))$. By definition, $\mathcal{S}(\operatorname{ch} .(A / S))$ is the quotient of the tensor algebra $T(\operatorname{ch} .(A / S)):=\oplus_{0 \leq n}(\operatorname{ch} .(A / S))^{\otimes n}$ by the two-sided ideal M generated by the elements of the form: $a \otimes b-(-1)^{p q} b \otimes a$, where $a \in \operatorname{ch}_{p}(A / S)$ and $b \in \operatorname{ch}_{q}(A / S)$. We denote by $\overline{\mathcal{S}}(\operatorname{ch} .(A / S))$ the truncation of the degree 0 part. In other words,

$$
\overline{\mathcal{S}}(\operatorname{ch} .(A / S)):=\oplus_{0<n}(\operatorname{ch} .(A / S))^{\otimes n} / M .
$$

Now let us consider the graded A-module

$$
\overline{\mathcal{S}}(\operatorname{ch.}(A / S)) \otimes_{S} A:=\operatorname{ch} .(A / S) \otimes_{S} A \oplus\left(\mathcal{S}^{2}(\operatorname{ch} .(A / S)) \otimes_{S} A\right) \oplus \ldots
$$

The Harrison boundary maps ∂ on ch. $(A / S) \otimes_{S} A$ naturally extends to those on $\mathcal{S}^{n}($ ch. $(A / S)) \otimes_{S} A$. In fact, for $a_{i} \in \operatorname{ch}_{p_{i}}(A / S) \otimes_{S} A, 1 \leq i \leq n$, denote by
$a_{1} \cdots a_{n} \in \mathcal{S}_{A}^{n}\left(\operatorname{ch} .(A / S) \otimes_{S} A\right)$ their super-symmetric product. We then define ∂ inductively as

$$
\partial\left(a_{1} \ldots a_{n}\right):=\partial\left(a_{1}\right) a_{2} \ldots a_{n}+(-1)^{p_{1}} a_{1} \cdot \partial\left(a_{2} \ldots a_{n}\right)
$$

In this way, each $\mathcal{S}_{A}^{n}\left(\operatorname{ch} .(A / S) \otimes_{S} A\right)=\mathcal{S}^{n}(\operatorname{ch} .(A / S)) \otimes_{S} A$ becomes a chain complex. By taking the dual,

$$
\begin{gathered}
\operatorname{Hom}_{A}\left(\mathcal{S}^{n}(\operatorname{ch} .(A / S)) \otimes_{S} A, A\right) \\
=\operatorname{Hom}_{S}\left(\mathcal{S}^{n}(\operatorname{ch} .(A / S)), A\right)
\end{gathered}
$$

becomes a cochain complex:

Here we abbreviate $\operatorname{ch}_{i}(A / S)$ by ch_{i} and $\operatorname{Hom}_{S}(\ldots)$ by $\operatorname{Hom}(\ldots)$. We want to make the diagram above into a double complex when A is a Poisson S algebra.

Definition. A Poisson S-algebra A is a commutative S-algebra with an S-linear map

$$
\{,\}: \wedge{ }_{S}^{2} A \rightarrow A
$$

such that

1. $\{a,\{b, c\}\}+\{b,\{c, a\}\}+\{c,\{a, b\}\}=0$
2. $\{a, b c\}=\{a, b\} c+\{a, c\} b$.

We assume now that A is a Poisson S-module such that A is a free S module. We put $\bar{T}_{S}(A):=\oplus_{0<n}(A)^{\otimes n}$. We shall introduce an S-bilinear bracket product

$$
[,]: \bar{T}_{S}(A) \times \bar{T}_{S}(A) \rightarrow \bar{T}_{S}(A)
$$

in the following manner. Take two elements from $\bar{T}_{S}(A): f=f_{1} \otimes \ldots \otimes f_{p}$ and $g=g_{1} \otimes \ldots \otimes g_{q}$. Here each f_{i} and each g_{i} are elements of A. Let $\pi \in S_{p+q}$ be a pure shuffle of type (p, q). For the convention, we put $f_{i+p}:=g_{i}$. Then the shuffle product is defined as

$$
f \cdot g:=\Sigma \operatorname{sgn}(\pi) f_{\pi^{-1}(1)} \otimes \ldots \otimes f_{\pi^{-1}(p+q)},
$$

where the sum runs through all pure shuffle of type (p, q). For each term of the sum (which is indexed by π), let I_{π} be the set of all i such that $\pi^{-1}(i) \leq p$ and $\pi^{-1}(i+1) \geq p+1$ (which implies that $\left.f_{\pi^{-1}(i+1)}=g_{\pi^{-1}(i+1)-p}\right)$. Then we define $[f, g]$ as

$$
\Sigma \operatorname{sgn}(\pi)\left(\Sigma_{i \in I_{\pi}}(-1)^{i+1} f_{\pi^{-1}(1)} \otimes \ldots \otimes\left\{f_{\pi^{-1}(i)}, f_{\pi^{-1}(i+1)}\right\} \otimes \ldots \otimes f_{\pi^{-1}(p+q)}\right) .
$$

The bracket [,] induces that on ch. (A / S) by the quotient map $\bar{T}_{S}(A) \rightarrow$ ch. (A / S). By abuse of notation, we denote by [,] the induced bracket. We are now in a position to define coboundary maps

$$
\delta: \operatorname{Hom}_{S}\left(\mathcal{S}^{s-1}(\operatorname{ch} .(A / S)), A\right) \rightarrow \operatorname{Hom}_{S}\left(\mathcal{S}^{s}(\operatorname{ch.}(A / S)), A\right)
$$

so that $\operatorname{Hom}_{S}(\overline{\mathcal{S}}(\operatorname{ch} .(A / S)), A)$ is made into a double complex together with d already defined. We take an element of the form $x_{1} \cdots x_{s}$ from $\mathcal{S}^{s}(\operatorname{ch} .(A / S))$ with each x_{i} being a homogeneous element of ch. (A / S).

For $f \in \operatorname{Hom}_{S}\left(\overline{\mathcal{S}}^{s-1}(\operatorname{ch} .(A / S)), A\right)$, we define

$$
\begin{aligned}
& \delta(f)\left(x_{1} \cdots x_{s}\right):=\sum_{1 \leq i \leq s}(-1)^{\sigma(i)} \overline{\left[x_{i}, f\left(x_{1} \cdots \breve{x_{i}} \cdots x_{s}\right)\right]} \\
& -\sum_{i<j}(-1)^{\tau(i, j)} f\left(\left[x_{i}, x_{j}\right] \cdots \breve{x_{i}} \cdots \breve{x_{j}} \cdots x_{s}\right) .
\end{aligned}
$$

Here $\overline{[,]}$ is the composite of [,] and the truncation map ch. $(A / S) \rightarrow$ $\operatorname{ch}_{1}(A / S)(=A)$. Moreover,

$$
\sigma(i):=\operatorname{deg}\left(x_{i}\right) \cdot\left(\operatorname{deg}\left(x_{1}\right)+\ldots+\operatorname{deg}\left(x_{i-1}\right)\right)
$$

and

$$
\begin{gathered}
\tau(i, j):=\operatorname{deg}\left(x_{i}\right)\left(\operatorname{deg} x_{1}+\ldots+\operatorname{deg} x_{i-1}\right) \\
+\operatorname{deg}\left(x_{j}\right)\left(\operatorname{deg}\left(x_{1}\right)+\ldots+\operatorname{deg}\left(x_{i}\right)+\ldots+\operatorname{deg}\left(x_{j-1}\right)\right) .
\end{gathered}
$$

We now obtain a double complex $\left(\operatorname{Hom}_{S}(\overline{\mathcal{S}}(\operatorname{ch} .(A / S)), A), d, \delta\right)$. The n-th Poisson cohomology $\operatorname{HP}^{n}(A / S)$ for a Poisson S-algebra A is the n-th cohomology of the total complex (by $d+\delta$) of this double complex.

Example 4. We shall calculate δ explicitly in a few cases. As in the diagram above, we abbreviate Hom_{S} by Hom, and $\operatorname{ch}_{i}(A / S)$ by ch_{i}.
(i) Assume that $f \in \operatorname{Hom}\left(\mathrm{ch}_{1}, A\right)$.

$$
\delta(f)(a \wedge b)=\{a, f(b)\}+\{f(a), b\}-f(\{a, b\})
$$

(ii) Assume that $\varphi \in \operatorname{Hom}\left(\operatorname{ch}_{2}, A\right)$. For $(a, b) \in \operatorname{Sym}_{S}^{2}(A)\left(=\operatorname{ch}_{2}\right)$, and for $c \in A\left(=\mathrm{ch}_{1}\right)$,

$$
\begin{gathered}
\delta(\varphi)((a, b) \cdot c)=[(a, b), \varphi(c)]+[c, \varphi(a, b)]-\varphi([(a, b), c]) \\
=\{c, \varphi(a, b)\}-\varphi(\{c, b\}, a)-\varphi(\{c, a\}, b) .
\end{gathered}
$$

(iii) Assume that $\psi \in \operatorname{Hom}\left(\wedge^{2} \mathrm{ch}_{1}, A\right)$.

$$
\begin{gathered}
\delta(\psi)(a \wedge b \wedge c)=\{a, \psi(b, c)\}+\{b, \psi(c, a)\}+\{c, \psi(a, b)\} \\
+\psi(a,\{b, c\})+\psi(b,\{c, a\})+\psi(c,\{a, b\}) .
\end{gathered}
$$

Let A be a Poisson S-algebra such that A is a free S-module. We put $S[\epsilon]:=S \otimes_{\mathbf{C}} \mathbf{C}[\epsilon]$, where $\epsilon^{2}=0$. Let us consider the set of all Poisson $S[\epsilon]-$ algebra structures on the $S[\epsilon]$-module $A \otimes_{S} S[\epsilon]$ such that they induce the original Poisson S-algebra A if we take the tensor product of $A \otimes_{S} S[\epsilon]$ and
S over $S[\epsilon]$. We say that two elements of this set are equivalent if and only if there is an isomorphism of Poisson $S[\epsilon]$-algebras between them which induces the identity map of A over S. We denote by $P D(A / S, S[\epsilon])$ the set of such equivalence classes. Fix a Poisson $S[\epsilon]$-algebra structure $\left(A \otimes_{S} S[\epsilon], *,\{\},\right)$. Then we define $\operatorname{Aut}(*,\{\}, S$,$) to be the set of all automorphisms of Poisson$ $S[\epsilon]$-algebras of $\left(A \otimes_{S} S[\epsilon], *,\{\},\right)$ which induces the identity map of A over S.

Proposition 5. (1) There is a one-to-one correspondence between $H P^{2}(A / S)$ and $P D(A / S, S[\epsilon])$.
(2) There is a one-to-one correspondence between $H P^{1}(A / S)$ and $\operatorname{Aut}(*,\{\}, S$,$) .$

Proof. (1): As explained in Proposition 2, giving an $S[\epsilon]$-algebra structure * on $A \oplus A \epsilon$ is equivalent to giving $\varphi \in \operatorname{Hom}_{S}\left(\operatorname{Sym}_{S}^{2}(A), A\right)$ with $d(\varphi)=0$ such that $a * b=a b+\epsilon \varphi(a, b)$. Assume that $\{,\}_{\epsilon}$ is a Poisson bracket on $(A \oplus A \epsilon, *)$ which is an extension of the original Poisson bracket $\{$,$\} on A$. We put

$$
\{a, b\}_{\epsilon}=\{a, b\}+\psi(a, b) \epsilon .
$$

Since $\{a, b \epsilon\}_{\epsilon}=\{a, b * \epsilon\}_{\epsilon}=\{a, b\} \epsilon$ and $\{a \epsilon, b \epsilon\}=0$, the Poisson structure $\{,\}_{\epsilon}$ is completely determined by ψ. By the skew-commutativity of $\{$,$\} ,$ $\psi \in \operatorname{Hom}_{S}\left(\wedge{ }_{S}^{2} A, A\right)$. The equality

$$
\{a, b * c\}_{\epsilon}=\{a, b\}_{\epsilon} * c+\{a, c\}_{\epsilon} * b
$$

is equivalent to the equality

$$
\begin{gathered}
(\star): \psi(a, b c)-c \psi(a, b)-b \psi(a, c) \\
=\varphi(\{a, b\}, c)+\varphi(\{a, c\}, b)-\{a, \varphi(b, c)\} .
\end{gathered}
$$

The equality

$$
\left\{a,\{b, c\}_{\epsilon}\right\}_{\epsilon}+\left\{b,\{c, a\}_{\epsilon}\right\}_{\epsilon}+\left\{c,\{a, b\}_{\epsilon}\right\}_{\epsilon}=0
$$

is equivalent to the equality

$$
\begin{aligned}
& (\star \star): \psi(a,\{b, c\})+\psi(b,\{c, a\})+\psi(c,\{a, b\}) \\
& +\{a, \psi(b, c)\}+\{b, \psi(c, a)\}+\{c, \psi(a, b)\}=0 .
\end{aligned}
$$

We claim that the equality (\star) means $\delta(\varphi)+d(\psi)=0$ in the diagram:

$$
\operatorname{Hom}\left(\operatorname{Sym}^{2}(A), A\right) \xrightarrow{\delta} \operatorname{Hom}\left(\operatorname{Sym}^{2}(A) \otimes A, A\right) \stackrel{d}{\leftarrow} \operatorname{Hom}\left(\wedge^{2} A, A\right) .
$$

By Example 4, (ii), we have shown that

$$
\delta(\varphi)((a, b) \cdot c)=\{c, \varphi(a, b)\}-\varphi(\{c, b\}, a)-\varphi(\{c, a\}, b) .
$$

On the other hand, for the Harrison boundary map

$$
\partial: \operatorname{Sym}^{2}(A) \otimes_{S} A \otimes_{S} A \rightarrow \wedge^{2} A \otimes_{S} A
$$

we have

$$
\partial((a, b) \otimes c \otimes 1)=b(a \wedge c)-a b \wedge c+a(b \wedge c)
$$

Since d is defined as the dual map of ∂, we see that

$$
d \psi((a, b) \cdot c)=\psi(c, a b)-a \psi(c, b)-b \psi(c, a) .
$$

As a consequence, we get

$$
\begin{gathered}
(\delta \varphi+d \psi)((a, b) \cdot c)=\psi(c, a b)-a \psi(c, b)-b \psi(c, a) \\
+\{c, \varphi(a, b)\}-\varphi(\{c, b\}, a)-\varphi(\{c, a\}, b) .
\end{gathered}
$$

By changing a and c each other, we conclude that $\delta(\varphi)+d(\psi)=0$.
By the equality ($(\star$) and Example 4, (iii), we see that ($\star \star$) means $\delta(\psi)=0$ for the map $\delta: \operatorname{Hom}\left(\wedge^{2} A, A\right) \rightarrow \operatorname{Hom}\left(\wedge^{3} A, A\right)$. Next, let us observe when two Poisson structures (φ, ψ) and $\left(\varphi^{\prime}, \psi^{\prime}\right)$ (on $A \oplus A \epsilon$) are equivalent. Assume that, for $f \in \operatorname{Hom}_{S}(A, A)$,

$$
\chi_{f}: A \oplus A \epsilon \rightarrow A \oplus A \epsilon
$$

gives such an equivalence between both Poisson structures, where $\chi_{f}(a)=$ $a+f(a) \epsilon, \chi_{f}(a \epsilon)=a \epsilon$ for $a \in A$. Since χ_{f} gives an equivalence of $S[\epsilon]$-algebras,

$$
\left(\varphi^{\prime}-\varphi\right)(a, b)=f(a b)-a f(b)-b f(a)=-d(f)(a, b)
$$

by Proposition 2. The map χ_{f} must be compatible with two Poisson structure:

$$
\left\{\chi_{f}(a), \chi_{f}(b)\right\}_{\epsilon}^{\prime}=\chi_{f}\left(\{a, b\}_{\epsilon}\right)
$$

The left hand side equals

$$
\{a, b\}+\left[\phi^{\prime}(a, b)+\{a, f(b)\}+\{f(a), b\}\right] \epsilon
$$

The right hand side equals

$$
\{a, b\}+[f(\{a, b\})+\psi(a, b)] \epsilon .
$$

Thus, we have

$$
\left(\psi^{\prime}-\psi\right)(a, b)=-\delta(f)(a, b),
$$

and the proof of (1) is now complete. We omit the proof of (2).
We next consider the case where A is formally smooth over S. We put $\Theta_{A / S}:=\operatorname{Hom}_{A}\left(\Omega_{A / S}^{1}, A\right)$. We make $\oplus_{i>0} \wedge_{A}^{i} \Theta_{A / S}$ into a complex by defining the coboundary map

$$
\delta: \wedge^{i} \Theta_{A / S} \rightarrow \wedge^{i+1} \Theta_{A / S}
$$

as

$$
\begin{aligned}
& \delta f\left(d a_{1} \wedge \ldots \wedge d a_{i+1}\right):=\sum_{j}(-1)^{j+1}\left\{a_{j}, f\left(d a_{1} \wedge \ldots \wedge d \breve{a}_{j} \wedge \ldots \wedge d a_{i+1}\right)\right\} \\
& \left.-\sum_{j<k}(-1)^{j+k+1} f\left(d\left\{a_{j}, a_{k}\right\}\right) \wedge d a_{1} \wedge \ldots \wedge d \breve{a}_{j} \wedge \ldots \wedge d \breve{a}_{k} \wedge \ldots \wedge d a_{i+1}\right)
\end{aligned}
$$

for $f \in \wedge^{i} \Theta_{A / S}=\operatorname{Hom}_{A}\left(\Omega_{A / S}^{i}, A\right)$. This complex is called the LichnerowiczPoisson complex. One can connect this complex with our Poisson cochain complex $\mathcal{C}(A / S)$. In fact, there is a map $\mathrm{ch}_{1} \otimes_{S} A \rightarrow \Omega_{A / S}^{1}$ (cf. Example 1). This map induces, for each $i, \wedge^{i} \operatorname{ch}_{1}(A / S) \otimes_{S} A \rightarrow \Omega_{A / S}^{i}$. By taking the dual, we get

$$
\wedge^{i} \Theta_{A / S} \rightarrow \operatorname{Hom}_{A}\left(\wedge^{i} \operatorname{ch}_{1}(A / S) \otimes_{S} A, A\right)=\operatorname{Hom}\left(\wedge^{i} \operatorname{ch}_{i}(A / S), A\right)
$$

By these maps, we have a map of complexes

$$
\wedge^{\wedge} \Theta_{A / S} \rightarrow \mathcal{C} \cdot(A / S)
$$

Proposition 6. For a Poisson S-algebra A, assume that A is formally smooth over S and that A is a free S-module. Then $\left(\wedge^{\wedge} \Theta_{A / S}, \delta\right) \rightarrow(\mathcal{C}(A / S)$, $d+\delta$) is a quasi-isomorphism.

For the proof of Proposition 6, see Fresse [Fr 1], Proposition 1.4.9.
Definition. Let $T:=\operatorname{Spec}(S)$ and X a T-scheme. Then $(X,\{\}$,$) is a$ Poisson scheme over T if $\{$,$\} is an \mathcal{O}_{T}$-linear map:

$$
\{,\}: \wedge_{\mathcal{O}_{T}}^{2} \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}
$$

such that, for $a, b, c \in \mathcal{O}_{X}$,

1. $\{a,\{b, c\}\}+\{b,\{c, a\}\}+\{c,\{a, b\}\}=0$
2. $\{a, b c\}=\{a, b\} c+\{a, c\} b$.

We assume that X is a smooth Poisson scheme over T, where $T=\operatorname{Spec}(S)$ with a local Artinian C-algebra S with $S / m_{S}=\mathbf{C}$. Then the LichnerowiczPoisson complex can be globalized ${ }^{2}$ to the complex on X

$$
\mathcal{L C} \mathcal{C}^{\prime}(X / T):=\left(\wedge^{\wedge} \Theta_{X / T}, \delta\right)
$$

We define the i-th Poisson cohomology as

$$
\operatorname{HP}^{i}(X / T):=\mathbf{H}^{i}(X, \mathcal{L C}(X / T))
$$

Remark 7. When $X=\operatorname{Spec}(A), \operatorname{HP}^{i}(X / T)=\operatorname{HP}^{i}(A / S)$. In fact, there is a spectral sequence induced from the stupid filtration:

$$
E_{1}^{p, q}:=H^{q}\left(X, \mathcal{L C}^{p}(X / T)\right)=>\operatorname{HP}^{i}(X / T)
$$

Since each $\mathcal{L C}^{p}(X / T)$ is quasi-coherent on the affine scheme $X, H^{q}\left(X, \mathcal{L C}^{p}\right)=0$ for $q>0$. Therefore, this spectral sequence degenerate at E_{2}-terms and we have

$$
\operatorname{HP}^{i}(X / T)=H^{i}(\Gamma(X, \mathcal{L C}))
$$

where the right hand side is nothing but $H P^{i}(A / S)$ by Proposition 6 .
One can generalize Proposition 5 to smooth Poisson schemes. Let S be an Artinian \mathbf{C}-algebra and put $T:=\operatorname{Spec}(S)$. Let X be a Poisson T-scheme which is smooth over T. We put $T[\epsilon]:=\operatorname{Spec} S[\epsilon]$ with $\epsilon^{2}=0$. A Poisson deformation \mathcal{X} of X over $T[\epsilon]$ is a Poisson $T[\epsilon]$-algebra such that \mathcal{X} is flat over $T[\epsilon]$ and there is a Poisson isomorphism $\mathcal{X} \times_{T[\epsilon]} T \cong X$ over T. Two Poisson deformations \mathcal{X} and \mathcal{X}^{\prime} are equivalent if there is an isomorphism $\mathcal{X} \cong \mathcal{X}^{\prime}$ as Poisson $T[\epsilon]$-schemes such that it induces the identity map of X over T. Denote by $P D(X / T, T[\epsilon])$ the set of equivalence classes of Poisson deformations of X over $T[\epsilon]$. For a Poisson deformation \mathcal{X} of X over $T[\epsilon]$, we denote by $\operatorname{Aut}(\mathcal{X}, T)$ the set of all automorphisms of \mathcal{X} as a Poisson $T[\epsilon]$-scheme such that they induce the identity map of X over T.

Proposition 8. (1) There is a one-to-one correspondence between $\operatorname{HP}^{2}(X / T)$ and $\operatorname{PD}(X / T, T[\epsilon])$.
(2) For a Poisson deformation \mathcal{X} of X over $T[\epsilon]$, there is a one-to-one correspondence between $\operatorname{HP}^{1}(X / T)$ and $\operatorname{Aut}(\mathcal{X}, T)$.

[^2]Proof. We only prove (1). For an affine open covering $\mathcal{U}:=\left\{U_{i}\right\}_{i \in I}$ of X, construct a double complex $\Gamma(\mathcal{L C} \cdot(\mathcal{U}, X / T))$ as follows:

Here the horizontal maps are Čech coboundary maps. Since each $\mathcal{L C}^{p}$ is quasi-coherent, one can calculate the Poisson cohomology by the total complex associated with this double complex:

$$
\operatorname{HP}^{i}(X / T)=H^{i}(\Gamma(\mathcal{L C} \cdot(\mathcal{U}, X / T)))
$$

An element $\zeta \in \operatorname{HP}^{2}(X / T)$ corresponds to a 2-cocycle

$$
\left(\prod \zeta_{i_{0}}, \prod \zeta_{i_{0}, i_{1}}\right) \in \prod_{i_{0}} \Gamma\left(\mathcal{L C}^{2}\left(U_{i_{0}} / T\right)\right) \oplus \prod_{i_{0}, i_{1}} \Gamma\left(\mathcal{L C}^{1}\left(U_{i_{0} i_{1}} / T\right)\right)
$$

By Proposition 5, (1), $\zeta_{i_{0}}$ determines a Poisson deformation $\mathcal{U}_{i_{0}}$ of $U_{i_{0}}$ over $T[\epsilon]$. Moreover, $\zeta_{i_{0} i_{1}}$ determines a Poisson isomorphism $\left.\left.\mathcal{U}_{i_{0}}\right|_{U_{i_{0} i_{1}}} \cong \mathcal{U}_{i_{1}}\right|_{U_{i_{0} i_{1}}}$. One can construct a Poisson deformation of \mathcal{X} of X by patching together $\left\{\mathcal{U}_{i_{0}}\right\}$. Conversely, a Poisson deformation \mathcal{X} is obtained by patching together local Poisson deformations \mathcal{U}_{i} of U_{i} for an affine open covering $\left\{U_{i}\right\}_{i \in I}$ of X. Each \mathcal{U}_{i} determines $\zeta_{i} \in \Gamma\left(\mathcal{L C}^{2}\left(U_{i} / T\right)\right)$, and each Poisson isomorphism $\left.\left.\mathcal{U}_{i}\right|_{U_{i j}} \cong \mathcal{U}_{j}\right|_{U_{i j}}$ determines $\zeta_{i j} \in \Gamma\left(\mathcal{L C}^{1}\left(U_{i j}\right)\right)$. Then

$$
\left(\prod \zeta_{i}, \prod \zeta_{i j}\right) \in \prod_{i} \Gamma\left(\mathcal{L C}^{2}\left(U_{i} / T\right)\right) \oplus \prod_{i, j} \Gamma\left(\mathcal{L C}^{1}\left(U_{i j} / T\right)\right)
$$

is a 2-cocycle: hence gives an element of 2-nd Čech cohomology.

§3. Symplectic Varieties

Assume that X_{0} is a non-singular variety over \mathbf{C} of dimension $2 d$. Then X_{0} is called a symplectic manifold if there is a 2 -form $\omega_{0} \in \Gamma\left(X_{0}, \Omega_{X_{0}}^{2}\right)$ such that $d \omega_{0}=0$ and $\wedge^{d} \omega_{0}$ is a nowhere-vanishing section of $\Omega_{X_{0}}^{2 d}$. The 2 -form ω_{0} is called a symplectic form, and it gives an identification $\Omega_{X_{0}}^{1} \cong \Theta_{X_{0}}$. For a local section f of $\mathcal{O}_{X_{0}}$, the 1 -form $d f$ corresponds to a local vector field H_{f} by this identification. We say that H_{f} is the Hamiltonian vector field for f. If
we put $\{f, g\}:=\omega\left(H_{f}, H_{g}\right)$, then X_{0} becomes a Poisson scheme over $\operatorname{Spec}(\mathbf{C})$. Now let us consider a Poisson deformation X of X_{0} over $T:=\operatorname{Spec}(S)$ with a local Artinian C-algebra S with $S / m_{S}=\mathbf{C}$. The Poisson bracket $\{$, on X can be written as $\{f, g\}=\Theta(d f \wedge d g)$ for a relative bi-vector (Poisson bi-vector) $\Theta \in \Gamma\left(X, \wedge^{2} \Theta_{X / T}\right)$. The restriction of Θ to the central fiber X is nothing but the Poisson bi-vector for the original Poisson structure, which is non-degenerate because it is defined via the symplectic form ω_{0}. Hence Θ is also a non-degenerate relative bi-vector. It gives an identification of $\Theta_{X / T}$ with $\Omega_{X / T}^{1}$. Hence $\Theta \in \Gamma\left(X, \wedge^{2} \Theta_{X / T}\right)$ defines an element $\omega \in \Gamma\left(X, \Omega_{X / T}^{2}\right)$ that restricts to ω_{0} on X_{0}. One can define the Hamiltonian vector field $H_{f} \in \Theta_{X / T}$ for $f \in \mathcal{O}_{X}$.

Proposition 9. Assume that X is a Poisson deformation of a symplectic manifold X_{0} over an Artinian base T. Then $\mathcal{L C}(X / T)$ is quasi-isomorphic to the truncated De Rham complex $\left(\Omega_{X / T}^{\geq 1}, d\right)$.

Proof. By the symplectic form ω, we have an identification $\phi: \Theta_{X / T} \cong$ $\Omega_{X / T}^{1}$; hence, for each $i \geq 1$, we get $\wedge^{i} \Theta_{X / T} \cong \Omega_{X / T}^{i}$, which we denote also by ϕ (by abuse of notation). We shall prove that $\phi \circ \delta(f)=d \phi(f)$ for $f \in \wedge^{i} \Theta_{X / T}$. In order to do that, it suffices to check this for the f of the form: $f=\alpha f_{1} \wedge \ldots \wedge f_{i}$ with $\alpha \in \mathcal{O}_{X}, f_{1}, \ldots, f_{i} \in \Theta_{X / T}$. It is enough to check that

$$
d \phi(f)\left(H_{a_{1}} \wedge \ldots \wedge H_{a_{i+1}}\right)=\delta f\left(d a_{1} \wedge \ldots \wedge d a_{i+1}\right)
$$

We shall calculate the left hand side. In the following, for simplicity, we will not write the \pm signature exactly as $(-1) \cdots$, but only write \pm because it does not cause any confusion. We have

$$
\begin{aligned}
& (\text { L.H.S. })=d\left(\alpha \omega\left(f_{1}, \cdot\right) \wedge \ldots \wedge \omega\left(f_{i}, \cdot\right)\right)\left(H_{a_{1}} \wedge \ldots \wedge H_{a_{i+1}}\right) \\
& =\sum_{1 \leq j \leq i+1}(-1)^{j+1}\left(\sum_{\left\{l_{1}, \ldots, l_{i}\right\}=\{1, \ldots, \breve{j}, \ldots, i+1\}} \pm H_{a_{j}}\left(\alpha \omega\left(f_{1}, H_{a_{l_{1}}}\right) \cdots \omega\left(f_{i}, H_{a_{l_{i}}}\right)\right)\right. \\
& +\sum_{1 \leq j<k \leq i+1}(-1)^{j+k}\left(\sum_{\left\{l_{1}, \ldots, \breve{l}, \ldots, l_{i}\right\}=\{1, \ldots, \breve{j}, \ldots,, \breve{k}, \ldots, i+1\}} \pm \alpha \omega\left(f_{1}, H_{a_{l_{1}}}\right) \times \ldots\right. \\
& \\
& \left.\quad \ldots \times \omega\left(f_{l},\left[H_{a_{j}}, H_{a_{k}}\right]\right) \times \ldots \times \omega\left(f_{i}, H_{a_{l_{i}}}\right)\right) \\
& =\sum_{1 \leq j \leq i+1}(-1)^{j+1}\left(\sum \pm H_{a_{j}}\left(\alpha f_{1}\left(d a_{l_{1}}\right) \cdots f_{i}\left(d a_{l_{i}}\right)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{1 \leq j<k \leq i+1}(-1)^{j+k}\left(\sum \pm \alpha f_{1}\left(d a_{l_{1}}\right) \cdots f_{l}\left(d\left\{a_{j}, a_{k}\right\}\right) \ldots f_{i}\left(d a_{l_{i}}\right)\right) \\
& =\sum_{1 \leq j \leq i+1}(-1)^{j+1} H_{a_{j}}\left(\alpha f\left(d a_{1} \wedge \ldots \wedge d \breve{a}_{j} \wedge \ldots \wedge d a_{i+1}\right)\right) \\
& +\sum_{1 \leq j<k \leq i+1}(-1)^{j+k} \alpha f\left(d\left\{a_{j}, a_{k}\right\} \wedge d a_{1} \wedge \ldots \wedge d \breve{a}_{j} \wedge \ldots \wedge d \breve{a}_{k} \wedge \ldots \wedge d a_{i+1}\right) \\
& \quad=\sum_{1 \leq j \leq i+1}(-1)^{j+1}\left\{a_{j}, \alpha f\left(d a_{1} \wedge \ldots \wedge d \breve{a}_{j} \wedge \ldots \wedge d a_{i+1}\right)\right\} \\
& +\sum_{1 \leq j<k \leq i+1}(-1)^{j+k} \alpha f\left(d\left\{a_{j}, a_{k}\right\} \wedge \ldots \wedge d \breve{a}_{j} \wedge \ldots \wedge d \breve{a}_{k} \wedge \ldots \wedge d a_{i+1}\right) \\
& =(\text { R.H.S. }) .
\end{aligned}
$$

Corollary 10. Assume that X is a Poisson deformation of a symplectic manifold X_{0} over an Artinian base T. If $H^{1}\left(X, \mathcal{O}_{X}\right)=H^{2}\left(X, \mathcal{O}_{X}\right)=0$, then $\operatorname{HP}^{2}(X / T)=H^{2}\left(\left(X_{0}\right)^{a n}, S\right)$, where $\left(X_{0}\right)^{\text {an }}$ is a complex analytic space associated with X_{0} and S is the constant sheaf with value in S.

Proof. By the distinguished triangle

$$
\Omega_{X / T}^{\geq 1} \rightarrow \Omega_{X / T} \rightarrow \mathcal{O}_{X} \xrightarrow{[1]} \Omega_{X / T}^{\geq 1}[1]
$$

we have an exact sequence

$$
\rightarrow \operatorname{HP}^{i}(X / T) \rightarrow \mathbf{H}^{i}\left(\Omega_{X / T}\right) \rightarrow H^{i}\left(\mathcal{O}_{X}\right) \rightarrow
$$

Here $\mathbf{H}^{i}\left(X, \Omega_{X / T}\right) \cong H^{i}\left(\left(X_{0}\right)^{a n}, S\right)$; from this we obtain the result. We prove this by an induction of length $\mathbf{C}_{\mathbf{C}}(S)$. We take $t \in S$ such that $t \cdot m_{S}=0$. For the exact sequence

$$
0 \rightarrow \mathbf{C} \xrightarrow{t} S \rightarrow \bar{S} \rightarrow 0
$$

define $\bar{X}:=X \times_{T} \bar{T}$, where $\bar{T}:=\operatorname{Spec}(\bar{S})$. Then we obtain a commutative diagrams of exact sequences:
(4)

By a theorem of Grothendieck [G], the first vertical maps are isomorphisms and the third vertical maps are isomorphisms by the induction. Hence the middle vertical maps are also isomorphisms. By the Poincare lemma (cf. [De]), we know that $\mathbf{H}^{i}\left(X^{a n}, \Omega_{X^{a n} / T}\right) \cong H^{i}\left(\left(X_{0}\right)^{a n}, S\right)$.

Example 11. When $f: X \rightarrow T$ is a proper smooth morphism of Cschemes, by GAGA, we have

$$
\mathbf{R}^{i} f_{*} \Omega_{X / T} \otimes_{\mathcal{O}_{T}} \mathcal{O}_{T^{a n}} \cong R^{i}\left(f^{a n}\right)_{*} \mathbf{C} \otimes_{\mathbf{C}} \mathcal{O}_{T^{a n}}
$$

without the Artinian condition for T. But when f is not proper, the structure of $\mathbf{R}^{i} f_{*} \Omega_{X / T}$ is complicated. For example, Put $X:=\mathbf{C}^{2} \backslash\{x y=1\}$, where x and y are standard coordinates of \mathbf{C}^{2}. Let $f: X \rightarrow T:=\mathbf{C}$ be the map defined by $(x, y) \rightarrow x$. Set $\hat{T}:=\operatorname{Spec} \mathbf{C}[[x]]$ and $T_{n}:=\operatorname{Spec} \mathbf{C}[x] /\left(x^{n+1}\right)$. Define $\hat{X}:=X \times_{T} \hat{T}$ and define \hat{f} to be the natural map from $\hat{X} \rightarrow \hat{T}$. Finally put $X_{n}:=X \times_{T} T_{n}$. Then

1. $\mathbf{R}^{1} f_{*} \Omega_{X / T}$ is a quasi-coherent sheaf on T, and $\left.\mathbf{R}^{1} f_{*} \Omega_{X / T}\right|_{T \backslash\{0\}}$ is an invertible sheaf.
2. proj. $\lim H^{1}\left(X_{n}, \Omega_{X_{n} / T_{n}}\right)=0$.

Definition. Let X_{0} be a normal variety of dimension $2 d$ over \mathbf{C} and let U_{0} be its regular part. Then X_{0} is a symplectic variety if U_{0} admits a 2-form ω_{0} such that

1. $d \omega_{0}=0$,
2. $\wedge^{d} \omega_{0}$ is a nowhere-vanishing section of $\wedge^{d} \Omega_{U_{0}}^{1}$,
3. for any resolution $\pi: Y_{0} \rightarrow X_{0}$ of X_{0} with $\pi^{-1}\left(U_{0}\right) \cong U_{0}, \omega_{0}$ extends to a (regular) 2-form on Y_{0}.

If X_{0} is a symplectic variety, then U_{0} becomes a Poisson scheme. Since $\mathcal{O}_{X_{0}}=\left(j_{0}\right)_{*} \mathcal{O}_{U_{0}}$, the Poisson bracket $\{$,$\} on U_{0}$ uniquely extends to that on X_{0}. Thus X_{0} is a Poisson scheme. By definition, its Poisson bi-vector Θ_{0} is non-degenerate over U_{0}. The Θ_{0} identifies $\Theta_{U_{0}}$ with $\Omega_{U_{0}}^{1}$; by this identification, $\left.\Theta_{0}\right|_{U_{0}}$ corresponds to ω_{0}. A symplectic variety X_{0} has rational Gorenstein singularities; in other words, X has canonical singularities of index 1 . When X_{0} has only terminal singularities, $\operatorname{Codim}\left(\Sigma_{0} \subset X_{0}\right) \geq 4$ for $\Sigma_{0}:=\operatorname{Sing}\left(X_{0}\right)$.

Definition. Let X_{0} be a symplectic variety. Then X_{0} is convex if there is a birational projective morphism from X_{0} to an affine normal variety Y_{0}. In this case, Y_{0} is isomorphic to $\operatorname{Spec} \Gamma\left(X_{0}, \mathcal{O}_{X_{0}}\right)$.

Lemma 12. Let X_{n} be a Poisson deformation of a convex symplectic variety X_{0} over $T_{n}:=\operatorname{Spec}\left(S_{n}\right)$ with $S_{n}:=\mathbf{C}[t] /\left(t^{n+1}\right)$. We define $U_{n} \subset X_{n}$ to be locus where $X_{n} \rightarrow S_{n}$ is smooth. Assume that X_{0} has only terminal singularities. Then $\operatorname{HP}^{2}\left(U_{n} / T_{n}\right) \cong H^{2}\left(\left(U_{0}\right)^{a n}, S_{n}\right)$, where S_{n} is the constant sheaf over $\left(U_{0}\right)^{\text {an }}$ with value in S_{n}.

Proof. Since X_{0} has terminal singularities, X_{0} is Cohen-Macaulay and $\operatorname{Codim}\left(\Sigma_{0} \subset X_{0}\right) \geq 4$. Similarly, X_{n} is Cohen-Macaulay and $\operatorname{Codim}\left(\Sigma_{n} \subset\right.$ $\left.X_{n}\right) \geq 4$ for $\Sigma_{n}:=\operatorname{Sing}\left(X_{n} \rightarrow T_{n}\right)$. The affine normal variety Y_{0} has symplectic singularities; hence Y_{0} has rational singularities. This implies that $H^{i}\left(X_{0}, \mathcal{O}_{X_{0}}\right)=0$ for $i>0$. Since X_{0} is Cohen-Macaulay and $\operatorname{Codim}\left(\Sigma_{0} \subset\right.$ $\left.X_{0}\right) \geq 4$, we see that $H^{1}\left(U_{0}, \mathcal{O}_{U_{0}}\right)=H^{2}\left(U_{0}, \mathcal{O}_{U_{0}}\right)=0$ by the depth argument. By using the exact sequences

$$
0 \rightarrow \mathcal{O}_{U_{0}} \xrightarrow{t^{k}} \mathcal{O}_{U_{k}} \rightarrow \mathcal{O}_{U_{k-1}} \rightarrow 0
$$

inductively, we conclude that $H^{1}\left(\mathcal{O}_{U_{n}}\right)=H^{2}\left(\mathcal{O}_{U_{n}}\right)=0$. Then, by Corollary 10, we have $\operatorname{HP}^{2}\left(U_{n} / T_{n}\right) \cong H^{2}\left(\left(U_{0}\right)^{a n}, S_{n}\right)$.

Let X_{n} be the same as Lemma 12. Put $T_{n}[\epsilon]:=\operatorname{Spec}\left(S_{n}[\epsilon]\right)$ with $\epsilon^{2}=0$. As in Proposition 8, we define $\operatorname{PD}\left(X_{n} / T_{n}, T_{n}[\epsilon]\right)$ to be the set of equivalence classes of the Poisson deformations of X_{n} over $T_{n}[\epsilon]$. Let \mathcal{X}_{n} be a Poisson deformation of X_{n} over $T_{n}[\epsilon]$. Then we denote by $\operatorname{Aut}\left(\mathcal{X}_{n}, T_{n}\right)$ the set of all automorphisms of \mathcal{X}_{n} as a Poisson $T_{n}[\epsilon]$-scheme such that they induce the identity map of X_{n} over T_{n}. Then we have:

Proposition 13.

(1) There is a one-to-one correspondence between $\operatorname{HP}^{2}\left(U_{n} / T_{n}\right)$ and $\operatorname{PD}\left(X_{n} / T_{n}, T_{n}[\epsilon]\right)$.
(2) There is a one-to-one correspondence between $\operatorname{HP}^{1}\left(U_{n} / T_{n}\right)$ and $\operatorname{Aut}\left(\mathcal{X}_{n} . T_{n}\right)$.

Proof. Assume that \mathcal{U}_{n} is a Poisson deformation of U_{n} over $T_{n}[\epsilon]$. Since $\operatorname{Codim}\left(\Sigma_{n} \subset X_{n}\right) \geq 3$ and X_{n} is Cohen-Macaulay, by [K-M, 12.5.6],

$$
\operatorname{Ext}^{1}\left(\Omega_{X_{n} / T_{n}}^{1}, \mathcal{O}_{X_{n}}\right) \cong \operatorname{Ext}^{1}\left(\Omega_{U_{n} / T_{n}}^{1}, \mathcal{O}_{U_{n}}\right)
$$

This implies that, over $T_{n}[\epsilon], \mathcal{U}_{n}$ extends uniquely to an \mathcal{X}_{n} so that it gives a flat deformation of X_{n}. Let us denote by $j: \mathcal{U}_{n} \rightarrow \mathcal{X}_{n}$ the inclusion map. Then, by the depth argument, we see that $\mathcal{O}_{\mathcal{X}_{n}}=j_{*} \mathcal{O}_{\mathcal{U}_{n}}$. Therefore, the Poisson structure on \mathcal{U}_{n} also extends uniquely to that on \mathcal{X}_{n}. Now Proposition

8 implies (1). As for (2), let \mathcal{U}_{n} be the locus of \mathcal{X}_{n} where $\mathcal{X}_{n} \rightarrow T_{n}[\epsilon]$ is smooth. Then, we see that

$$
\operatorname{Aut}\left(\mathcal{U}_{n}, T_{n}\right)=\operatorname{Aut}\left(\mathcal{X}_{n}, T_{n}\right)
$$

which implies (2) again by Proposition 8.
Let X be a convex symplectic variety with terminal singularities. We regard X as a Poisson scheme by the natural Poisson structure $\{$,$\} induced$ by the symplectic form on the regular locus $U:=(X)_{\text {reg }}$. For a local Artinian C-algebra S with $S / m_{S}=\mathbf{C}$, we define $\operatorname{PD}(S)$ to be the set of equivalence classes of the pairs of Poisson deformations \mathcal{X} of X over $\operatorname{Spec}(S)$ and Poisson isomorphisms $\phi: \mathcal{X} \times_{\operatorname{Spec}(S)} \operatorname{Spec}(\mathbf{C}) \cong X$. Here (\mathcal{X}, ϕ) and $\left(\mathcal{X}^{\prime}, \phi^{\prime}\right)$ are equivalent if there is a Poisson isomorphism $\varphi: \mathcal{X} \cong \mathcal{X}^{\prime}$ over $\operatorname{Spec}(S)$ which induces the identity map of X over $\operatorname{Spec}(\mathbf{C})$ via ϕ and ϕ^{\prime}. We define the Poisson deformation functor:

$$
\mathrm{PD}_{(X,\{,\})}:(\text { Art })_{\mathbf{C}} \rightarrow(\text { Set })
$$

by $\operatorname{PD}(S)$ for $S \in(\operatorname{Art})_{\mathbf{C}}$.
Theorem 14. Let $(X,\{\}$,$) be a Poisson scheme associated with a$ convex symplectic variety with terminal singularities. Then $\mathrm{PD}_{(X,\{,\})}$ has a pro-representable hull in the sense of Schlessinger. Moreover PD is prorepresentable.

Proof. We have to check Schlessinger's conditions [Sch] for the existence of a hull. By Proposition 13, $\operatorname{PD}(\mathbf{C}[\epsilon])=H^{2}\left(U^{a n}, \mathbf{C}\right)<\infty$. Other conditions are checked in a similar way as the case of usual deformations. For the last statement, we have to prove the following. Let \mathcal{X} be a Poisson deformation of X over an Artinian base T, and let $\overline{\mathcal{X}}$ be its restriction over a closed subscheme \bar{T} of T. Then, any Poisson automorphism of $\overline{\mathcal{X}}$ over \bar{T} inducing the identity map on X, extends to a Poisson automorphism of \mathcal{X} over T. Let R be the pro-representable hull of PD and put $R_{n}:=R /\left(m_{R}\right)^{n+1}$. Take a formal versal Poisson deformation $\left\{\mathcal{X}_{n}\right\}$ over $\left\{R_{n}\right\}$. Note that, if we are given an Artinian local R-algebra S with residue field \mathbf{C}, then we get a Poisson deformation X_{S} of X over $\operatorname{Spec}(\mathrm{S})$. We then define $\operatorname{Aut}(S)$ to be the set of all Poisson automorphisms of X_{S} over $\operatorname{Spec}(S)$ which induce the identity map of X. Let

$$
\text { Aut }:(\text { Art })_{R} \rightarrow(\text { Set })
$$

be the covariant functor defined in this manner. We want to prove that $\operatorname{Aut}(S) \rightarrow \operatorname{Aut}(\bar{S})$ is surjective for any surjection $S \rightarrow \bar{S}$. It is enough to
check this only for a small extension $S \rightarrow \bar{S}$, that is, the kernel I of $S \rightarrow \bar{S}$ is generated by an element a such that $a m_{S}=0$. For each small extension $S \rightarrow \bar{S}$, one can define the obstruction map

$$
\text { ob }: \operatorname{Aut}(\bar{S}) \rightarrow a \cdot \operatorname{HP}^{2}(U)
$$

in such a way that any element $\phi \in \operatorname{Aut}(\bar{S})$ can be lifted to an element of $\operatorname{Aut}(S)$ if and only if $\mathrm{ob}(\phi)=0$. The obstruction map is constructed as follows. For $\phi \in \operatorname{Aut}(\bar{S})$, we have two Poisson extensions $X_{\bar{S}} \rightarrow X_{S}$ and $X_{\bar{S}} \xrightarrow{\phi} X_{\bar{S}} \rightarrow X_{S}$. This gives an element of $a \cdot \operatorname{HP}^{2}(U)$ (cf. Proposition 13^{3}). Obviously, if this element is zero, then these two extensions are equivalent and ϕ extends to a Poisson automorphism of X_{S}.

Case $1\left(S=S_{n+1}\right.$ and $\left.\bar{S}:=S_{n}\right)$: We put $S_{n}:=\mathrm{C}[t] /\left(t^{n+1}\right)$. We shall prove that $\operatorname{Aut}\left(S_{n+1}\right) \rightarrow \operatorname{Aut}\left(S_{n}\right)$ is surjective. Taking Proposition 13, (2) into consideration, we say that X has T^{0}-lifting property if, for any Poisson deformation X_{n} of X over $T_{n}:=\operatorname{Spec}\left(S_{n}\right)$ and its restriction X_{n-1} over $T_{n-1}:=$ $\operatorname{Spec}\left(S_{n-1}\right)$, the natural map $\operatorname{HP}^{1}\left(U_{n} / T_{n}\right) \rightarrow \operatorname{HP}^{1}\left(U_{n-1} / T_{n-1}\right)$ is surjective.

Claim. X has T^{0}-lifting property.
Proof. Note that X_{n} is Cohen-Macaulay. Let U_{n} be the locus of X_{n} where $X_{n} \rightarrow T_{n}$ is smooth. We put

$$
K_{n}:=\operatorname{Coker}\left[H^{0}\left(U^{a n}, S_{n}\right) \rightarrow H^{0}\left(U_{n}, \mathcal{O}_{U_{n}}\right)\right]
$$

By the proof of Corollary 10, there is an exact sequence

$$
0 \rightarrow K_{n} \rightarrow \operatorname{HP}^{1}\left(U_{n} / T_{n}\right) \rightarrow H^{1}\left(U^{a n}, S_{n}\right) \rightarrow 0
$$

Since $H^{1}\left(U, \mathcal{O}_{U}\right)=0$, the restriction map $H^{0}\left(U_{n}, \mathcal{O}_{U_{n}}\right) \rightarrow H^{0}\left(U_{n-1}, \mathcal{O}_{U_{n-1}}\right)$ is surjective. Hence the map $K_{n} \rightarrow K_{n-1}$ is surjective. On the other hand, $H^{1}\left(U^{a n}, S_{n}\right) \rightarrow H^{1}\left(U^{a n}, S_{n-1}\right)$ is also surjective; hence the result follows.

Note that $t \rightarrow t+\epsilon$ induces the commutative diagram of exact sequences:

[^3]Applying Aut to this diagram, we obtain
(6)

The T^{0}-lifting property implies that the map $\operatorname{Aut}\left(S_{n}[\epsilon]\right) \rightarrow$ $\operatorname{Aut}\left(S_{n-1}[\epsilon] \times_{S_{n-1}} S_{n}\right)$ is surjective. Hence, by the commutative diagram, we see that $\operatorname{Aut}\left(S_{n+1}\right) \rightarrow \operatorname{Aut}\left(S_{n}\right)$ is surjective.

Case 2 (general case): For any small extension $S \rightarrow \bar{S}$, one can find the following commutative diagram for some n :

Applying Aut to this diagram, we get:

By Case 1, we already know that $\operatorname{Aut}\left(S_{n+1}\right) \rightarrow \operatorname{Aut}\left(S_{n}\right)$ is surjective. By the commutative diagram we see that $\operatorname{Aut}(S) \rightarrow \operatorname{Aut}(\bar{S})$ is surjective.

Corollary 15. Let $(X,\{\}$,$) be the same as Theorem 14. Then$
(1) X has T^{1}-lifting property. (cf. [Kaw, Na 5])
(2) $\mathrm{PD}_{(X,\{,\})}$ is unobstructed.

Proof. (1): We put $S_{n}:=\mathbf{C}[t] /\left(t^{n+1}\right)$ and $T_{n}:=\operatorname{Spec}\left(S_{n}\right)$. Let X_{n} be a Poisson deformation of X over T_{n} and let X_{n-1} be its restriction over T_{n-1}. By Proposition 13,(1), we have to prove that $\operatorname{HP}^{2}\left(U_{n} / T_{n}\right) \rightarrow \operatorname{HP}^{2}\left(U_{n-1} / T_{n-1}\right)$ is surjective. By Lemma $12, \operatorname{HP}^{2}\left(U_{n} / T_{n}\right) \cong H^{2}\left(U^{a n}, S_{n}\right)$. Since $H^{2}\left(U^{a n}, S_{n}\right)=$ $H^{2}\left(U^{a n}, \mathbf{C}\right) \otimes_{\mathbf{C}} S_{n}$, we conclude that this map is surjective.
(2): By Theorem 14, PD has a pro-representable hull R. Denote by h_{R} : $(\text { Art })_{\mathbf{C}} \rightarrow($ Set $)$ the covariant functor defined by $h_{R}(S):=\operatorname{Hom}_{\text {local } \mathbf{C}-\text { alg. }}(R, S)$. Since PD is pro-representable by Theorem $14, h_{R}=$ PD. We write R as
$\mathbf{C}\left[\left[x_{1}, \ldots, x_{r}\right]\right] / J$ with $r:=\operatorname{dim}_{\mathbf{C}} m_{R} /\left(m_{R}\right)^{2}$. Let S and S_{0} be the objects of (Art) $\mathbf{C}_{\mathbf{C}}$ such that $S_{0}=S / I$ with an ideal I such that $I m_{S}=0$. Then we have an exact sequence (cf. [Gr, (1.7)])

$$
h_{R}(S) \rightarrow h_{R}\left(S_{0}\right) \xrightarrow{o b}\left(J / m_{R} J\right)^{*} \otimes_{\mathbf{C}} I .
$$

By sending t to $t+\epsilon$, we have the commutative diagram of exact sequences:

Applying h_{R} to this diagram, we obtain

By (1), we see that $h_{R}\left(S_{n}[\epsilon]\right) \rightarrow h_{R}\left(S_{n-1}[\epsilon] \times_{S_{n-1}} S_{n}\right)$ is surjective. Then, by the commutative diagram, we conclude that $h_{R}\left(S_{n+1}\right) \rightarrow h_{R}\left(S_{n}\right)$ is surjective.

Twistor deformations (cf. [Ka 1]): Let X be a convex symplectic variety with terminal singularities. We put $U:=X_{\text {reg }}$. Let $\{$,$\} be the natural Poisson$ structure on X defined by the symplectic form ω on U. Fix a line bundle L on $X^{a n}$. Define a class $[L]$ of L as the image of L by the map

$$
H^{1}\left(U^{a n}, \mathcal{O}_{U^{a n}}^{*}\right) \rightarrow \mathbf{H}^{2}\left(U^{a n}, \Omega_{U^{a n}}\right) \cong H^{2}\left(U^{a n}, \mathbf{C}\right)
$$

We put $S_{n}:=\mathbf{C}[t] /\left(t^{n+1}\right)$ and $T_{n}:=\operatorname{Spec}\left(S_{n}\right)$. By Proposition 13, (1), the element $[L] \in H^{2}\left(U^{a n}, \mathbf{C}\right)$ determines a Poisson deformation X_{1} of X over T_{1}. We shall construct Poisson deformations X_{n} over T_{n} inductively. Assume that we already have a Poisson deformation X_{n} over T_{n}. Define X_{n-1} to be the restriction of X_{n} over T_{n-1}. Since $H^{1}\left(X^{a n}, \mathcal{O}_{X^{a n}}\right)=H^{2}\left(X^{a n}, \mathcal{O}_{X^{a n}}\right)=0, L$ extends uniquely to a line bundle L_{n} on $\left(X_{n}\right)^{a n}$. Denote by L_{n-1} the restriction of L_{n} to $\left(X_{n-1}\right)^{\text {an }}$. Consider the map $S_{n} \rightarrow S_{n-1}[\epsilon]$ defined by $t \rightarrow t+\epsilon$. This map induces

$$
\operatorname{PD}\left(S_{n}\right) \rightarrow \operatorname{PD}\left(S_{n-1}[\epsilon]\right)
$$

The class $\left[L_{n-1}\right] \in H^{2}\left(U^{a n}, S_{n-1}\right)$ determines a Poisson deformation $\left(X_{n-1}\right)^{\prime}$ of X_{n-1} over $T_{n-1}[\epsilon]$. Assume that X_{n} satisfies the condition
$(*)_{n}:\left[X_{n}\right] \in \operatorname{PD}\left(S_{n}\right)$ is sent to $\left[\left(X_{n-1}\right)^{\prime}\right] \in \operatorname{PD}\left(S_{n-1}[\epsilon]\right)$.
Note that X_{1} actually has this property. We shall construct X_{n+1} in such a way that X_{n+1} satisfies $(*)_{n+1}$. Look at the commutative diagram:

Note that we have an element

$$
\left.\left[X_{n} \leftarrow X_{n-1} \rightarrow\left(X_{n-1}\right)^{\prime}\right)\right] \in \operatorname{PD}\left(S_{n-1}[\epsilon] \times_{S_{n-1}} S_{n}\right)
$$

Identifying $\operatorname{HP}^{2}\left(U_{n} / T_{n}\right)$ with $H^{2}\left(U^{a n}, S_{n}\right),\left[L_{n}\right]$ is sent to $\left[L_{n-1}\right]$ by the map

$$
\operatorname{HP}^{2}\left(U_{n} / T_{n}\right) \rightarrow \operatorname{HP}^{2}\left(U_{n-1} / T_{n-1}\right)
$$

Now, by Proposition 13,(1), we get a lifting $\left[\left(X_{n}\right)^{\prime}\right] \in \operatorname{PD}\left(S_{n}[\epsilon]\right)$ of

$$
\left.\left[X_{n} \leftarrow X_{n-1} \rightarrow\left(X_{n-1}\right)^{\prime}\right)\right] \in \operatorname{PD}\left(S_{n-1}[\epsilon] \times_{S_{n-1}} S_{n}\right)
$$

corresponding to $\left[L_{n}\right]$. By the standard argument used in T^{1}-lifting principle (cf. proof of Corollary 15, (2)), one can find a Poisson deformation X_{n+1} such that $\left[X_{n+1}\right] \in \operatorname{PD}\left(S_{n+1}\right)$ is sent to $\left[\left(X_{n}\right)^{\prime}\right] \in \operatorname{PD}\left(S_{n}[\epsilon]\right)$ in the diagram above. Moreover, since PD is pro-representable, such $\left[X_{n+1}\right]$ is unique. By the construction, X_{n+1} satisfies $(*)_{n+1}$. This construction do not need the sequence of line bundles L_{n} on $\left(X_{n}\right)^{a n}$; we only need the sequence of line bundles on $\left(U_{n}\right)^{a n}$. For example, if we are given a line bundle L^{0} on $U^{a n}$. Then, since $H^{i}\left(U^{a n}, \mathcal{O}_{U^{a n}}\right)=0$ for $i=1,2$, we have a unique extension $L_{n}^{0} \in \operatorname{Pic}\left(\left(U_{n}\right)^{a n}\right)$. By using this, one can construct a formal deformation of X.

Definition. (1) When $L \in \operatorname{Pic}\left(X^{a n}\right)$, we call the formal deformation $\left\{X_{n}\right\}_{n \geq 1}$ the twistor deformation of X associated with L.
(2) More generally, for $L^{0} \in \operatorname{Pic}\left(U^{a n}\right)$, we call, the formal deformation $\left\{X_{n}\right\}_{n \geq 1}$ similarly constructed, the quasi-twistor deformation of X associated with L^{0}. When L^{0} extends to a line bundle L on $X^{a n}$, the corresponding quasitwistor deformation coincides with the twistor deformation associated with L.

We next define the Kodaira-Spencer class of the formal deformation $\left\{X_{n}\right\}$. As before, we denote by U_{n} the locus of X_{n} where $f_{n}: X_{n} \rightarrow T_{n}$ is smooth. We put $f_{n}^{0}:=\left.f_{n}\right|_{U_{n}}$. The extension class $\theta_{n} \in H^{1}\left(U, \Theta_{U_{n-1} / T_{n-1}}\right)$ of the exact sequence

$$
0 \rightarrow\left(f_{n}^{0}\right)^{*} \Omega_{T_{n} / \mathbf{C}}^{1} \rightarrow \Omega_{U_{n} / \mathbf{C}}^{1} \rightarrow \Omega_{U_{n} / T_{n}}^{1} \rightarrow 0
$$

is the Kodaira Spencer class for $f_{n}: X_{n} \rightarrow T_{n}$. Here note that $\Omega_{T_{n}}^{1} \cong \mathcal{O}_{T_{n-1}} d t$.
Lemma 16. Let $\left\{X_{n}\right\}$ be the twistor deformation of X associated with $L \in \operatorname{Pic}\left(X^{a n}\right)$. Write $L_{n} \in \operatorname{Pic}\left(X_{n}^{a n}\right)$ for the extension of L to X_{n}. Let $\omega_{n} \in \Gamma\left(U_{n}, \Omega_{U_{n} / T_{n}}^{2}\right)$ be the symplectic form defined by the Poisson T_{n}-scheme X_{n}. Then

$$
\imath\left(\theta_{n+1}\right)\left(\omega_{n}\right)=\left[L_{n}\right] \in H^{1}\left(U, \Omega_{U_{n} / T_{n}}^{1}\right)
$$

where the left hand side is the interior product.
Proof. We use the same notation in the definition of a twistor deformation. By the commutative diagram

we get the commutative diagram of exact sequences:

The second exact sequence is the Kodaira-Spencer's sequence where the first term is $\left(f^{0}\right)^{*} \Omega_{T_{n+1} / \mathbf{C}}^{1}$ and the third term is $\left.\Omega_{U_{n+1} / T_{n+1}}^{1}\right|_{U_{n}}$. Let $\eta \in$ $H^{1}\left(U, \Theta_{U_{n} / T_{n}}\right)$ be the extension class of the first exact sequence. By the definition of $\left(X_{n}\right)^{\prime}$, we have $i(\eta)\left(\omega_{n}\right)=\left[L_{n}\right]$. On the other hand, the extension class of the second exact sequence is θ_{n+1}. Hence $\eta=\theta_{n+1}$.

Let $\left\{X_{n}\right\}$ be the twistor deformation of X associated with $L \in \operatorname{Pic}(X)$. For each n, we put $Y_{n}:=\operatorname{Spec} \Gamma\left(X_{n}, \mathcal{O}_{X_{n}}\right) . Y_{n}$ is an affine scheme over T_{n}. Since $H^{1}\left(X, \mathcal{O}_{X}\right)=0, \Gamma\left(X_{n}, \mathcal{O}_{X_{n}}\right) \rightarrow \Gamma\left(X_{n-1}, \mathcal{O}_{X_{n-1}}\right)$ is surjective. Define

$$
Y_{\infty}:=\operatorname{Spec}\left(\lim _{\leftarrow} \Gamma\left(X_{n}, \mathcal{O}_{X_{n}}\right)\right) .
$$

Note that Y_{∞} is an affine variety over $\left.T_{\infty}:=\operatorname{Spec} \mathbf{C}[t t]\right]$. Fix an ample line bundle A on X. Since $H^{1}\left(X, \mathcal{O}_{X}\right)=H^{2}\left(X, \mathcal{O}_{X}\right)=0, A$ extends uniquely to ample line bundles A_{n} on X_{n}. Then, by [EGA III, Théorème (5.4.5)], there is an algebraization X_{∞} of $\left\{X_{n}\right\}$ such that X_{∞} is a projective scheme over Y_{∞} and $X_{\infty} \times_{Y_{\infty}} Y_{n} \cong X_{n}$ for all n. By [ibid, Theoreme 5.4.1], the algebraization X_{∞} is unique. We denote by g_{∞} the projective morphism $X_{\infty} \rightarrow Y_{\infty}$.

Theorem 17. Let X be a convex symplectic variety with terminal singularities. Let $(X,\{\}$,$) be the Poisson structure induced by the symplectic$ form on the regular part. Assume that $X^{a n}$ is \mathbf{Q}-factorial ${ }^{4}$. Then any Poisson deformation of $(X,\{\}$,$) is locally trivial as a flat deformation (after forgetting$ Poisson structure).

Proof. Define a subfunctor

$$
\mathrm{PD}_{l t}:(\mathrm{Art})_{\mathbf{C}} \rightarrow(\text { Set })
$$

of PD by setting $\mathrm{PD}_{l t}(S)$ to be the set of equivalence classes of Poisson deformations of $(X,\{\}$,$) over \operatorname{Spec}(S)$ which are locally trivial as usual flat deformations. One can check that $\mathrm{PD}_{l t}$ has a pro-representable hull. Let $X_{n} \rightarrow T_{n}$ be an object of $\mathrm{PD}_{l t}\left(S_{n}\right)$, where $S_{n}:=\mathrm{C}[t] /\left(t^{n+1}\right)$ and $T_{n}:=\operatorname{Spec}\left(S_{n}\right)$. Write $T_{X_{n} / T_{n}}^{1}$ for $\underline{\operatorname{Hom}}\left(\Omega_{X_{n} / T_{n}}^{1}, \mathcal{O}_{X_{n}}\right)$. By Proposition 13, we have a natural map

$$
\operatorname{HP}^{2}\left(U_{n} / T_{n}\right) \rightarrow \operatorname{Ext}^{1}\left(\Omega_{X_{n} / T_{n}}^{1}, \mathcal{O}_{X_{n}}\right)
$$

Define $T\left(X_{n} / T_{n}\right)$ to be the kernel of the composite

$$
\operatorname{HP}^{2}\left(U_{n} / T_{n}\right) \rightarrow \operatorname{Ext}^{1}\left(\Omega_{X_{n} / T_{n}}^{1}, \mathcal{O}_{X_{n}}\right) \rightarrow H^{0}\left(X_{n}, T_{X_{n} / T_{n}}^{1}\right)
$$

Let $\mathrm{PD}_{l t}\left(X_{n} / T_{n} ; T_{n}[\epsilon]\right)$ be the set of equivalence classes of Poisson deformations of X_{n} over $T_{n}[\epsilon]$ which are locally trivial as usual deformations. Here $T_{n}[\epsilon]:=$ $\operatorname{Spec}\left(S_{n}[\epsilon]\right)$ and $S_{n}[\epsilon]=\mathbf{C}[t, \epsilon] /\left(t^{n+1}, \epsilon^{2}\right)$. Two Poisson deformations of X_{n} over $T_{n}[\epsilon]$ are equivalent if there is a Poisson $T_{n}[\epsilon]$-isomorphisms between them which induces the identity of X_{n}. Then there is a one-to-one correspondence between $T\left(X_{n} / T_{n}\right)$ and $\mathrm{PD}_{l t}\left(X_{n} / T_{n} ; T_{n}[\epsilon]\right)$.

Lemma 18. $T\left(X_{n} / T_{n}\right)=\operatorname{HP}^{2}\left(U_{n} / T_{n}\right)$.
Proof. Since $H^{0}\left(X, T_{X_{n} / T_{n}}^{1}\right) \subset H^{0}\left(X^{a n}, T_{X_{n}^{a n} / T_{n}}^{1}\right)$, it suffices to prove that $\operatorname{HP}^{2}\left(U_{n} / T_{n}\right) \rightarrow H^{0}\left(X^{a n}, T_{X_{n}^{a n} / T_{n}}^{1}\right)$ is the zero map. In order to do this, for $p \in \Sigma(=\operatorname{Sing}(X))$, take a Stein open neighborhood $X_{n}^{a n}(p)$ of $p \in X_{n}$, and put $U_{n}^{a n}(p):=X^{a n}(p) \cap U_{n}^{a n}$. We have to prove that $H^{2}\left(U^{a n}, S_{n}\right) \rightarrow$ $H^{2}\left(U_{n}^{a n}(p), S_{n}\right)$ is the zero map. In fact, on one hand,

$$
\operatorname{HP}^{2}\left(U_{n} / T_{n}\right) \cong H^{2}\left(U^{a n}, S_{n}\right)
$$

[^4]by Lemma 12 . On the other hand, $H^{0}\left(X_{n}^{a n}(p), T_{X_{n}^{a n} / T_{n}}^{1}\right) \cong H^{1}\left(U_{n}^{a n}(p), \Theta_{U_{n}^{a n}(p)}\right)$ (cf. the proof of [Na, Lemma 1]). By the symplectic form $\omega_{n} \in \Gamma\left(U_{n}, \Omega_{X_{n} / T_{n}}^{2}\right)$, $\Theta_{U_{n}^{a n}(p)}$ is identified with $\Omega_{U_{n}^{a n}(p)}^{1}$. Hence
$$
H^{0}\left(X_{n}^{a n}(p), T_{X_{n}^{a n} / T_{n}}^{1}\right) \cong H^{1}\left(U_{n}^{a n}(p), \Omega_{U_{n}^{a n}(p)}^{1}\right)
$$

By these identifications, the map $\operatorname{HP}^{2}\left(U_{n} / T_{n}\right) \rightarrow H^{0}\left(X_{n}^{a n}(p), T_{X_{n}^{a n} / T_{n}}^{1}\right)$ coincides with the composite

$$
H^{2}\left(U^{a n}, S_{n}\right) \rightarrow H^{2}\left(U^{a n}(p), S_{n}\right) \rightarrow H^{1}\left(U^{a n}(p), \Omega_{U_{n}^{a n}(p)}^{1}\right)
$$

where the second map is induced by the spectral sequence

$$
E_{1}^{p, q}:=H^{q}\left(U_{n}^{a n}(p), \Omega_{U_{n}^{a n}(p)}^{p}\right)=>H^{p+q}\left(U^{a n}, S_{n}\right)
$$

(for details, see the proof of [Na, Lemma 1]). Let us consider the commutative diagram

Here the second map on the first row is an isomorphism because $H^{1}\left(U^{a n}, \mathcal{O}_{U^{a n}}\right)=H^{2}\left(U^{a n}, \mathcal{O}_{U^{a n}}\right)=0$. Since $\operatorname{Codim}(\Sigma \subset X) \geq 3$, any line bundle on $U^{a n}$ extends to a coherent sheaf on $X^{a n}$. Thus, by the \mathbf{Q}-factoriality of $X^{a n}$, the first map on the first row is surjective. If we take $X^{a n}(p)$ small enough, then $\operatorname{Pic}\left(X^{a n}(p)\right)=0$. Now, by the commutative diagram above, we conclude that $H^{2}\left(U^{a n}, S_{n}\right) \rightarrow H^{2}\left(U^{a n}(p), S_{n}\right)$ is the zero map. This completes the proof of Lemma 18.

Let us return to the proof of Theorem 17. The functor PD has T^{1}-lifting property by Corollary 15 . By Lemma $18, \mathrm{PD}_{l t}$ also has T^{1}-lifting property. Let R and $R_{l t}$ be the pro-representable hulls of PD and $\mathrm{PD}_{l t}$ respectively. Then these are both regular local \mathbf{C}-algebra. There is a surjection $R \rightarrow R_{l t}$ because $\mathrm{PD}_{l t}$ is a sub-functor of PD. By Lemma 18 , the cotangent spaces of R and $R_{l t}$ coincides. Hence $R \cong R_{l t}$.

Theorem 19. Let X be a convex symplectic variety with terminal singularities. Let L be a (not necessarily ample) line bundle on $X^{a n}$. Then the twistor deformation $\left\{X_{n}\right\}$ of X associated with L is locally trivial as a flat deformation.

Proof. Define $U_{n} \subset X_{n}$ to be the locus where $X_{n} \rightarrow T_{n}$ is smooth. We put $\Sigma:=\operatorname{Sing}(X)$. For each point $p \in \Sigma$, we take a Stein open neighborhood $p \in X_{n}(p)$ in $\left(X_{n}\right)^{a n}$, and put $U_{n}^{a n}(p):=X_{n}(p) \cap U_{n}^{a n}$. Let $L_{n} \in \operatorname{Pic}\left(X_{n}\right)$ be the (unique) extension of L to X_{n}. We shall show that $\left[L_{n}\right] \in H^{2}\left(U^{a n}, S_{n}\right)$ is sent to zero by the map

$$
H^{2}\left(U^{a n}, S_{n}\right) \rightarrow H^{2}\left(U^{a n}(p), S_{n}\right)
$$

This is enough for us to prove that the twistor deformation $\left\{X_{n}\right\}$ is locally trivial. In fact, we have to show that the local Kodaira-Spencer class $\theta_{n+1}^{l o c}(p) \in$ $H^{1}\left(U_{n}^{a n}(p), \Theta_{U_{n}^{a n}(p)}\right)$ is zero. By the same argument as Lemma 16, one can show that

$$
\iota\left(\theta_{n+1}^{l o c}(p)\right)\left(\omega_{n}\right)=\left[\left.L_{n}\right|_{U^{a n}(p)}\right] \in H^{1}\left(U_{n}^{a n}(p), \Omega_{U_{n}^{a n}(p)}^{1}\right)
$$

Now let us consider the commutative diagram induced from the Hodge spectral sequences:

For the existence of the first horizontal map, we use Grothendieck's theorem [G] and the fact $H^{i}\left(U_{n}, \mathcal{O}_{U_{n}}\right)=0(i=1,2)$ (cf. Lemma 12). Since $X_{n}^{a n}$ is Cohen-Macaulay and $\operatorname{Codim}(\Sigma \subset X) \geq 4$, we have $H^{i}\left(U_{n}^{a n}(p), \mathcal{O}_{U_{n}^{a n}(p)}\right)=0$ for $i=1,2$, by the depth argument. This assures the existence of the second horizontal map. The vertical map on the right-hand side is just the composite of the maps

$$
H^{1}\left(U_{n}, \Omega_{U_{n} / T_{n}}^{1}\right) \rightarrow H^{1}\left(U_{n}^{a n}, \Omega_{U_{n}^{a n} / T_{n}}^{1}\right) \rightarrow H^{1}\left(U_{n}^{a n}(p), \Omega_{U_{n}^{a n}(p) / T_{n}}^{1}\right)
$$

If $\left[L_{n}\right] \in H^{2}\left(U^{a n}, S_{n}\right)$ is sent to zero by the map

$$
H^{2}\left(U^{a n}, S_{n}\right) \rightarrow H^{2}\left(U^{a n}(p), S_{n}\right)
$$

then, by the diagram, $\left[\left.L_{n}\right|_{U^{a n}(p)}\right]=0$. Thus, the local Kodaira-Spencer class $\theta_{n+1}^{l o c}(p)$ vanishes. Let us consider the same diagram in the proof of Theorem 17.

Since L_{n} is a line bundle of $\left(X_{n}\right)^{a n}$ and $\operatorname{Pic}\left(\left(X_{n}\right)^{a n}\right) \cong \operatorname{Pic}\left(X^{a n}\right),\left[L_{n}\right] \in$ $H^{2}\left(U^{a n}, S_{n}\right)$ comes from $\operatorname{Pic}\left(X^{a n}\right)$. If we take $X^{a n}(p)$ small enough, then $\operatorname{Pic}\left(X^{a n}(p)\right)=0$. Hence, by the commutative diagram, we see that $\left[L_{n}\right] \in$ $H^{2}\left(U^{a n}, S_{n}\right)$ is sent to zero by the map $H^{2}\left(U^{a n}, S_{n}\right) \rightarrow H^{2}\left(U^{a n}(p), S_{n}\right)$.

§4. Symplectic Varieties with Good C*-actions

Let X be a convex symplectic variety with terminal singularities and, in addition, with a \mathbf{C}^{*}-action. We put $Y:=\operatorname{Spec} \Gamma\left(X, \mathcal{O}_{X}\right)$. Then the natural morphism $g: X \rightarrow Y$ is a \mathbf{C}^{*}-equivariant morphism. We assume that Y has a good \mathbf{C}^{*}-action with a unique fixed point $0 \in Y$. By definition, $V:=$ $Y-\operatorname{Sing}(Y)$ admits a symplectic 2 -form ω; hence it gives a Poisson structure $\{$,$\} on Y$. We assume that this Poisson structure has a positive weight $l>0$ with respect to the \mathbf{C}^{*}-action, that is,

$$
\operatorname{deg}\{a, b\}=\operatorname{deg}(a)+\operatorname{deg}(b)-l
$$

for all homogeneous elements $a, b \in \mathcal{O}_{Y}$. Now let us consider the Poisson deformation functor $\mathrm{PD}_{(X,\{,\})}$ (cf. Section 3). By Theorem 14, it is pro-represented by a certain complete regular local \mathbf{C}-algebra $R=\lim R_{n}$ and a universal formal Poisson deformation $\left\{X_{n}^{\text {univ }}\right\}$ of X over it.

Lemma 20. The \mathbf{C}^{*}-action on X naturally induces $a \mathbf{C}^{*}$-action on R and $\left\{X_{n}^{u n i v}\right\}$.

Proof. Take an infinitesimal Poisson deformation $\left(X_{S},\{,\}_{S} ; \iota\right)$ of X over $S=\operatorname{Spec}(A)$ with $A / m=$ C. By definition, $\iota: X_{S} \otimes_{A} A / m \cong X$ is an identification of the central fiber with X. Since X is a \mathbf{C}^{*}-variety, for each $\lambda \in \mathbf{C}^{*}$, we get an isomorphism $\phi_{\lambda}: X \rightarrow X$. By the assumption, $\phi_{\lambda}^{*}\{\}=,\lambda^{l}\{$,$\} . Then \left(X_{S}, \lambda^{l}\{,\}_{S} ; \phi_{\lambda} \circ \iota\right)$ gives another Poisson deformation of X over S. This operation naturally gives a \mathbf{C}^{*}-action on R and $\left\{X_{n}\right\}$.

We shall investigate the \mathbf{C}^{*}-action of R. In order to do that, take $L \in$ $H^{1}\left(U^{a n}, \mathcal{O}_{U^{a n}}^{*}\right)$ and consider the corresponding quasi-twistor deformation of X. We define a \mathbf{C}^{*}-action on $\left.\mathbf{C}[t t]\right]$ so that t has weight l. This induces a \mathbf{C}^{*}-action on each quotient ring $S_{n}:=\mathbf{C}[t] /\left(t^{n+1}\right)$. We put $T_{n}:=\operatorname{Spec}\left(S_{n}\right)$.

Lemma 21. Any quasi-twistor deformation $\left\{X_{n}\right\}$ of X has a \mathbf{C}^{*}-action so that $\left\{X_{n}\right\} \rightarrow\left\{T_{n}\right\}$ is \mathbf{C}^{*}-equivariant.

Proof. Let $R \rightarrow \mathbf{C}[t t]]$ be the surjection determined by our quasi-twistor deformation. We shall prove this map is \mathbf{C}^{*}-equivariant. For $\lambda \in \mathbf{C}^{*}$, let
$\lambda^{l}: T_{n} \rightarrow T_{n}$ be the morphism induced by $t \rightarrow \lambda^{l} t$. We shall lift \mathbf{C}^{*}-actions of X_{n} inductively. More explicitly, for each $\lambda \in \mathbf{C}^{*}$, we shall construct an isomorphism $\phi_{\lambda, n}: X_{n} \rightarrow X_{n}$ in such a way that:
(i) the following diagram commutes

(ii) $\left(\phi_{\lambda, n}\right)^{*}\{,\}_{n}=\lambda^{l}\{,\}_{n}$, and
(iii) the collection $\left\{\phi_{\lambda, n}\right\}, \lambda \in \mathbf{C}^{*}$ gives a \mathbf{C}^{*}-action of X_{n}.

Suppose that it can be achieved. As in Lemma 20, let us fix an original identification $\iota: X_{n} \times_{T_{n}} T_{0} \cong X$. Let $h_{n}: R \rightarrow S_{n}$ and $h_{n}^{\lambda}: R \rightarrow S_{n}$ be the maps determined by $\left(X_{n},\{,\}_{n} ; \iota\right)$ and $\left(X_{n}, \lambda^{l}\{,\}_{n} ; \phi_{\lambda} \circ \iota\right)$ respectively. Let $\lambda \in \mathbf{C}^{*}$ act on R_{n} as $\psi_{\lambda, n}: R_{n} \rightarrow R_{n}$. By definition, $h_{n} \circ \psi_{\lambda, n}=h_{n}^{\lambda}$. Then the existence of $\phi_{\lambda, n}$ implies that there is a commutative diagram

The construction of $\phi_{\lambda, n}$ goes as follows. We assume that $\phi_{\lambda, n-1}$ already exist. Let $U_{n-1} \subset X_{n-1}$ be the locus where $X_{n-1} \rightarrow T_{n-1}$ is smooth. Let $\omega_{n-1} \in \Gamma\left(U_{n-1}, \Omega_{U_{n-1} / T_{n-1}}^{2}\right)$ be the symplectic 2-form corresponding to the Poisson structure $\left\{\stackrel{{ }^{n}}{ },\right\}_{n-1}$. By the assumption, $X_{n-1} \rightarrow T_{n-1}$ is a \mathbf{C}^{*} equivariant morphism. The symplectic 2 -form ω_{n-1} has weight l with the induced \mathbf{C}^{*}-action on U_{n-1}. Let $L_{n-1} \in \operatorname{Pic}\left(U_{n-1}^{a n}\right)$ be the (unique) extension of $L \in \operatorname{Pic}\left(U^{a n}\right)$. By T^{1}-lifting principle, the extension of X_{n-1} to X_{n} is determined by an element $\theta_{n} \in \mathbf{H}^{2}\left(U_{n-1}, \wedge^{\wedge} \Theta_{U_{n-1} / T_{n-1}}\right)$, where $\wedge^{\wedge} \Theta_{U_{n-1} / T_{n-1}}$ is the Lichnerowicz-Poisson complex defined in $\S 2$. The symplectic 2 -form ω_{n-1} gives an identification (cf. §2):

$$
\mathbf{H}^{2}\left(U_{n-1}, \wedge \Theta_{U_{n-1} / T_{n-1}}\right) \cong \mathbf{H}^{2}\left(U_{n-1}, \Omega_{U_{n-1} / T_{n-1}}^{\geq 1}\right)
$$

By definition of the twistor deformation, θ_{n} is sent to $\left[L_{n-1}\right]$. Since $\left[L_{n-1}\right]$ and ω_{n-1} have respectively weights 0 and l for the \mathbf{C}^{*}-action, θ_{n} should have weight $-l$. This is what we want.

Since any direction in $H^{2}\left(X^{a n}, \mathbf{Q}\right)$ is realized in a suitable quasi-twistor deformation, \mathbf{C}^{*} has only weight l on the maximal ideal m_{R} of R. Thus, one
can write R as $\mathbf{C}\left[\left[t_{1}, \ldots, t_{m}\right]\right]$, where t_{i} are all eigen-elements with weight l. Let $\hat{\mathcal{Y}}:=\operatorname{Spec} \lim \Gamma\left(X_{n}^{u n i v}, \mathcal{O}_{X_{n}^{u n i v}}\right)$. The \mathbf{C}^{*}-action on $\left\{X_{n}^{u n i v}\right\}$ induces a \mathbf{C}^{*} action on $\hat{\mathcal{Y}}$. Let $\hat{\mathcal{X}} \rightarrow \hat{\mathcal{Y}}$ be the algebraization of $\left\{X_{n}^{\text {univ }}\right\}$ over $\hat{\mathcal{Y}}$. Since Y and R are both positively weighted, $\hat{\mathcal{Y}}$ is also positively weighted. The \mathbf{C}^{*}-action of the formal scheme $\left\{X_{n}^{\text {univ }}\right\}$ induces a \mathbf{C}^{*}-action of $\hat{\mathcal{X}}$ in such a way that $\hat{\mathcal{X}} \rightarrow \hat{\mathcal{Y}}$ becomes \mathbf{C}^{*}-equivariant.

Lemma 22. There is a projective birational morphism of algebraic varieties with \mathbf{C}^{*}-actions

$$
\mathcal{X} \rightarrow \mathcal{Y}
$$

over $\operatorname{Spec} \mathbf{C}\left[t_{1}, \ldots, t_{m}\right]$ which is an algebraization of $\hat{\mathcal{X}} \rightarrow \hat{\mathcal{Y}}$. Moreover, \mathcal{X} and \mathcal{Y} admit natural Poisson structures over $\operatorname{Spec} \mathbf{C}\left[t_{1}, \ldots, t_{m}\right]$.

Proof. Let A be the completion of the coordinate ring of the affine scheme $\hat{\mathcal{Y}}$ at the origin. Then A becomes a complete local ring with a good \mathbf{C}^{*}-action. The \mathbf{C}^{*}-equivariant projective morphism $\hat{\mathcal{X}} \rightarrow \hat{\mathcal{Y}}$ induces a \mathbf{C}^{*}-equivariant projective morphism $\hat{\mathcal{X}}_{A} \rightarrow \operatorname{Spec}(A)$. By Lemma A.8, there is a \mathbf{C}^{*}-linearised ample line bundle on $\hat{\mathcal{X}}_{A}$. By Lemma A.2, there is a \mathbf{C}-algebra R of finite type such that $\hat{R}=A$. Put $\mathcal{Y}:=\operatorname{Spec}(R)$. Since R is generated by eigenvectors (homogeneous elements) of \mathbf{C}^{*}-action, R contains t_{i}. So R is a ring over $\mathbf{C}\left[t_{1}, \ldots, t_{m}\right]$. By Proposition A.5, there is a \mathbf{C}^{*}-equivariant projective morphism $\mathcal{X} \rightarrow \mathcal{Y}$ which algebraizes $\hat{\mathcal{X}}_{A} \rightarrow \operatorname{Spec}(A)$. This automatically algebraizes $\hat{\mathcal{X}} \rightarrow$ $\hat{\mathcal{Y}}$. The complete local ring A admits a Poisson structure over $\mathbf{C}\left[\left[t_{1}, \ldots, t_{m}\right]\right]$ induced by that of $\Gamma\left(\hat{\mathcal{Y}}, \mathcal{O}_{\hat{\mathcal{Y}}}\right)$. This Poisson structure induces a Poisson structure of R over $\mathbf{C}\left[t_{1}, \ldots, t_{m}\right]$ because, if $a, b \in A$ are homogeneous, then $\{a, b\} \in A$ is again homogeneous. The corresponding relative Poisson bi-vector Θ of \mathcal{Y} is non-degenerate on the smooth part. Hence it defines a relative symplectic 2 -form on the smooth part of \mathcal{Y}. This relative symplectic 2 -form is pulled back to \mathcal{X} and defines a relative Poisson structure of \mathcal{X}.

Let us fix an algebraic line bundle L on X. Since $H^{i}\left(X, \mathcal{O}_{X}\right)=0$ for $i=1,2$, there is a unique line bundle $\hat{L} \in \operatorname{Pic}(\hat{\mathcal{X}})$ extending L. Let $\hat{L}_{A} \in$ $\operatorname{Pic}\left(\hat{\mathcal{X}}_{A}\right)$ be the pull-back of \hat{L} to $\hat{\mathcal{X}}_{A}$. Since \hat{L} is fixed by the \mathbf{C}^{*}-action of $\hat{\mathcal{X}}$, \hat{L}_{A} is fixed by the \mathbf{C}^{*}-action of $\hat{\mathcal{X}}_{A}$. By Lemma A.8, for some $k>0,\left(\hat{L}_{A}\right)^{\otimes k}$ is \mathbf{C}^{*}-linearized. By Proposition A.6, there is a \mathbf{C}^{*}-linearized line bundle on \mathcal{X} extending $\left(\hat{L}_{A}\right)^{\otimes k}$. Thus, by replacing L by its suitable multiple, we may assume that L extends to a line bundle on \mathcal{X}. Let U be the regular part of X and let $[L] \in H^{2}\left(U^{a n}, \mathbf{C}\right)$ be the associated class with $\left.L\right|_{U}$. Let us denote by M the maximal ideal of $\mathbf{C}\left[t_{1}, \ldots, t_{m}\right]$ and identify $\left(M / M^{2}\right)^{*}$ with $H^{2}\left(U^{a n}, \mathbf{C}\right)$.

Then $[L]$ can be written as a linear combination

$$
a_{1} t_{1}^{*}+a_{2} t_{2}^{*}+\ldots+a_{m} t_{m}^{*}
$$

with the dual base $\left\{t_{i}^{*}\right\}$ of $\left\{t_{i}\right\}$. Take a base change of

$$
\mathcal{X} \rightarrow \operatorname{Spec} \mathbf{C}\left[t_{1}, \ldots, t_{n}\right]
$$

by the map

$$
\operatorname{Spec} \mathbf{C}[t] \rightarrow \operatorname{Spec} \mathbf{C}\left[t_{1}, \ldots, t_{n}\right]
$$

with $t_{i}=a_{i} t$. Then we have a 1-parameter deformation \mathcal{X}^{L} of X over $T:=$ Spec $\mathbf{C}[t]$. As we have shown in Lemma 21, this deformation gives an algebraization of the twistor deformation $X_{\infty}^{L} \rightarrow \operatorname{Spec} \mathbf{C}[[t]]$. We put $\mathcal{Y}^{L}:=$ Spec $\Gamma\left(\mathcal{X}^{L}, \mathcal{O}_{\mathcal{X}^{L}}\right)$. Now let us consider the birational projective morphism

$$
g_{T}: \mathcal{X}^{L} \rightarrow \mathcal{Y}^{L}
$$

over Spec $\mathbf{C}[t]$. Let $\eta \in \operatorname{Spec} \mathbf{C}[t]$ be the generic point and let X_{η}^{L} and Y_{η}^{L} be the generic fibers. Then we get a birational projective morphism

$$
g_{\eta}: X_{\eta}^{L} \rightarrow Y_{\eta}^{L}
$$

Proposition 23 (Kaledin). Assume that X is smooth and L is ample. Then $g_{\eta}: X_{\eta}^{L} \rightarrow Y_{\eta}^{L}$ is an isomorphism.

Proof. Denote by $T(\cong \operatorname{Spec} \mathbf{C}[t])$ the base space of our algebraized twistor deformation \mathcal{X}^{L}. Since T has a good \mathbf{C}^{*}-action, \mathcal{X}^{L} is smooth over T. The line bundle L on X uniquely extends to a line bundle \mathcal{L} on \mathcal{X}^{L}. Moreover, \mathcal{X}^{L} is a Poisson T-scheme extending the original Poisson scheme X; thus, the symplectic 2-form ω on X extends to a relative symplectic 2-form $\omega_{T} \in$ $\Gamma\left(\mathcal{X}^{L}, \Omega_{\mathcal{X}^{L} / T}^{2}\right)$. Let $\theta_{T} \in H^{1}\left(\mathcal{X}^{L}, \Theta_{\mathcal{X}^{L} / T}\right)$ be the extension class (KodairaSpencer class) of the exact sequence

$$
0 \rightarrow\left(f_{T}\right)^{*} \Omega_{T / \mathbf{C}}^{1} \rightarrow \Omega_{\mathcal{X}^{L} / \mathbf{C}}^{1} \rightarrow \Omega_{\mathcal{X}^{L} / T}^{1} \rightarrow 0
$$

By Lemma 16, we see that, in $H^{1}\left(\mathcal{X}^{L}, \Omega_{\mathcal{X}^{L} / T}^{1}\right), i\left(\theta_{T}\right)\left(\omega_{T}\right)=[\mathcal{L}]$. We put $\omega_{\eta}:=\left.\omega_{T}\right|_{X_{\eta}^{L}}, \theta_{\eta}:=\left.\theta_{T}\right|_{X_{\eta}^{L}}$ and $L_{\eta}:=\left.\mathcal{L}\right|_{X_{\eta}}$. Then, in $H^{1}\left(X_{\eta}^{L}, \Omega_{X_{\eta}^{L} / k(\eta)}^{1}\right)$, we have an equality:

$$
i\left(\theta_{\eta}\right)\left(\omega_{\eta}\right)=\left[L_{\eta}\right] .
$$

Since g_{η} is a proper birational morphism, we only have to show that X_{η} does not contain a proper curve defined over $k(\eta)$. Now let $\iota: C \rightarrow X_{\eta}$ be a
morphism from a proper regular curve C defined over $k(\eta)$ to X_{η}. We shall prove that $\iota(C)$ is a point. Let $\theta_{C} \in H^{1}\left(C, \Theta_{C / k(\eta)}\right)$ be the Kodaira-Spencer class for $h: C \rightarrow \operatorname{Spec} k(\eta)$. In other words, θ_{C} is the extension class of the exact sequence

$$
0 \rightarrow h^{*} \Omega_{k(\eta) / \mathbf{C}}^{1} \rightarrow \Omega_{C / \mathbf{C}}^{1} \rightarrow \Omega_{C / k(\eta)}^{1} \rightarrow 0
$$

Then, by the compatibility of Kodaira-Spencer classes, we have

$$
i\left(\theta_{C}\right)\left(\iota^{*} \omega_{\eta}\right)=\iota^{*}\left(i\left(\theta_{\eta}\right)\left(\omega_{\eta}\right)\right) .
$$

The left hand side is zero because $\iota^{*} \omega_{\eta}=0$. On the other hand, the right hand side is $\iota^{*}\left[L_{\eta}\right]$. Since L is ample, L_{η} is also ample. If $\iota(C)$ is not a point, then $\iota^{*}\left[L_{\eta}\right] \neq 0$, which is a contradiction.

The following is a generalization of Proposition 23 to the singular case.
Proposition 24. Assume that X has only terminal singularities and $L \in \operatorname{Pic}(X)$.
(a) If L is ample, then $g_{\eta}: X_{\eta}^{L} \rightarrow Y_{\eta}^{L}$ is an isomorphism.
(b) Let X^{+}be another convex symplectic variety over Y with terminal singularities and assume that L becomes the proper transform of an ample line bundle L^{+}on X^{+}. Then g_{η} is a small birational morphism; in other words, $\operatorname{codimExc}\left(g_{\eta}\right) \geq 2$.

Proof. (i) We shall use the same notation as the proof of Proposition 23. We note that the Kodaira-Spencer class $\theta_{T} \in \operatorname{Ext}^{1}\left(\Omega_{\mathcal{X}^{L} / T}^{1}, \mathcal{O}_{\mathcal{X}^{L}}\right)$ is contained in $H^{1}\left(\mathcal{X}^{L}, \Theta_{\mathcal{X}^{L} / T}\right)$ because the twistor deformation is locally trivial by Theorem 19. Let $\mathcal{U} \subset \mathcal{X}^{L}$ be the locus where $\mathcal{X}^{L} \rightarrow T$ is smooth. Denote by U_{η} the generic fiber of $\mathcal{U} \rightarrow T$. Let $\left(\theta_{T}\right)^{0} \in H^{0}\left(\mathcal{U}, \Theta_{\mathcal{U} / T}\right)$ be the restriction of θ_{T} to \mathcal{U}. The relative Poisson structure on \mathcal{X}^{L} over T gives an element $\left(\omega_{T}\right)^{0} \in$ $H^{0}\left(\mathcal{U}, \Omega_{\mathcal{U} / T}^{2}\right)$. Note that, in general, $\left(\omega_{T}\right)^{0}$ cannot extend to a global section of $\Omega_{\mathcal{X}^{L} / T}^{2}$. Let $[\mathcal{L}]^{0} \in H^{1}\left(\mathcal{U}, \Omega_{\mathcal{U} / T}^{1}\right)$ be the class corresponding to a restricted line bundle $\left.\mathcal{L}\right|_{\mathcal{U}}$. Then, $\left(\theta_{T}\right)^{0},\left(\omega_{T}\right)^{0}$ and $[\mathcal{L}]^{0}$ defines respectively the classes

$$
\begin{aligned}
& \theta_{\eta}^{0} \in H^{1}\left(U_{\eta}, \Theta_{U_{\eta} / k(\eta)}^{1}\right), \\
& \omega_{\eta}^{0} \in H^{0}\left(U_{\eta}, \Omega_{U_{\eta} / k(\eta)}^{2}\right)
\end{aligned}
$$

and

$$
\left[L_{\eta}\right]^{0} \in H^{1}\left(U_{\eta}, \Omega_{U_{\eta} / k(\eta)}^{1}\right)
$$

We then have

$$
i\left(\theta_{\eta}^{0}\right)\left(\omega_{\eta}^{0}\right)=\left[L_{\eta}\right]^{0}
$$

(ii)(Construction of a good resolution): We shall construct a good equivariant resolution of \mathcal{X}^{L}. In order to do that, first take an equivariant resolution $\pi_{0}: \tilde{X} \rightarrow X$ of X, that is, $\left(\pi_{0}\right)_{*} \Theta_{\tilde{X}}=\Theta_{X}$. Here $\Theta_{X}:=\underline{\operatorname{Hom}}\left(\Omega_{X}^{1}, \mathcal{O}_{X}\right)$. By Theorem 19, our twistor deformation gives us a sequence of locally trivial formal deformations of X :

$$
X \rightarrow X_{1} \rightarrow \ldots \rightarrow X_{n} \rightarrow \ldots
$$

We shall construct resolutions $\pi_{n}: \tilde{X}_{n} \rightarrow X_{n}$ inductively so that there is an affine open cover $X_{n}=\cup_{i \in I} U_{n, i}$ such that $\left(\pi_{n}\right)^{-1}\left(U_{n, i}\right) \cong\left(\pi_{0}\right)^{-1}(U) \times_{T_{0}} T_{n}$. Note that, if this could be done, then $\left(\pi_{n}\right)_{*} \Theta_{\tilde{X}_{n} / T_{n}}=\Theta_{X_{n} / T_{n}}$. Moreover, if we let $\tilde{\theta}_{n} \in H^{1}\left(\tilde{X}_{n-1}, \Theta_{\tilde{X}_{n-1} / T_{n-1}}\right)$ be the Kodaira-Spencer class of $\tilde{X}_{n} \rightarrow T_{n}$, then $\tilde{\theta}_{n}$ coincides with the Kodaira-Spencer class $\theta_{n} \in H^{1}\left(X_{n-1}, \Theta_{X_{n-1} / T_{n-1}}\right)$ of $X_{n} \rightarrow T_{n}$ because $\tilde{\theta}_{n}$ is mapped to zero by the map

$$
H^{1}\left(\tilde{X}_{n-1}, \Theta_{\tilde{X}_{n-1} / T_{n-1}}\right) \rightarrow H^{0}\left(X_{n}, R^{1}\left(\pi_{n-1}\right)_{*} \Theta_{\tilde{X}_{n-1} / T_{n-1}}\right)
$$

Now assume that we are given such a resolution $\pi_{n}: \tilde{X}_{n} \rightarrow X_{n}$. Take the affine open cover $\left\{U_{n, i}\right\}_{i \in I}$ of X_{n} as above. We put $\tilde{U}_{n, i}:=\left(\pi_{n}\right)^{-1}\left(U_{n, i}\right)$. For $i, j \in I$, there is an identification $\left.\left.U_{n, i}\right|_{U_{i j}} \cong U_{n, j}\right|_{U_{i j}}$ determined by X_{n}. For each $i \in I$, let $\mathcal{U}_{n, i}$ and $\tilde{\mathcal{U}}_{n, i}$ be trivial deformations of $U_{n, i}$ and $\tilde{U}_{n, i}$ over T_{n+1} respectively. For each $i, j \in I$, take a T_{n+1}-isomorphism

$$
g_{j i}:\left.\left.\mathcal{U}_{n, i}\right|_{U_{i j}} \rightarrow \mathcal{U}_{n, j}\right|_{U_{i j}}
$$

such that $\left.g_{j i}\right|_{T_{n}}=i d$. Then

$$
h_{i j k}:=g_{i j} \circ g_{j k} \circ g_{k i}
$$

gives an automorphism of $\left.\mathcal{U}_{n, i}\right|_{U_{i j k}}$ over T_{n+1} such that $\left.h_{i j k}\right|_{T_{n}}=i d$. Since $\pi_{n}: \tilde{X}_{n} \rightarrow X_{n}$ is an equivariant resolution, $g_{i j}$ extends uniquely to

$$
\tilde{g}_{i j}:\left.\left.\tilde{\mathcal{U}}_{n, i}\right|_{U_{i j}} \cong \tilde{\mathcal{U}}_{n, j}\right|_{U_{i j}} .
$$

One can consider $\left\{h_{i j k}\right\}$ as a 2-cocycle of the Čech cohomology of Θ_{X}; hence it gives an element $o b \in H^{2}\left(X, \Theta_{X}\right)$. But, since X_{n} extends to $X_{n+1}, o b=0$. Therefore, by modifying $g_{i j}$ to $g_{i j}^{\prime}$ suitably, one can get

$$
g_{i j}^{\prime} \circ g_{j k}^{\prime} \circ g_{k i}^{\prime}=i d
$$

Then

$$
\tilde{g}_{i j}^{\prime} \circ \tilde{g}_{j k}^{\prime} \circ \tilde{g}_{k i}^{\prime}=i d .
$$

Now \tilde{X}_{n} also extends to \tilde{X}_{n+1} and the following diagram commutes:

By Théorème (5.4.5) of [EGA III], one has an algebraization $\tilde{X}_{\infty}^{L} \rightarrow Y_{\infty}$ of $\left\{\tilde{X}_{n} \rightarrow Y_{n}\right\}$. Moreover, the morphism $\left\{\pi_{n}: \tilde{X}_{n} \rightarrow X_{n}\right\}$ induces $\pi_{\infty}: \tilde{X}_{\infty}^{L} \rightarrow$ X_{∞}^{L}. By the construction, the \mathbf{C}^{*}-action on X_{∞}^{L} lifts to \tilde{X}_{∞}^{L}. Then $\tilde{X}_{\infty}^{L} \rightarrow Y_{\infty}$ is algebraized to a \mathbf{C}^{*}-equivariant projective morphism $\tilde{\mathcal{X}}^{L} \rightarrow \mathcal{Y}^{L}$ in such a way that it factors through \mathcal{X}^{L}.
(iii) Let $\pi: \tilde{\mathcal{X}}^{L} \rightarrow \mathcal{X}^{L}$ be the equivariant resolution constructed in (ii). Let us denote by \tilde{X}_{η} the generic fiber of $\tilde{\mathcal{X}}^{L} \rightarrow T$. This resolution gives an equivariant resolution $\pi_{\eta}: \tilde{X}_{\eta} \rightarrow X_{\eta}$. In particular, $\left(\pi_{\eta}\right)_{*} \Theta_{\tilde{X} / k(\eta)}=\Theta_{X_{\eta} / k(\eta)}$. Let $\tilde{\theta}_{\eta} \in H^{1}\left(\tilde{X}_{\eta}, \Theta_{\tilde{X}_{\eta} / k(\eta)}\right)$ be the Kodaira-Spencer class for $\tilde{X}_{\eta} \rightarrow \operatorname{Speck}(\eta)$. Then the Kodaira-Spencer class $\theta_{\eta} \in H^{1}\left(X_{\eta}, \Theta_{X_{\eta} / k(\eta)}\right)$ for X_{η} coincides with $\tilde{\theta}_{\eta}$ by the natural injection $H^{1}\left(X_{\eta}, \Theta_{X_{\eta} / k(\eta)}\right) \rightarrow H^{1}\left(\tilde{X}_{\eta}, \Theta_{\tilde{X}_{\eta} / k(\eta)}\right)$. Let $i_{\eta}: U_{\eta} \rightarrow$ X_{η} be the embedding of the regular part. Since $\left(i_{\eta}\right)_{*} \Omega_{U_{\eta} / k(\eta)}^{2} \cong\left(\pi_{\eta}\right)_{*} \Omega_{\tilde{X}_{\eta} / k(\eta)}^{2}$, by [Fl], ω_{η}^{0} extends to

$$
\omega_{\eta} \in \Gamma\left(X_{\eta},\left(\pi_{\eta}\right)_{*} \Omega_{\tilde{X}_{\eta} / k(\eta)}^{2}\right)
$$

(iv) We have a pairing map:

$$
H^{0}\left(X_{\eta},\left(\pi_{\eta}\right)_{*} \Omega_{\tilde{X}_{\eta} / k(\eta)}^{2}\right) \times H^{1}\left(X_{\eta},\left(\pi_{\eta}\right)_{*} \Theta_{\tilde{X}_{\eta} / k(\eta)}\right) \rightarrow H^{1}\left(X_{\eta},\left(\pi_{\eta}\right)_{*} \Omega_{\tilde{X}_{\eta} / k(\eta)}^{1}\right)
$$

Denote by $i\left(\theta_{\eta}\right)\left(\omega_{\eta}\right)$ the image of $\left(\omega_{\eta}, \theta_{\eta}\right)$ by this pairing map. By pulling back L_{η} by π_{η}, one can define a class $\left[L_{\eta}\right] \in H^{1}\left(X_{\eta},\left(\pi_{\eta}\right)_{*} \Omega_{\tilde{X}_{\eta} k(\eta)}^{1}\right)$. Let us consider the exact sequence

$$
H_{\Sigma}^{1}\left(X_{\eta},\left(\pi_{\eta}\right)_{*} \Omega_{\tilde{X}_{\eta} / k(\eta)}^{1}\right) \rightarrow H^{1}\left(X_{\eta},\left(\pi_{\eta}\right)_{*} \Omega_{\tilde{X}_{\eta} / k(\eta)}^{1}\right) \rightarrow H^{1}\left(U_{\eta}, \Omega_{U_{\eta} / k(\eta)}^{1}\right),
$$

where $\Sigma:=X_{\eta} \backslash U_{\eta}$. Since $\left(\pi_{\eta}\right)_{*} \Omega_{\tilde{X}_{\eta} / k(\eta)}^{1} \cong\left(i_{\eta}\right)_{*} \Omega_{U_{\eta} / k(\eta)}^{1}$ by [Fl], it is a reflexive sheaf. A reflexive sheaf on X_{η} is locally written as the kernel of a homomorphism from a free sheaf to a torsion free sheaf. Since X_{η} is CohenMacaulay and $\operatorname{Codim}\left(\Sigma \subset X_{\eta}\right) \geq 2$, we have $H_{\Sigma}^{1}\left(X_{\eta},\left(\pi_{\eta}\right)_{*} \Omega_{\tilde{X}_{\eta} / k(\eta)}^{1}\right)=0$. We already know in (i) that $\left[L_{\eta}\right]^{0}=i\left(\theta_{\eta}^{0}\right)\left(\omega_{\eta}^{0}\right)$ in $H^{1}\left(U_{\eta}, \Omega_{U_{\eta} / k(\eta)}^{1}\right)$. Therefore, by the exact sequence, we see that

$$
\left[L_{\eta}\right]=i\left(\theta_{\eta}\right)\left(\omega_{\eta}\right) .
$$

(v) Consider the pairing map

$$
H^{0}\left(\tilde{X}_{\eta}, \Omega_{\tilde{X}_{\eta} / k(\eta)}^{2}\right) \times H^{1}\left(\tilde{X}_{\eta}, \Theta_{\tilde{X}_{\eta} / k(\eta)}\right) \rightarrow H^{1}\left(\tilde{X}_{\eta}, \Omega_{\tilde{X}_{\eta} / k(\eta)}^{1}\right)
$$

By the construction of \tilde{X}_{η}, the Kodaira-Spencer class $\tilde{\theta}_{\eta}$ of $\tilde{X}_{\eta} \rightarrow \operatorname{Speck}(\eta)$ coincides with the Kodaira-Spencer class θ_{η}. Hence $\left(\omega_{\eta}, \tilde{\theta}_{\eta}\right)$ is sent to $\left(\pi_{\eta}\right)^{*}\left[L_{\eta}\right]$ by the pairing map.

Now we shall prove (a). For a proper regular curve C defined over $k(\eta)$, assume that there is a $k(\eta)$-morphism $\iota: C \rightarrow \tilde{X}_{\eta}$. We shall prove that $\left(\pi_{\eta}\right) \circ$ $\iota(C)$ is a point. By the compatibility of the Kodaira-Spencer classes, we have

$$
i\left(\theta_{C}\right)\left(\iota^{*} \omega_{\eta}\right)=\iota^{*}\left(i\left(\omega_{\eta}\right)\left(\tilde{\theta}_{\eta}\right)\right) .
$$

The left hand side is zero because $\iota^{*} \omega_{\eta}=0$. The right hand side is $\iota^{*}\left(\pi_{\eta}\right)^{*}\left[L_{\eta}\right]$ as we just remarked above. If $\pi_{\eta} \circ \iota(C)$ is not a point, then this is not zero because L_{η} is ample; but this is a contradiction.

Next we shall prove (b). We shall derive a contradiction assuming that $g_{T}: \mathcal{X}^{L} \rightarrow \mathcal{Y}^{L}$ is a divisorial birational contraction. We put $\mathcal{E}:=\operatorname{Exc}\left(g_{T}\right)$. By the assumption, there is another convex symplectic variety X^{+}over Y, and X and X^{+}are isomorphic in codimension one over Y. Let $F \subset X$ (resp. $F^{+} \subset X^{+}$) be the locus where the birational map $X--X^{+}$is not an isomorphism. Then $\operatorname{codim}(F \subset X) \geq 2$. We shall prove that $(L, \bar{C})>0$ for any proper irreducible curve \bar{C} which is not contained in F. Let \bar{C} be such a curve. Take a common resolution $\mu: Z \rightarrow X$ and $\mu^{+}: Z \rightarrow X^{+}$. We may assume that $\operatorname{Exc}(\mu)$ is a union of irreducible divisors, say $\left\{E_{i}\right\}$. Since X and X^{+}are isomorphic in codimension one, $\operatorname{Exc}(\mu)=\operatorname{Exc}\left(\mu^{+}\right)$. On can write $\left(\mu^{+}\right)^{*} L^{+}=\mu^{*} L-\Sigma a_{i} E_{i}$ with non-negative integers a_{i}. In fact, if $a_{j}<0$ for some j, then E_{j} should be a fixed component of the linear system $\left|\left(\mu^{+}\right)^{*} L^{+}\right|$; but this is a contradiction since L^{+}is (very) ample. One can find a proper curve D on Z such that $\mu(D)=\bar{C}$ and such that $C^{+}:=\mu^{+}(D)$ is an irreducible curve on X^{+}. (i.e. $\mu^{+}(D)$ is not reduced to a point.) Note that D is not contained in any E_{i}. Then

$$
(L, \bar{C})=\left(\mu^{*} L, D\right)=\left(\left(\mu^{+}\right)^{*} L^{+}+\Sigma a_{i} E_{i}, D\right)>0 .
$$

Let us consider all effective 1-cycles on X which are contracted to points by g and are obtained as the limit of effective 1-cycles on X_{η}^{L}. Since \mathcal{E} has codimension 1 in \mathcal{X}^{L}, one can find such an effective 1-cycle whose support intersects F at most in finite points. In other words, there is a flat family $\mathcal{C} \rightarrow T$ of proper curves in \mathcal{X}^{L} / T in such a way that any irreducible component of $\mathcal{C}_{0}:=\mathcal{C} \cap X$ is not contained in F. Let \bar{C}_{η} be the generic fiber of $\mathcal{C} \rightarrow T$. Take a regular proper
curve C over $k(\eta)$ and a $k(\eta)$-morphism $\iota: C \rightarrow \tilde{X}_{\eta}$ so that $\pi_{\eta} \circ \iota(C)=\bar{C}_{\eta}$. By the definition of $\mathcal{C},\left(L_{\eta}, \bar{C}_{\eta}\right)>0$. Now one can get a contradiction by using this curve C in the similar way to (a).

Corollary 25. Let Y be an affine symplectic variety with a good \mathbf{C}^{*} action and assume that the Poisson structure of Y is positively weighted. Let

$$
X \stackrel{f}{\rightarrow} Y \stackrel{f^{\prime}}{\leftarrow} X^{\prime}
$$

be a diagram such that,

1. f (resp. f^{\prime}) is a crepant, birational, projective morphism.
2. X (resp. X^{\prime}) has only terminal singularities.
3. X (resp. X^{\prime}) is \mathbf{Q}-factorial.

Then both X and X^{\prime} have locally trivial deformations to an affine variety Y_{t} obtained as a Poisson deformation of Y. In particular, X and X^{\prime} have the same kind of singularities.

Proof. (i) By Step 1 of the proof of Proposition A.7, the \mathbf{C}^{*}-action of Y lifts to X and X^{\prime}. So we are in the situation of section 4 . Since Y is a symplectic variety, outside certain locus at least of codimension 4 (say $\bar{\Sigma}$), its singularity is locally isomorphic to the product $\left(\mathbf{C}^{n-2}, 0\right) \times(S, 0)$ (as an analytic space). Here $(S, 0)$ is the germ of a rational double point singularity of a surface (cf. [Ka 2]). We put $\bar{V}:=Y-\bar{\Sigma}$. Since f and f^{\prime} are both (unique) minimal resolutions of rational double points over $\bar{V}, f^{-1}(\bar{V}) \cong\left(f^{\prime}\right)^{-1}(\bar{V})$.
(ii) Fix an ample line bundle L of X and let $\left\{X_{n}\right\}$ be the twistor deformation associated with L. This induces a formal deformation $\left\{Y_{n}\right\}$ of Y. Let L^{\prime} be the proper transform of L by $X \rightarrow-X^{\prime}$. Since X^{\prime} is \mathbf{Q}-factorial, we may assume that L^{\prime} is a line bundle of $X^{\prime} .{ }^{5}$ Let $\left\{X_{n}^{\prime}\right\}$ be the twistor deformation of X^{\prime} associated with L^{\prime}. This induces a formal deformation $\left\{Y_{n}^{\prime}\right\}$ of Y.

Lemma 26. The formal deformation $\left\{Y_{n}^{\prime}\right\}$ coincides with $\left\{Y_{n}\right\}$.
Proof. The formal deformation $\left\{X_{n}\right\}$ of X induces a formal deformation of $W:=f^{-1}(\bar{V})$, say $\left\{W_{n}\right\}$. The deformation induces a formal deformation $\left\{\bar{V}_{n}\right\}$ of \bar{V} by $\bar{V}_{n}:=\operatorname{Spec} \Gamma\left(W_{n}, \mathcal{O}_{W_{n}}\right)$ because $R^{1}\left(\left.f\right|_{W}\right)_{*} \mathcal{O}_{W}=0$ and

[^5]$\left(\left.f\right|_{W}\right)_{*} \mathcal{O}_{W}=\mathcal{O}_{\bar{V}}(\mathrm{cf}$. [Wa]). Since $\bar{V}=Y-\bar{\Sigma}$ with $\operatorname{codim}(\bar{\Sigma} \subset Y) \geq 4$, the formal deformation $\left\{\bar{V}_{n}\right\}$ of \bar{V} extends uniquely to that of Y (cf. Proposition $13,(1))$. This extended deformation is nothing but $\left\{Y_{n}\right\}$. On the other hand, the formal deformation $\left\{X_{n}^{\prime}\right\}$ of X^{\prime} induces a formal deformation of $W^{\prime}:=$ $\left(f^{\prime}\right)^{-1}(\bar{V})$, say $\left\{W_{n}^{\prime}\right\}$. As remarked in (i), $W \cong W^{\prime}$. Moreover, by Corollary 10, the Poisson deformations of W (resp. W^{\prime}) are controlled by the cohomology $H^{2}\left(W^{a n}, \mathbf{C}\right)\left(\right.$ resp. $\left.H^{2}\left(\left(W^{\prime}\right)^{a n}, \mathbf{C}\right)\right)$ because $H^{i}\left(\mathcal{O}_{W}\right)=0$ for $i=1,2$ (resp. $H^{i}\left(\mathcal{O}_{W^{\prime}}\right)=0$ for $\left.i=1,2\right)$. Since L^{\prime} is the proper transform of $L,\left[\left.L\right|_{W}\right]$ is sent to $\left[\left.L^{\prime}\right|_{W^{\prime}}\right]$ by the natural identification $H^{2}\left(W^{a n}, \mathbf{C}\right) \cong H^{2}\left(W^{\prime a n}, \mathbf{C}\right)$. This implies that $\left\{W_{1}\right\}$ and $\left\{W_{1}^{\prime}\right\}$ coincide. By the construction of $\left\{X_{n}\right\}$ (resp. $\left\{X_{n}^{\prime}\right\}$), L (resp. L^{\prime}) extends uniquely to L_{n} (resp. L_{n}^{\prime}). Then $\left[\left.L_{1}\right|_{W}\right] \in H^{2}\left(W^{a n}, S_{1}\right)$ is sent to $\left[\left.L_{1}^{\prime}\right|_{W^{\prime}}\right] \in H^{2}\left(\left(\left(W^{\prime}\right)^{\text {an }}, S_{1}\right)\right.$, which implies that W_{2} and $W^{\prime}{ }_{2}$ coincide. By the similar inductive process, one concludes that $\left\{W_{n}\right\}$ and $\left\{W_{n}^{\prime}\right\}$ coincide. The formal deformation $\left\{W_{n}^{\prime}\right\}$ of W^{\prime} induces a formal deformation $\left\{\bar{V}_{n}^{\prime}\right\}$ of \bar{V}, which coincides with $\left\{\bar{V}_{n}\right\}$. So the extended deformation $\left\{Y_{n}^{\prime}\right\}$ also coincides with $\left\{Y_{n}\right\}$.
(iii) Let
$$
\mathcal{X}^{L} \rightarrow \mathcal{Y} \leftarrow\left(\mathcal{X}^{\prime}\right)^{L}
$$
be the algebraizations of
$$
\left\{X_{n}\right\} \rightarrow\left\{Y_{n}\right\} \leftarrow\left\{X_{n}^{\prime}\right\}
$$
over T. Let $\eta \in T$ be the generic point. Then, by Proposition 24 , (a), $X_{\eta}^{L} \cong Y_{\eta}^{L}$. Since X is \mathbf{Q}-factorial, we have:

Lemma 27. X_{η}^{L} is also \mathbf{Q}-factorial.
Proof. Let D be a Weil divisor of X_{η}^{L}. One can extend D to a Weil divisor \bar{D} of \mathcal{X}^{L} by taking its closure. The restriction of \bar{D} to X defines a Weil divisor $\left.\bar{D}\right|_{X}$. Note that the support of $\left.\bar{D}\right|_{X}$ is $\bar{D} \cap X$ and the multiplicity on each irreducible component is well determined because \bar{D} is a Cartier divisor at a regular point of X. Let $m>0$ be an integer such that $m\left(\left.\bar{D}\right|_{X}\right)$ is a Cartier divisor. Let $\mathcal{O}(m \bar{D})$ be the reflexive sheaf associated with $m \bar{D}$ and let $\mathcal{O}\left(\left.m \bar{D}\right|_{X}\right)$ be the line bundle associated with $\left.m \bar{D}\right|_{X}$. By [K-M, Lemma (12.1.8)],

$$
\mathcal{O}(m \bar{D}) \otimes_{\mathcal{O}_{\mathcal{X}^{L}}} \mathcal{O}_{X}=\mathcal{O}\left(\left.m \bar{D}\right|_{X}\right)
$$

In particular, $\mathcal{O}(m \bar{D})$ is a line bundle around X. Therefore, $m \bar{D}$ is a Cartier divisor on some Zariski open neighborhood of $X \subset \mathcal{X}^{L}$. Let Z be the nonCartier locus of $m \bar{D}$. Since $\mathcal{O}(m \bar{D})$ is fixed by the \mathbf{C}^{*}-action on \mathcal{X}^{L}, Z is stable
under the \mathbf{C}^{*}-action. Since $f_{T}: \mathcal{X}^{L} \rightarrow \mathcal{Y}$ is a projective morphism, $f_{T}(Z)$ is a closed subset of \mathcal{Y}. Since $Y \cap f_{T}(Z)=\emptyset$ and Y has a good \mathbf{C}^{*}-action, $f_{T}(Z)$ should be empty; hence Z should be also empty.

Since X and X^{\prime} are both crepant partial resolutions (with terminal singularities) of Y, they are isomorphic in codimension one. Now one can apply Proposition 24, (b) to the twistor deformation $\left\{X_{n}^{\prime}\right\}$ of X^{\prime}. Then we conclude that $\left(X^{\prime}\right)_{\eta}^{L^{\prime}} \rightarrow Y_{\eta}$ is a small birational projective morphism. On the other hand, $Y_{\eta}\left(\cong X_{\eta}^{L}\right)$ is \mathbf{Q}-factorial by Lemma 27 . These imply that $\left(X^{\prime}\right)_{\eta}^{L} \cong Y_{\eta}$. By Theorem 19, $\mathcal{X}^{L} \rightarrow T$ and $\left(\mathcal{X}^{\prime}\right)^{L^{\prime}} \rightarrow T$ are locally trivial deformations of X and X^{\prime} respectively.

Corollary 28. Let Y be an affine symplectic variety with a good \mathbf{C}^{*} action. Assume that the Poisson structure of Y is positively weighted, and Y has only terminal singularities. Let $f: X \rightarrow Y$ be a crepant, birational, projective morphism such that X has only terminal singularities and such that X is \mathbf{Q}-factorial. Then the following are equivalent.
(a) X is non-singular.
(b) Y is smoothable by a Poisson deformation.

Proof. First of all, the \mathbf{C}^{*}-action of Y lifts to X by Step 1 of the proof of Proposition A.7. Secondly, by Corollary A.10, $X^{a n}$ is \mathbf{Q}-factorial. We regard X and Y as Poisson schemes. The Poisson deformation functors PD_{X} and PD_{Y} have pro-representable hulls R_{X} and R_{Y} respectively (Theorem 14). We put $U:=(X)_{\text {reg }}$ and $V:=Y_{\text {reg }}$. Then, by Lemma $12, \operatorname{HP}^{2}(U)=H^{2}\left(U^{a n}, \mathbf{C}\right)$ and $\operatorname{HP}^{2}(V)=H^{2}\left(V^{a n}, \mathbf{C}\right)$. Note that, by Proposition 13, they coincide with $\mathrm{PD}_{X}(\mathbf{C}[\epsilon])$ and $\mathrm{PD}_{Y}(\mathbf{C}[\epsilon])$, respectively. By the proof of [Na, Proposition 2], we see that

$$
(*): H^{2}\left(U^{a n}, \mathbf{C}\right) \cong H^{2}\left(V^{a n}, \mathbf{C}\right)
$$

Let $l>0$ be the weight of Poisson structure on Y. Then one can get universal \mathbf{C}^{*}-equivariant Poisson deformations \mathcal{X} and \mathcal{Y} over the same affine base $B:=$ Spec $\mathbf{C}\left[t_{1}, \ldots, t_{m}\right]$, where $m=h^{2}\left(U^{a n}, \mathbf{C}\right)$ and each t_{i} has weight l. By Theorem $17 \mathcal{X} \rightarrow B$ is a locally trivial deformations of X. The birational projective morphism f induces a birational projective B-morphism

$$
f_{B}: \mathcal{X} \rightarrow \mathcal{Y}
$$

Let η be the generic point of B. Take the generic fibers over η. Then we have

$$
\mathcal{X}_{\eta} \xrightarrow{f_{\eta}} \mathcal{Y}_{\eta} .
$$

Every twistor deformation of X associated with an ample line bundle L determines a (non-closed) point $\zeta_{L} \in B$. By Proposition $24, f_{\zeta_{L}}$ is an isomorphism. This implies that f_{η} is an isomorphism. Therefore, \mathcal{Y}_{η} is regular if and only if X is non-singular.

§5. General Cases

Let X be a convex symplectic variety with terminal singularities. Let $\left\{X_{n}\right\}$ be a twistor deformation for $L \in \operatorname{Pic}(X)$. We put $Y_{n}:=\operatorname{Spec} \Gamma\left(X_{n}, \mathcal{O}_{X_{n}}\right)$ and $Y_{\infty}^{L}:=\operatorname{Spec} \lim \Gamma\left(X_{n}, \mathcal{O}_{X_{n}}\right)$. As in $\S 3,\left\{X_{n}\right\}$ is algebraized to $g_{\infty}: X_{\infty}^{L} \rightarrow Y_{\infty}^{L}$ over T_{∞}, where $\left.T_{\infty}:=\operatorname{Spec} \mathbf{C}[t]\right]$. We do not know, however, as in $\S 3$, that $\left\{X_{n}\right\}$ can be algebraized to $g_{T}: \mathcal{X}^{L} \rightarrow \mathcal{Y}^{L}$ over $T:=\operatorname{Spec} \mathbf{C}[t]$. Let $\eta_{\infty} \in$ Spec $\mathbf{C}[[t]]$ be the generic point and let $g_{\eta_{\infty}}: X_{\eta_{\infty}}^{L} \rightarrow Y_{\eta_{\infty}}^{L}$ be the morphism between the generic fibers induced by g_{∞}.

Proposition 29. (a) If L is ample, then $g_{\eta_{\infty}}: X_{\eta_{\infty}}^{L} \rightarrow Y_{\eta_{\infty}}^{L}$ is an isomorphism.
(b) Let X^{+}be another convex symplectic variety over Y with terminal singularities and assume that L becomes the proper transform of an ample line bundle L^{+}on X^{+}. Then $g_{\eta_{\infty}}$ is a small birational morphism; in other words, $\operatorname{codimExc}\left(g_{\eta_{\infty}}\right) \geq 2$.

Proof. The idea of the proof is the same as Proposition 24. But we need more delicate argument because neither X_{∞}^{L} or Y_{∞}^{L} is of finite type over T_{∞}. First of all, we should replace the usual differential sheaves $\Omega_{X_{\infty}^{L} / T_{\infty}}^{i}$ $(i \geq 1), \Omega_{X_{\infty}^{L} / \mathbf{C}}^{1}$, and $\Omega_{T_{\infty} / \mathbf{C}}^{1}$ respectively by $\hat{\Omega}_{X_{\infty}^{L} / T_{\infty}}^{i}, \hat{\Omega}_{X_{\infty}^{L} / \mathbf{C}}^{1}$, and $\hat{\Omega}_{T_{\infty} / \mathbf{C}}^{1}$. Here $\hat{\Omega}_{X_{\infty}^{L} / T_{\infty}}^{i}$ is a coherent sheaf on $X_{\eta_{\infty}}^{L}$ determined as the limit of the formal sheaves $\left\{\Omega_{X_{n} / T_{n}}^{i}\right\}, \hat{\Omega}_{X_{\infty}^{L} / \mathrm{C}}^{1}$ is a coherent sheaf on X_{∞}^{L} determined as the limit of $\left\{\Omega_{X_{n+1} / \mathbf{C}}^{1} X_{n}\right\}$ and $\tilde{\Omega}_{T_{\infty} / \mathbf{C}}^{1}$ is a coherent sheaf on T_{∞} determined as the limit of $\left\{\left.\Omega_{T_{n+1} / \mathrm{C}}^{1}\right|_{T_{n}}\right\}$. Now the Kodaira-Spencer class $\theta_{T_{\infty}} \in \operatorname{Ext}^{1}\left(\hat{\Omega}_{X_{\infty}^{L} / T_{\infty}}^{1}, \mathcal{O}_{X_{\infty}^{L}}\right)$ for $X_{\infty}^{L} \rightarrow T_{\infty}$ is the extension class of the exact sequence

$$
0 \rightarrow\left(f_{\infty}\right)^{*} \hat{\Omega}_{T_{\infty} / \mathrm{C}}^{1} \rightarrow \hat{\Omega}_{X_{\infty}^{L} / \mathrm{C}}^{1} \rightarrow \hat{\Omega}_{X_{\infty}^{L} / T_{\infty}}^{1} \rightarrow 0
$$

Then, as in Proposition 24, we can construct a good resolution $\pi_{\infty}: \tilde{X}_{\infty}^{L} \rightarrow X_{\infty}^{L}$ of X_{∞}^{L}. Let E_{∞} be the exceptional locus of g_{∞}. Assume that $f_{\infty}\left(E_{\infty}\right)$ contains a generic point $\eta_{\infty} \in T_{\infty}$. By cutting E_{∞} by g_{∞}-very ample divisors and by the pull-back of suitable divisors on Y_{∞}, we can find an integral subscheme $\bar{C}_{\infty} \subset X_{\infty}^{L}$ of dimension 2 such that $g_{\infty}\left(\bar{C}_{\infty}\right) \rightarrow T_{\infty}$ is a finite surjective
morphism. Note that $\bar{C}_{\infty} \rightarrow T_{\infty}$ is a flat projective morphism with fiber dimension 1. Take a desingularization $C_{\infty} \rightarrow \bar{C}_{\infty}$ which factors through \tilde{X}_{∞}^{L}. We put $C_{n}:=C_{\infty} \times_{T_{\infty}} T_{n}$, and $C_{\eta_{\infty}}:=C_{\infty} \times_{T_{\infty}} \operatorname{Spec} k\left(\eta_{\infty}\right)$. Then $C_{\eta_{\infty}}$ is a proper regular curve over $k\left(\eta_{\infty}\right)$. Moreover, one can define $\hat{\Omega}_{C_{\infty} / \mathbf{C}}^{1}$ as the limit of the formal sheaf $\left\{\Omega_{C_{n} / \mathrm{C}}^{1}\right\}$. Then, the Kodaira-Spencer class $\theta_{C_{\eta_{\infty}}}$ for $C_{\eta_{\infty}} \rightarrow$ Spec $k\left(\eta_{\infty}\right)$ is well-defined as an element of $H^{1}\left(C_{\eta_{\infty}}, \Theta_{C_{\eta_{\infty}} / k\left(\eta_{\infty}\right)}\right)$. Then, the final argument in the proof of Proposition 24 is valid in our case.

The same argument of Proposition 25 now yields:
Corollary 30. Let Y be an affine symplectic variety. Let

$$
X \xrightarrow{f} Y \stackrel{f^{\prime}}{\leftarrow} X^{\prime}
$$

be a diagram such that,

1. f (resp. f^{\prime}) is a crepant, birational, projective morphism.
2. X (resp. X^{\prime}) has only terminal singularities.
3. X (resp. X^{\prime}) is \mathbf{Q}-factorial.

Then, there is a flat deformation

$$
X_{\infty} \rightarrow Y_{\infty} \leftarrow X_{\infty}^{\prime}
$$

over $T_{\infty}:=\operatorname{Spec} \mathbf{C}[[t]]$ of the original diagram $X \rightarrow Y \leftarrow X^{\prime}$ such that
(i) $X_{\infty} \rightarrow T_{\infty}$ and $X_{\infty}^{\prime} \rightarrow T_{\infty}$ are both locally trivial deformations, and
(ii) the generic fibers are all isomorphic:

$$
X_{\eta} \cong Y_{\eta} \cong X_{\eta}^{\prime}
$$

for the generic point $\eta \in T_{\infty}$.
In Corollary $30, X_{\eta}\left(\right.$ res. $\left.X_{\eta}^{\prime}\right)$ is not of finite type over $k(\eta)$. So, at this moment, it is not clear how the singularities of X are related to those of X^{\prime}. However, one can say more when X is smooth:

Corollary 31. With the same assumption as Corollary 30, if X is nonsingular, then X^{\prime} is also non-singular.

Proof. Since X is non-singular, X_{∞} is formally smooth over C. Since $X_{\eta} \cong Y_{\eta}, Y_{\infty}$ is formally smooth over \mathbf{C} outside Y. By [Ar 2, Theorem 3.9] (see also [Hi], [Ri], [Ka 3]), for each closed point $p \in Y$, there is an etale map
$Z_{\infty} \rightarrow Y_{\infty}$ whose image contains $p \in Y_{\infty}$, and $Z_{\infty} \rightarrow T_{\infty}$ is algebraized to $\mathcal{Z} \rightarrow T$. Here $T=\operatorname{Spec} \mathbf{C}[t]$. The completion \hat{Z} of \mathcal{Z} along the closed fiber coincides with Z_{∞}. The diagram

$$
X_{\infty} \rightarrow Y_{\infty} \leftarrow X_{\infty}^{\prime}
$$

is pulled back by the map $Z_{\infty} \rightarrow Y_{\infty}$ to

$$
X_{\infty} \times_{Y_{\infty}} Z_{\infty} \rightarrow Z_{\infty} \leftarrow X_{\infty}^{\prime} \times_{Y_{\infty}} Z_{\infty}
$$

Take generic fibers of this diagram over T_{∞}. Then three generic fibers are all isomorphic. Hence, the formal completion of the diagram along the closed fibers (over $0 \in T_{\infty}$) gives two "formal modifications" in the sense of [Ar 3]. By [Ar 3], there exists a diagram of algebraic spaces of finite type over \mathbf{C} :

$$
\mathcal{X} \rightarrow \mathcal{Z} \leftarrow \mathcal{X}^{\prime}
$$

which extends such formal modifications. Take the closed fibers of this diagram over $0 \in T$. Then \mathcal{X}_{0} is non-singular since \mathcal{X}_{0} is etale over X. On the other hand, \mathcal{X}_{0} and \mathcal{X}_{0}^{\prime} both have locally trivial deformations to a common affine variety $\mathcal{Z}_{t}(t \neq 0)$ by the diagram. Therefore, \mathcal{X}_{0}^{\prime} is non-singular. Since \mathcal{X}_{0}^{\prime} is etale over X^{\prime} and the image of this etale map contains $\left(f^{\prime}\right)^{-1}(p)$ by the construction, X^{\prime} is non-singular at every point $q \in X^{\prime}$ with $f^{\prime}(q)=p$. Since $p \in Y$ is an arbitrary closed point, X^{\prime} is non-singular.

§6. Examples

Example 32. Assume that $\mathcal{O}_{x} \subset \mathfrak{s l}(n)$ is the orbit containing an nilpotent element x of Jordan type $\mathbf{d}:=\left[d_{1}, \ldots, d_{k}\right]$. Let $\left[s_{1}, \ldots, s_{m}\right]$ be the dual partition of \mathbf{d}, that is, $s_{i}:=\sharp\left\{j ; d_{j} \geq i\right\}$. Let $P \subset S L(n)$ be the parabolic subgroup of flag type $\left(s_{1}, \ldots, s_{m}\right)$. Define $F:=S L(n) / P$. Note that $h^{1}\left(F, \Omega_{F}^{1}\right)=m-1$. Let

$$
\tau_{1} \subset \cdots \subset \tau_{m-1} \subset \mathbb{C}^{n} \otimes_{\mathbb{C}} \mathcal{O}_{F}
$$

be the universal subbundles on F. A point of the cotangent bundle $T^{*} F$ of F is expressed as a pair (p, ϕ) of $p \in F$ and $\phi \in \operatorname{End}\left(\mathbb{C}^{n}\right)$ such that

$$
\phi\left(\mathbb{C}^{n}\right) \subset \tau_{m-1}(p), \cdots, \phi\left(\tau_{2}(p)\right) \subset \tau_{1}(p), \phi\left(\tau_{1}(p)\right)=0
$$

The Springer resolution

$$
s: T^{*} F \rightarrow \overline{\mathcal{O}_{x}}
$$

is defined as $s((p, \phi)):=\phi$. Therefore, $T^{*} F$ is a smooth convex symplectic variety. Let \mathcal{E} be the universal extension of \mathcal{O}_{F} by Ω_{F}^{1}. In other words, \mathcal{E} fits in the exact sequence

$$
0 \rightarrow \Omega_{F}^{1} \rightarrow \mathcal{E} \xrightarrow{\eta} \mathcal{O}_{F}^{m-1} \rightarrow 0
$$

and the induced map $H^{0}\left(F, \mathcal{O}_{F}^{m-1}\right) \rightarrow H^{1}\left(F, \Omega_{F}^{1}\right)$ is an isomorphism. The locally free sheaf \mathcal{E} can be constructed as follows. For $p \in F_{\sigma}$, we can choose a basis of \mathbf{C}^{n} such that $\Omega_{F}^{1}(p)$ consists of the matrices of the following form

$$
\left(\begin{array}{ccc}
0 & * \cdots & * \\
0 & 0 \cdots & * \\
\cdots & & \cdots \\
0 & 0 \cdots & 0
\end{array}\right)
$$

Then $\mathcal{E}(p)$ is the vector subspace of $\mathfrak{s l}(n)$ consisting of the matrices A of the following form

$$
\left(\begin{array}{ccc}
a_{1} & * \cdots & * \\
0 & a_{2} \cdots & * \\
\cdots & & \cdots \\
0 & 0 & \cdots \\
a_{m}
\end{array}\right)
$$

where $a_{i}:=a_{i} I_{s_{i}}$ and $I_{s_{i}}$ is the identity matrix of the size $s_{i} \times s_{i}$. Since $A \in \mathfrak{s l}(n), \Sigma_{i} s_{i} a_{i}=0$. Here we define the map $\eta(p): \mathcal{E}(p) \rightarrow \mathbb{C}^{\oplus m-1}$ as $\eta(p)(A):=\left(a_{1}, a_{2}, \cdots, a_{m-1}\right)$. Let $\mathbf{A}\left(\mathcal{E}^{*}\right):=\operatorname{Spec}_{F} \operatorname{Sym}\left(\mathcal{E}^{*}\right)$ be the vector bundle over F associated with \mathcal{E}. Then we have an exact sequence of vector bundles

$$
0 \rightarrow T^{*} F \rightarrow \mathbf{A}\left(\mathcal{E}^{*}\right) \rightarrow F \times \mathbf{C}^{n-1} \rightarrow 0
$$

The last homomorphism in the exact sequence gives a map

$$
f: \mathbf{A}\left(\mathcal{E}^{*}\right) \rightarrow \mathbf{C}^{m-1}
$$

where $f^{-1}(0)=T^{*} F$. This is a universal Poisson deformation of the Poisson scheme $T^{*} F$ (with respect to the canonical symplectic 2 -form). In fact, by Proposition 1.4.14 of [C-G], there is a relative symplectic 2 -form of f extending the canonical symplectic 2-form on $T^{*} F$; hence f is a Poisson deformation. Let $p: T^{*} F \rightarrow F$ be the canonical projection. Then we have a commutative diagram of exact sequences:

Let T be the tangent space of the base space \mathbf{C}^{m-1} of f at $0 \in \mathbf{C}^{m-1}$. The Kodaira-Spencer map θ_{f} of f is given as the composite

$$
T \rightarrow H^{0}\left(T^{*} F, N_{T^{*} F / \mathbf{A}\left(\mathcal{E}^{*}\right)}\right) \rightarrow H^{1}\left(T^{*} F, \Theta_{T^{*} F}\right)
$$

On the other hand, if one identifies T with $H^{0}\left(F, \mathcal{O}_{F}^{m-1}\right)$, then one has a map

$$
T \cong H^{0}\left(F, \mathcal{O}_{F}^{m-1}\right) \rightarrow H^{1}\left(F, \Omega_{F}^{1}\right)
$$

By the construction, the Kodaira-Spencer map is factored by this map:

$$
T \rightarrow H^{1}\left(F, \Omega_{F}^{1}\right) \rightarrow H^{1}\left(T^{*} F, \Theta_{T^{*} F}\right)
$$

The first map is an isomorphism by the definition of \mathcal{E}. The second map is an injection. In fact, let $S \subset T^{*} F$ be the zero section. Then $N_{S / T^{*} F} \cong \Omega_{S}^{1}$ and the composite $H^{1}\left(F, \Omega_{F}^{1}\right) \rightarrow H^{1}\left(T^{*} F, \Theta_{T^{*} F}\right) \rightarrow H^{1}\left(S, \Omega_{S}^{1}\right)$ is an isomorphism. Therefore, the Kodaira-Spencer map θ_{f} is an injection. Since f is a Poisson deformation of $T^{*} F$, the Kodaira-Spencer map θ_{f} is factored by the "Poisson Kodaira-Spencer map " θ_{f}^{P} :

$$
T \xrightarrow{\theta_{f}^{P}} H^{2}\left(T^{*} F, \mathbf{C}\right) \rightarrow H^{1}\left(T^{*} F, \Omega_{T^{*} F}^{1}\right) .
$$

Hence θ_{f}^{P} is also injective. Since $\operatorname{dim} T=h^{2}\left(T^{*} F, \mathbf{C}\right)=m-1, \theta_{f}^{P}$ is actually an isomorphism.

More generally, let G be a complex simple Lie group and \mathcal{O} be a nilpotent orbit in $\mathfrak{g}:=\operatorname{Lie}(G)$. Assume that the closure $\overline{\mathcal{O}}$ of \mathcal{O} admits a Springer resolution $\mu: T^{*}(G / P) \rightarrow \overline{\mathcal{O}}$ for some parabolic subgroup $P \subset G$. One can identify $T^{*}(G / P)$ with the adjoint bundle $G \times{ }^{P} n(P)$, where $n(P)$ is the nilradical of $\mathfrak{p}:=\operatorname{Lie}(P)$. Let $r(P)$ be the solvable radical of \mathfrak{p} and let $m(P)$ be the Levi-factor of \mathfrak{p}. We put $\mathfrak{k}(P):=\mathfrak{g}^{m(P)}$, where

$$
\mathfrak{g}^{m(P)}:=\{x \in \mathfrak{g} ;[x, y]=0, y \in m(P)\} .
$$

In $[\mathrm{Na} 4, \S 7]$, we have defined a flat deformation of $T^{*}(G / P)$ as

$$
G \times^{P} r(P) \rightarrow \mathfrak{k}(P) .
$$

Then this becomes a universal Poisson deformation of $T^{*}(G / P)$.
Example 33. Let \mathcal{O} be the nilpotent orbit in $\mathfrak{s l}(3)$ of Jordan type [1, 2]. Then the closure $\overline{\mathcal{O}}$ has two different Springer resolutions

$$
T^{*}\left(S L(3) / P_{1,2}\right) \rightarrow \overline{\mathcal{O}} \leftarrow T^{*}\left(S L(3) / P_{2,1}\right),
$$

where $P_{1,2}$ and $P_{2,1}$ are parabolic subgroups of $S L(3)$ of flag type $(1,2)$ and $(2,1)$ respectively. We put $X^{+}:=T^{*}\left(S L(3) / P_{1,2}\right)$ and $X^{-}:=T^{*}\left(S L(3) / P_{2,1}\right)$. Then X^{+}and X^{-}are both isomorphic to the cotangent bundle of \mathbf{P}^{2}. We call the diagram a Mukai flop. Let $G \subset S L(3)$ be the finite group of order 3 generated by

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \zeta & 0 \\
0 & 0 & \zeta^{2}
\end{array}\right)
$$

where ζ is a primitive 3 -rd root of unity. Then G acts on $\overline{\mathcal{O}}$ by the adjoint action. Since the Kostant-Kirillov 2-form on \mathcal{O} is $S L(3)$-invariant, the G-action lifts to symplectic actions on X^{+}and X^{-}. Divide $\overline{\mathcal{O}}, X^{+}$and X^{-}by these G-action, we get the diagram of a singular flop:

$$
X^{+} / G \rightarrow \overline{\mathcal{O}} / G \leftarrow X^{-} / G .
$$

Here X^{+} / G (resp. X^{-} / G) has 3 isolated quotient (terminal) singularities. This is a typical example of Corollary 25.

§7. Appendix

(A.1) Let $Y:=\operatorname{Spec} R$ be an affine variety over \mathbf{C}. A \mathbf{C}^{*}-action on Y is a homomorphism $\mathbf{C}^{*} \rightarrow \operatorname{Aut}_{\mathbf{C}}(R)$ induced from a \mathbf{C}-algebra homomorphism

$$
R \rightarrow R \otimes_{\mathbf{C}} \mathbf{C}[t, 1 / t] .
$$

More exactly, a \mathbf{C}-valued point of \mathbf{C}^{*} is regarded as a surjection of \mathbf{C}-algebras:

$$
\sigma: \mathbf{C}[t, 1 / t] \rightarrow \mathbf{C}
$$

Then

$$
R \rightarrow R \otimes_{\mathbf{C}} \mathbf{C}[t, 1 / t] \xrightarrow{i d \otimes_{\sigma}} R
$$

is an element of $\operatorname{Aut}_{\mathbf{C}}(R)$. If this correspondence gives a homomorphism $\mathbf{C}^{*} \rightarrow$ $\operatorname{Aut}_{\mathbf{C}}(R)$, we say that R (or Y) has a \mathbf{C}^{*}-action. A \mathbf{C}^{*}-action on Y is called good if there is a maximal ideal m_{R} of R fixed by the action and if \mathbf{C}^{*} has only positive weight on m_{R}. Next let us consider the case where Y is the spectrum of a local complete \mathbf{C}-algebra R with $R / m_{R}=\mathbf{C}$. A \mathbf{C}^{*}-action on Y is then a homomorphism $\mathbf{C}^{*} \rightarrow \operatorname{Aut}_{\mathbf{C}}(R)$ induced from a \mathbf{C}-algebra homomorphism

$$
R \rightarrow R \hat{\otimes}_{\mathbf{C}} \mathbf{C}[t, 1 / t],
$$

where $R \hat{\otimes}_{\mathbf{C}} \mathbf{C}[t, 1 / t]$ is the completion of $R \otimes_{\mathbf{C}} \mathbf{C}[t, 1 / t]$ with respect to the ideal $m_{R}\left(R \otimes_{\mathbf{C}} \mathbf{C}[t, 1 / t]\right)$. Then the \mathbf{C}^{*}-action is called good if \mathbf{C}^{*} has only positive weight on the maximal ideal of R.

Lemma (A.2). Let (A, m) be a complete local \mathbf{C}-algebra with a good \mathbf{C}^{*} action. Assume that $A / m=\mathbf{C}$. Let R be the \mathbf{C}-vector subspace of A spanned by all eigen-vectors in A. Then R is a finitely generated \mathbf{C}-algebra with a good \mathbf{C}^{*}-action. Moreover, $\hat{R}=A$ where \hat{R} is the completion of R with the maximal ideal m_{R}.

Proof. Since $A / m^{k}(k \geq 1)$ are finite dimensional \mathbf{C}-vector spaces, they are direct sum of eigen-spaces with non-negative weights:

$$
A / m^{k}=\oplus_{w}\left(A / m^{k}\right)^{w}
$$

The natural maps $\left(A / m^{k}\right)^{w} \rightarrow\left(A / m^{k-1}\right)^{w}$ are surjections for all k. Since m / m^{2} is also decomposed into the direct sum of eigen-spaces, one can take eigen-vectors $\bar{\phi}_{i},(i=1,2, \ldots, l)$ as a generator of m / m^{2}. We put $w_{i}:=w t\left(\bar{\phi}_{i}\right)>$ 0 . One can lift $\bar{\phi}_{i}$ to $\phi_{i} \in \lim \left(A / m^{k}\right)^{w_{i}}$ by the surjections above. Since A is complete, $\phi_{i} \in A$ and $w t\left(\phi_{i}\right)=w_{i}$. Put $w_{\min }:=\min \left\{w_{1}, \ldots, w_{l}\right\}>0$. We shall prove that $R=\mathbf{C}\left[\phi_{1}, \ldots, \phi_{l}\right]$. Let $\psi \in A$ be an eigen-vector with weight w. Take an integer k_{0} such that $\psi \in m^{k_{0}}$ and $\psi \notin m^{k_{0}+1}$. Since every element of $m^{k_{0}} / m^{k_{0}+1}$ can be written as a homogeneous polynomial of $\phi=\left(\bar{\phi}_{1}, \ldots, \bar{\phi}_{l}\right)$ of degree k_{0}, we see that

$$
\psi \equiv f_{k_{0}}\left(\phi_{1}, \ldots, \phi_{l}\right)\left(\bmod m^{k_{0}+1}\right)
$$

for some homogeneous polynomial $f_{k_{0}}$ of degree k_{0}. We continue the similar approximation by replacing ψ with $\psi-f_{k_{0}}(\phi)$. Finally, for any given k, we have an approximation

$$
\psi \equiv f_{k_{0}}(\phi)+\ldots+f_{k-1}(\phi)\left(\bmod m^{k}\right)
$$

Assume here that $k>w / w_{\text {min }}$. We set $\psi^{\prime}:=\Sigma_{k_{0} \leq i \leq k-1} f_{i}(\phi)$. Assume that $\psi-\psi^{\prime} \in m^{r}$ and $\psi-\psi^{\prime} \notin m^{r+1}$ with some $r \geq k$. Since $\psi-\psi^{\prime}$ has weight $w,\left[\psi-\psi^{\prime}\right] \in m^{r} / m^{r+1}$ also has weight w. On the other hand, every non-zero eigen-vector in m^{r} / m^{r+1} has weight at least $r w_{\text {min }}$. Hence $w \geq r w_{\text {min }}$, but this contradicts that $r \geq k>w / w_{\min }$. Therefore, $\psi=\psi^{\prime} \bmod m^{r}$ for any r. Thus,

$$
\psi=f_{k_{0}}(\phi)+\ldots+f_{k-1}(\phi) .
$$

This implies that $R=\mathbf{C}\left[\phi_{1}, \ldots, \phi_{l}\right]$. Let $m_{R} \subset R$ be the maximal ideal generated by ϕ_{i} 's. Let R_{k} be the \mathbf{C}-vector subspace of $m^{k}(\subset A)$ spanned
by the eigen-vectors. The argument above shows that $R_{k}=\left(m_{R}\right)^{k}$. Since $R_{k}=\oplus_{w} \lim \left(m^{k} / m^{k+i}\right)^{w}$, we conclude that $\left(m_{R}\right)^{k}=\oplus_{w} \lim \left(m^{k} / m^{k+i}\right)^{w}$. We now have

$$
\begin{gathered}
R /\left(m_{R}\right)^{k}=\oplus_{w} \lim \left(A / m^{i}\right)^{w} / \oplus_{w} \lim \left(m^{k} / m^{k+i}\right)^{w}= \\
\oplus_{w}\left\{\lim \left(A / m^{i}\right)^{w} / \lim \left(m^{k} / m^{k+i}\right)^{w}\right\}=\oplus_{w}\left(A / m^{k}\right)^{w}=A / m^{k} .
\end{gathered}
$$

Here the 2-nd last equality holds because $\left\{\left(m^{k} / m^{k+i}\right)^{w}\right\}_{i}$ satisfies the MittagLeffler condition. This implies that $\hat{R}=A$.
(A.3) Let R be a integral domain finitely generated over \mathbf{C} or a complete local \mathbf{C}-algebra with residue field \mathbf{C}. Assume that R has a good \mathbf{C}^{*}-action. Let M be a finite R-module. We say that M has an equivariant \mathbf{C}^{*}-action if, for each $\sigma \in \mathbf{C}^{*}$, we are given a map

$$
\phi_{\sigma}: M \rightarrow M
$$

with the following properties:
(1) ϕ_{σ} is a C-linear map.
(2) $\phi_{\sigma}(r x)=\sigma(r) \phi_{\sigma}(x)$ for $r \in R$ and $x \in M$.
(3) $\phi_{\sigma \tau}=\phi_{\sigma} \circ \phi_{\tau}$ for $\sigma, \tau \in \mathbf{C}^{*}$.
(4) $\phi_{1}=i d$.

We say that a non-zero element $x \in M$ is an eigen-vector if there exists an integer w such that $\phi_{\sigma}(x)=\sigma^{w} x$ for all $\sigma \in G$.

Let M and N be R-modules with equivariant \mathbf{C}^{*}-actions. Then an R homomorphism $f: M \rightarrow N$ is an equivariant map if f is compatible with both \mathbf{C}^{*}-actions.

Lemma (A.4). Let A and R be the same as Lemma (A.2). Let M be a finite A-module with an equivariant \mathbf{C}^{*}-action. Define M_{R} to be the \mathbf{C}-vector subspace of M spanned by the eigen-vectors of M. Then M_{R} is a finite R module with an equivariant \mathbf{C}^{*}-action. Moreover, $M_{R} \otimes_{R} A=M$.

Proof. The idea is the same as Lemma (A.2). The finite dimensional Cvector space $M / m^{k} M$ is the direct sum of eigen-spaces. Thus, for each weight w,

$$
\left(M / m^{k} M\right)^{w} \rightarrow\left(M / m^{k-1} M\right)^{w}
$$

is surjective. Let $\bar{x}_{i}(i=1, \ldots, r)$ be the eigen-vectors which generate $M / m M$. We lift \bar{x}_{i} to $x_{i} \in \hat{M}$ by the surjections above. Since $\hat{M}=M, x_{i}$ are eigenvectors of M. We set $u_{i}:=w t\left(x_{i}\right)$ and $u_{\min }:=\min \left\{u_{1}, \ldots, u_{r}\right\}$. We shall prove
that M_{R} is generated by $\left\{x_{i}\right\}$ as an R-module. Let $y \in M$ be an eigen-vector with weight u. Take an integer k_{0} such that $y \in m^{k_{0}} M$ and $y \notin m^{k_{0}+1} M$. Let us consider the surjection

$$
m^{k_{0}} / m^{k_{0}+1} \otimes M / m M \rightarrow m^{k_{0}} M / m^{k_{0}+1} M
$$

As in the proof of Lemma (A.2), every element of $m^{k_{0}} / m^{k_{0}+1}$ is written as a homogeneous polynomial of $\phi_{1}, \ldots, \phi_{l}$ of degree k_{0}, where ϕ_{i} are certain eigenvectors contained in R. We put $w_{\min }:=\min \left\{w t\left(\phi_{1}\right), \ldots, w t\left(\phi_{l}\right)\right\}>0$. On the other hand, $M / m M$ is spanned by x_{i} 's. Thus,

$$
y \equiv \Sigma r_{i}(\phi) x_{i} \bmod m^{k_{0}+1} M,
$$

where r_{i} are homogeneous polynomials of degree k_{0} such that $w t\left(r_{i}(\phi)\right)+u_{i}=u$. We write $g_{k_{0}}$ for the right-hand side for short. Now, we have $y-g_{k_{0}} \in m^{k_{0}+1} M$. By replacing y with $y-g_{k_{0}}$, we continue the similar approximation. Finally, for any k, we have an approximation:

$$
y \equiv g_{k_{0}}+g_{k_{0}+1}+\ldots+g_{k-1} \bmod m^{k} M
$$

By the construction, $y-\Sigma_{k_{0} \leq i \leq k-1} g_{i}$ is an eigen-vector with weight u. In particular, $\left[y-\Sigma_{k_{0} \leq i \leq k-1} g_{i}\right] \in m^{k} M / m^{k+1} M$ has weight u. On the other hand, every non-zero eigen-vector of $m^{k} M / m^{k+1} M$ has weight at least $k w_{\text {min }}+u_{\text {min }}$. If we take k sufficiently large, then $k w_{\text {min }}+u_{\text {min }}>u$. This implies that $\left[y-\Sigma_{k_{0} \leq i \leq k-1} g_{i}\right]=0$. Repeating the same, we conclude that, for any $r>k$,

$$
y \equiv \Sigma_{k_{0} \leq i \leq k-1} g_{i} \bmod m^{r} M
$$

This implies that, in M,

$$
y=\Sigma_{k_{0} \leq i \leq k-1} g_{i} .
$$

Thus, M_{R} is generated by $\left\{x_{i}\right\}$ as an R-module. Let M_{k} be the subspace of M spanned by the eigen-vectors in $m^{k} M$. Then the argument above shows that $M_{k}=\left(m_{R}\right)^{k} M_{R}$. Then, by the same argument as Lemma (A.2), $M_{R} /\left(m_{R}\right)^{k} M_{R}=M / m^{k} M$; hence $M_{R} \otimes_{R} A=M$. In order to prove that M_{R} has an equivariant \mathbf{C}^{*}-action, we have to check that $\phi_{\sigma}\left(M_{R}\right) \subset M_{R}$ for all $\sigma \in \mathbf{C}^{*}$ (cf. (A.3)); but it is straightforward.

Proposition (A.5). Let A be a local complete \mathbf{C}-algebra with residue field \mathbf{C} and with a good \mathbf{C}^{*}-action. Let $f: X \rightarrow \operatorname{Spec}(A)$ be a \mathbf{C}^{*}-equivariant projective morphism and let L be an f-ample, \mathbf{C}^{*}-linearized line bundle. Let R be the same as Lemma (A.2). Then there is a \mathbf{C}^{*}-equivariant projective
morphism $f_{R}: X_{R} \rightarrow \operatorname{Spec}(R)$ and a \mathbf{C}^{*}-linearized, f_{R}-ample line bundle L_{R}, such that $X_{R} \times_{\operatorname{Spec}(R)} \operatorname{Spec}(A) \cong X$ and $L_{R} \otimes_{R} A \cong L$.

Proof. We put $A_{i}:=\Gamma\left(X, L^{\otimes i}\right)$ for $i \geq 0$. Then, $X=\operatorname{Proj}_{A} \oplus_{i \geq 0} A_{i}$. If necessary, by taking a suitable multiple $L^{\otimes m}$, we may assume that $A_{*}:=$ $\oplus_{i \geq 0} A_{i}$ is generated by A_{1} as an $A_{0}(=A)$-algebra. By Lemma (A.4), we take a finite R-module $A_{i, R}$ such that $A_{i, R} \otimes_{R} A=A_{i}$. The multiplication map $A_{i} \otimes_{A_{0}} A_{j} \rightarrow A_{i+j}$ induces a map $A_{i, R} \otimes_{R} A_{j, R} \rightarrow A_{i+j, R}$; hence $\left(A_{*}\right)_{R}:=$ $\oplus_{i \geq 0} A_{i, R}$ becomes a graded R-algebra. We shall check that $\left(A_{*}\right)_{R}$ is a finitely generated R-algebra. In order to do this, we only have to prove that $\left(A_{R}\right)_{*}$ is generated by $A_{1, R}$ as an R-algebra since $A_{1, R}$ is a finite R-module. Let us consider the n-multiplication map

$$
m_{n}: \overbrace{A_{1, R} \otimes_{R} \ldots \otimes_{R} A_{1, R}}^{n} \rightarrow A_{n, R} .
$$

Let M be the cokernel of this map. Since m_{n} is a \mathbf{C}^{*}-equivariant map, M is a finite R-module with an equivariant \mathbf{C}^{*}-action. Taking the tensor product $\otimes_{R} A$ with m_{n}, we get the n-multiplication map for A_{*}; but this is surjective by the assumption. Therefore, $\hat{M}:=M \otimes_{R} A=0$. The support of M is a closed subset of $\operatorname{Spec}(R)$, stable under the \mathbf{C}^{*}-action. Since $\hat{M}=0$, this closed subset does not contain the origin $0 \in R$; hence it must be empty because R has a good \mathbf{C}^{*}-action. Finally it is clear that $\left(A_{R}\right)_{*} \otimes_{R} A=A_{*}$ by the construction.

Proposition (A.6). Let $f: X \rightarrow \operatorname{Spec}(A)$ and $f_{R}: X_{R} \rightarrow \operatorname{Spec}(R)$ be the same as Lemma (A.5). Let F be a coherent sheaf of X with a \mathbf{C}^{*}-linearization. Then there is a \mathbf{C}^{*}-linearized coherent sheaf F_{R} of X_{R} such that $F_{R} \otimes_{R} A=F$.

Proof. We put $\mathcal{O}_{X}(1):=\left(\widetilde{\oplus_{i \geq 0} A_{i}}\right)[1]$. Then the coherent sheaf F can be written as

$$
F=\oplus_{i \geq 0} \widetilde{\Gamma(X, F(i))} .
$$

Let us write M_{i} for $\Gamma(X, F(i))$. By Lemma (A.4), there is a finite R-module $M_{i, R}$ such that $M_{i, R} \otimes_{R} A=M_{i}$. We define

$$
F_{R}:=\widetilde{\oplus_{i \geq 0} M_{i, R}}
$$

We shall prove that $\left(M_{*}\right)_{R}:=\oplus_{i \geq 0} M_{i, R}$ is a finite $\left(A_{*}\right)_{R}$-module. There is an integer n_{0} such that, for any $i \geq n_{0}$, and for any $j \geq 0$, the multiplication map

$$
\overbrace{A_{1} \otimes_{A_{0}} \ldots \otimes_{A_{0}} A_{1}}^{j} \otimes_{A_{0}} M_{i} \rightarrow M_{i+j}
$$

is surjective. For the same i, j, let us consider the R-linear map

Let N be the cokernel of this map. Since this R-linear map is compatible with the \mathbf{C}^{*}-action on R, N is a finite R-module with an equivariant \mathbf{C}^{*}-action. By the choice of i and $j, \hat{N}:=N \otimes_{R} A$ is zero. This implies that $N=0$.

Proposition (A.7). Let Y be an affine symplectic variety. Assume that Y has a good \mathbf{C}^{*}-action with a fixed point $0 \in Y$. Assume that, in the analytic category, $Y^{a n}$ admits a crepant, projective, partial resolution $\bar{f}: \mathcal{X} \rightarrow Y^{a n}$ such that \mathcal{X} has only terminal singularities. Then, in the algebraic category, Y admits a crepant, projective, partial resolution $f: X \rightarrow Y$ such that $X^{a n}=\mathcal{X}$ and $f^{a n}=\bar{f}$.

Proof. (STEP 1): We shall prove that the \mathbf{C}^{*}-action of $Y^{a n}$ lifts to \mathcal{X}. Since $Y^{a n}$ is symplectic, one can take a closed subset Σ of $Y^{a n}$, stable under the \mathbf{C}^{*}-action and $\operatorname{codim}\left(\Sigma \subset Y^{a n}\right) \geq 4$, such that the singularities of $Y^{a n}-\Sigma$ are local trivial deformations of two dimensional rational double points. We put $Y_{0}:=Y^{a n}-\Sigma$. Since \bar{f} is the minimal resolution over Y_{0}, the \mathbf{C}^{*}-action on Y_{0} extends to $\mathcal{X}_{0}:=\bar{f}^{-1}\left(Y_{0}\right)$. Note that, in $\mathcal{X}, \mathcal{X}-\mathcal{X}_{0}$ has codimension at least two by the semi-smallness of $\bar{f}([\mathrm{Na} 3])$. The \mathbf{C}^{*}-action defines a holomorphic map

$$
\sigma^{0}: \mathbf{C}^{*} \times \mathcal{X}_{0} \rightarrow \mathcal{X}_{0}
$$

and this extends to a meromorphic map

$$
\sigma: \mathbf{C}^{*} \times \mathcal{X}-\longrightarrow \mathcal{X}
$$

Let us prove that $\sigma_{t}: \mathcal{X}--\rightarrow \mathcal{X}$, which is an isomorphism in codimension one, is actually an isomorphism everywhere for each $t \in \mathbf{C}^{*}$. Let \mathcal{L} be an \bar{f}-ample line bundle on \mathcal{X}. We put $\mathcal{L}_{t}^{0}:=\left.\left(\sigma^{0}\right)^{*} \mathcal{L}\right|_{\{t\} \times \mathcal{X}_{0}}$. Since $\operatorname{Pic}\left(\mathcal{X}_{0}\right)$ is discrete, \mathcal{L}_{t}^{0} are all isomorphic to $\left.\mathcal{L}\right|_{X_{0}}$. Since $\left.\mathcal{L}\right|_{X_{0}}$ extends to the line bundle \mathcal{L} on \mathcal{X}, $\left(\sigma^{0}\right)^{*} \mathcal{L}$ extends to a line bundle on $\mathbf{C}^{*} \times \mathcal{X}$, say $\sigma^{*} \mathcal{L}$ by abuse of notation. The line bundle $\mathcal{L}_{t}:=\left.\sigma^{*} \mathcal{L}\right|_{\{t\} \times \mathcal{X}}$ coincides with the proper transform of \mathcal{L} by σ_{t}. Since $\mathcal{L}_{0}(=\mathcal{L})$ is \bar{f}-ample and $\operatorname{Pic}\left(\mathcal{X} / Y^{a n}\right):=\operatorname{Pic}(\mathcal{X}) / \bar{f}^{*} \operatorname{Pic}\left(Y^{a n}\right)$ is discrete, \mathcal{L}_{t} are all \bar{f}-ample. This implies that σ_{t} are all isomorphisms and σ is a holomorphic map. One can check that σ gives a \mathbf{C}^{*}-action because it already becomes a \mathbf{C}^{*}-action on \mathcal{X}_{0}.
(STEP 2): Let Y_{n} be the n-th infinitesimal neighborhood of $Y^{a n}$ at 0 , which becomes an affine scheme with a unique point 0 . We put $\mathcal{X}_{n}:=\mathcal{X} \times{ }_{Y^{a n}}$
$Y_{n}^{a n}$. By GAGA, there are projective schemes X_{n} over Y_{n} such that $\left(X_{n}\right)^{a n}=$ \mathcal{X}_{n}. Fix an \bar{f}-ample line bundle \mathcal{L} on \mathcal{X}. Again by GAGA, it induces line bundles L_{n} on X_{n}. The \mathbf{C}^{*}-action on \mathcal{X} induces a \mathbf{C}^{*}-action on \mathcal{X}_{n} for each n. This action induces an algebraic \mathbf{C}^{*}-action of X_{n}. In fact, the \mathbf{C}^{*}-action of \mathcal{X} originally comes from an algebraic \mathbf{C}^{*}-action on Y, the holomorphic action map

$$
\mathbf{C}^{*} \times \mathcal{X} \rightarrow \mathcal{X}
$$

extends to a meromorphic map

$$
\mathbf{P}^{1} \times \mathcal{X}--\rightarrow \mathcal{X}
$$

Thus, the holomorphic action map

$$
\mathbf{C}^{*} \times \mathcal{X}_{n} \rightarrow \mathcal{X}_{n}
$$

extends to a meromorphic map

$$
\mathbf{P}^{1} \times \mathcal{X}_{n}--\rightarrow \mathcal{X}_{n}
$$

Thus, by GAGA, we have a rational map

$$
\mathbf{P}^{1} \times X_{n}--\rightarrow X_{n}
$$

which restricts to an algebraic \mathbf{C}^{*}-action on X_{n}. Let us regard $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ as formal schemes and $\left\{f_{n}: X_{n} \rightarrow Y_{n}\right\}$ as a projective equivariant morphism of formal schemes with \mathbf{C}^{*}-actions. Put $\hat{A}:=\lim \mathcal{O}_{Y_{n}, 0}$ and $\hat{Y}:=\operatorname{Spec}(\hat{A})$. Then, by [EGA III], Theoreme 5.4.5, the projective morphism of formal schemes can be algebraized to a projective equivariant morphism of schemes

$$
\hat{f}: \hat{X} \rightarrow \hat{Y}
$$

The affine scheme \hat{Y} admits a \mathbf{C}^{*}-action coming from the original \mathbf{C}^{*}-action on Y, which is compatible with the \mathbf{C}^{*}-action on $\left\{Y_{n}\right\}$. The \mathbf{C}^{*}-action on $\left\{X_{n}\right\}$ naturally lifts to \hat{X} in such a way that \hat{f} becomes a \mathbf{C}^{*}-equivariant morphism. In fact, let

$$
\sigma_{n}: \mathbf{C}^{*} \times X_{n} \rightarrow X_{n}
$$

be the \mathbf{C}^{*}-action on X_{n}. Let us consider the morphism (of formal schemes):

$$
i d \times\left\{\sigma_{n}\right\}: \mathbf{C}^{*} \times\left\{X_{n}\right\} \rightarrow \mathbf{C}^{*} \times\left\{X_{n}\right\}
$$

Here we regard the first factor (resp. the second factor) as a $\mathbf{C}^{*} \times\left\{Y_{n}\right\}$ - formal scheme by id $\times\left(\left\{f_{n}\right\} \circ\left\{\sigma_{n}\right\}\right)$ (resp. id $\left.\times\left\{f_{n}\right\}\right)$. Then the morphism above is
a $\mathbf{C}^{*} \times\left\{Y_{n}\right\}$-morphism. By [ibid, Theoreme 5.4.1], this morphism of formal schemes extends to a $\mathbf{C}^{*} \hat{X} \hat{Y}$-morphism ${ }^{6}$

$$
\mathbf{C}^{*} \hat{x} \hat{X} \rightarrow \mathbf{C}^{*} \hat{x} \hat{X}
$$

where the first factor (resp. the second factor) is regarded as a $\mathbf{C}^{*} \hat{x} \hat{Y}$-scheme by $i d \hat{\times} \hat{f} \circ \hat{\sigma}$ (resp. id $\hat{\times} \hat{f}$). The extended morphism gives a \mathbf{C}^{*}-action

$$
\mathbf{C}^{*} \hat{x} \hat{X} \rightarrow \mathbf{C}^{*} \hat{x} \hat{X} \xrightarrow{p_{2}} \hat{X}
$$

Moreover, $\left\{L_{n}\right\}$ is algebraized to an \hat{f}-ample line bundle \hat{L} on \hat{X} ([ibid, Theoreme 5.4.5]). Since \mathcal{L} is fixed by the \mathbf{C}^{*}-action on \mathcal{X}, \hat{L} is also fixed by the \mathbf{C}^{*}-action on \hat{X}.

Lemma (A.8). Let $\hat{f}: \hat{X} \rightarrow \hat{Y}$ be a \mathbf{C}^{*}-equivariant projective morphism where $\hat{Y}=\operatorname{Spec}(\hat{A})$ with a complete local \mathbf{C}-algebra \hat{A} with $\hat{A} / m=\mathbf{C}$. Assume that $\hat{f}_{*} \mathcal{O}_{\hat{X}}=\mathcal{O}_{\hat{Y}}$. Let \hat{L} be an \hat{f}-ample line bundle on \hat{X} fixed by the \mathbf{C}^{*}-action. Then $\hat{L}^{\otimes m}$ can be \mathbf{C}^{*}-linearized for some $m>0$. Moreover, in this case, any \mathbf{C}^{*}-fixed line bundle M on \hat{X} is \mathbf{C}^{*}-linearized after taking a suitable multiple of M.

Proof. We only have to deal with an \hat{f}-ample line bundle \hat{L}. In fact, let M be an arbitrary line bundle on \hat{X} fixed by the \mathbf{C}^{*}-action. Then $M \otimes \hat{L}^{\otimes r}$ becomes \hat{f}-ample for a sufficiently large r. If we could prove the lemma for \hat{f}-ample line bundles, then $M^{\otimes m} \otimes \hat{L}^{\otimes r m}$ is \mathbf{C}^{*}-linearized. Since $\hat{L}^{\otimes r m}$ is also \mathbf{C}^{*}-linearized, $M^{\otimes m}$ is \mathbf{C}^{*}-linearized. We assume that \hat{L} is \hat{f}-very ample and \hat{X} is embedded into $\mathbf{P}_{\hat{A}}\left(H^{0}(\hat{X}, \hat{L})\right)$ as a \hat{Y}-scheme, where $H^{0}(\hat{X}, \hat{L})$ is a free \hat{A}-module of finite rank, say n. Since \mathbf{C}^{*} acts on \hat{A}, we regard \mathbf{C}^{*} as a subgroup of the automorphism group of the \mathbf{C}-algebra \hat{A}. Let $\sigma \in \mathbf{C}^{*}$ and let M be an \hat{A}-module. Then a \mathbf{C}-linear map $\phi: M \rightarrow M$ is called a twisted \hat{A}-linear map if there exists $\sigma \in \mathbf{C}^{*}$ and $\phi(a x)=\sigma(a) \phi(x)$ for $a \in \hat{A}$ and for $x \in M$. Now let us consider the case $M=H^{0}(\hat{X}, \hat{L})$, which is a free \hat{A}-module of rank n. We define $G(n, \hat{A})$ to be the group of all twisted \hat{A}-linear bijective maps from $H^{0}(\hat{X}, \hat{L})$ onto itself. One can define a surjective homomorphisms $G(n, \hat{A}) \rightarrow \mathbf{C}^{*}$ by sending $\phi \in G(n, \hat{A})$ to the associated twisting element $\sigma \in \mathbf{C}^{*}$. Note that this homomorphism admits a canonical splitting $\iota: \mathbf{C}^{*} \rightarrow G(n, \hat{A})$ defined by $\iota(\sigma)\left(x_{1}, \ldots, x_{n}\right):=\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right)$. There is an exact sequence

$$
1 \rightarrow G L(n, \hat{A}) \rightarrow G(n, \hat{A}) \rightarrow \mathbf{C}^{*} \rightarrow 1
$$

[^6]Let us denote by \hat{A}^{*} the multiplicative group of units of \hat{A}. One can embed \hat{A}^{*} diagonally in $G L(n, \hat{A})$; hence in $G(n, \hat{A})$. Then \hat{A}^{*} is a normal subgroup of $G(n, \hat{A})$. The group $P G(n, \hat{A}):=G(n, \hat{A}) / \hat{A}^{*}$ acts faithfully on $H^{0}(\hat{X}, \hat{L})-$ $\{0\} / \hat{A}^{*}$. On the other hand, define $S(n, \hat{A})$ to be the subgroup of $G(n, \hat{A})$ generated by $S L(n, \hat{A})$ and $\iota\left(\mathbf{C}^{*}\right)$ There are two exact sequences

$$
1 \rightarrow S L(n, \hat{A}) \rightarrow S(n, \hat{A}) \rightarrow \mathbf{C}^{*} \rightarrow 1
$$

and

$$
1 \rightarrow P G L(n, \hat{A}) \rightarrow P G(n, \hat{A}) \rightarrow \mathbf{C}^{*} \rightarrow 1
$$

Since \hat{A} is a complete local ring and its residue is an algebraically closed field with characteristic 0 , the canonical map $S L(n, \hat{A}) \rightarrow P G L(n, \hat{A})$ is a surjection; hence the composed map $S(n, \hat{A}) \rightarrow G(n, \hat{A}) \rightarrow P G(n, \hat{A})$ is surjective.

Let us start the proof. Note that $H^{0}(\hat{X}, \hat{L})-\{0\} / \hat{A}^{*}$ is identified with the space of Cartier divisors whose associated line bundle is \hat{L}. Since \hat{L} is fixed by the \mathbf{C}^{*}-action, the \mathbf{C}^{*} action on \hat{X} induces a \mathbf{C}^{*} action on $H^{0}(\hat{X}, \hat{L})-\{0\} / \hat{A}^{*}$. This action gives a splitting

$$
\alpha: \mathbf{C}^{*} \rightarrow P G(n, \hat{A})
$$

of the exact sequence above. We want to lift the map α to $S(n, \hat{A})$. We put $H:=\varphi^{-1}\left(\alpha\left(\mathbf{C}^{*}\right)\right)$, where $\varphi: S(n, \hat{A}) \rightarrow P G(n, \hat{A})$ is the quotient map. Since $\operatorname{Ker}(\varphi)=\mu_{n}, H$ is an etale cover of \mathbf{C}^{*}. Now H acts on $H^{0}(\hat{X}, \hat{L})$. Then H naturally acts on the n-th symmetric product $\mathrm{S}^{n}\left(H^{0}(\hat{X}, \hat{L})\right)$, where μ_{n} acts trivially. Therefore, we get a \mathbf{C}^{*}-action on $S^{n}\left(H^{0}(\hat{X}, \hat{L})\right)$. This \mathbf{C}^{*}-action induces a \mathbf{C}^{*}-linearization of $\mathcal{O}_{\mathbf{P}\left(H^{0}(\hat{X}, \hat{L})\right.}(n)$. Since $\hat{L}^{\otimes n}$ is the pull-back of this line bundle by the \mathbf{C}^{*}-equivariant embedding $\hat{X} \rightarrow \mathbf{P}\left(H^{0}(\hat{X}, \hat{L})\right), \hat{L}^{\otimes n}$ has a \mathbf{C}^{*}-linearization.

By the lemma above, $\hat{L}^{\otimes m}$ is \mathbf{C}^{*}-linearized for some $m>0$. Now one can write

$$
\hat{X}=\operatorname{Proj}_{\hat{A}} \oplus_{n \geq 0} \hat{f}_{*} \hat{L}^{\otimes n m},
$$

where each $\hat{f}_{*} \hat{L}^{\otimes n m}$ is an \hat{A}-module with \mathbf{C}^{*}-action. Since Y has a good \mathbf{C}^{*} action, there exists a projective \mathbf{C}^{*}-equivariant morphism $f: X \rightarrow Y$ such that $X \times_{Y} \hat{Y}=\hat{X}$ by Proposition (A.5).
(STEP 3): We shall finally show that $X^{a n}=\mathcal{X}$ and $f^{a n}=\bar{f}$. The formal neighborhoods of $X^{a n}$ and \mathcal{X} along $f^{-1}(0)$ are the same. By [Ar], the bimeromorphic map $X^{a n}--\rightarrow \mathcal{X}$ is an isomorphism over a small open neighborhood
U of $0 \in Y^{a n}$. But, since $Y^{a n}$ has a good \mathbf{C}^{*}-action and this action lifts to both $X^{a n}$ and \mathcal{X}, the bimeromorphic map must be an isomorphism over $Y^{a n}$.

Proposition (A.9). Let $Y=\operatorname{Spec}(A)$ be an affine variety with a good \mathbf{C}^{*}-action and let $f: X \rightarrow Y$ be a birational projective morphism with X normal. Assume that Y has only rational singularities, and X is \mathbf{Q}-factorial. Then $X^{a n}$ is \mathbf{Q}-factorial.

Proof. Let $g: Z \rightarrow Y$ be a \mathbf{C}^{*}-equivariant projective resolution. Let $0 \in Y$ be the fixed origin of the \mathbf{C}^{*}-action and let $\hat{Y}:=\operatorname{Spec}(\hat{A})$ where \hat{A} is the completion of A at 0 . We put $\hat{Z}:=Z \times_{Y} \hat{Y}$ and denote by $\hat{g}: \hat{Z} \rightarrow \hat{Y}$ the induced morphism. Since Y has only rational singularities, $\operatorname{Pic}\left(Z^{a n}\right) \cong$ $H^{2}\left(Z^{a n}, \mathbf{Z}\right)$, which is discrete. Hence every element $\mathcal{L} \in \operatorname{Pic}\left(Z^{a n}\right)$ is fixed by the \mathbf{C}^{*}-action. Take an arbitrary line bundle \mathcal{L}. We shall prove that, for some $m>0, \mathcal{L}^{\otimes m}$ comes from an algebraic line bundle. As in the proof of Proposition $26, \mathcal{L}$ defines a line bundle \hat{L} on \hat{X}. By Lemma (A.8), $\hat{L}^{\otimes m}$ is \mathbf{C}^{*} linearized for some m. By Proposition (A.6), $\hat{L}^{\otimes m}$ extends to a \mathbf{C}^{*}-linearized line bundle M on Z. By the construction, there is an open neighborhood U of $0 \in Y^{a n}$ such that $\left.\left.M^{a n}\right|_{\left(g^{a n}\right)^{-1}(U)} \cong \mathcal{L}^{\otimes m}\right|_{\left(g^{a n}\right)^{-1}(U)}$. Since $Y^{a n}$ has a good \mathbf{C}^{*}-action, one can assume that $H^{2}\left(Z^{a n}, \mathbf{Z}\right) \cong H^{2}\left(\left(g^{a n}\right)^{-1}(U), \mathbf{Z}\right)$; this implies that $\operatorname{Pic}\left(Z^{a n}\right) \cong \operatorname{Pic}\left(\left(g^{a n}\right)^{-1}(U)\right)$. Thus, $M^{a n} \cong \mathcal{L}^{\otimes m}$. Let us take a common resolution of Z and $X: h_{1}: W \rightarrow Z$ and $h_{2}: W \rightarrow X$. Let D be an irreducible (analytic) Weil divisor of $X^{a n}$. Take an irreducible component D^{\prime} of $\left(h_{2}^{a n}\right)^{-1}(D)$ such that $\left(h_{2}^{a n}\right)\left(D^{\prime}\right)=D$. We put $\bar{D}:=\left(h_{1}^{a n}\right)\left(D^{\prime}\right)$. We first assume that \bar{D} is a divisor of $Z^{a n}$. Then the line bundle $\mathcal{O}_{Z^{a n}}(r \bar{D})$ becomes algebraic for some $r>0$. Hence $\mathcal{O}_{W^{a n}}\left(r D^{\prime}\right)$ is algebraic. Finally, the direct image $\left(h_{2}^{a n}\right)_{*} \mathcal{O}_{W^{a n}}\left(r D^{\prime}\right)$ is algebraic, and its double dual is also algebraic. Thus we conclude that $\mathcal{O}_{X^{a n}}(r D)$ is an algebraic reflexive sheaf of rank 1 . We next assume that \bar{D} is not a divisor. Then D^{\prime} is an exceptional divisor of h_{1}. In this case, $\mathcal{O}_{W^{a n}}\left(D^{\prime}\right)$ is algebraic, and the same argument as the first case shows that $\mathcal{O}_{X^{a n}}(D)$ is algebraic.

Corollary (A.10). Let Y be an affine symplectic variety with a good \mathbf{C}^{*} action. Then the following hold.
(i) If $f: X \rightarrow Y$ is a \mathbf{Q}-factorial terminalization, then $X^{a n}$ is \mathbf{Q}-factorial as an analytic space.
(ii) If $\bar{f}: \mathcal{X} \rightarrow Y^{a n}$ is a \mathbf{Q}-factorial terminalization as an analytic space, then there is a projective birational morphism $f: X \rightarrow Y$ such that $X^{a n}=\mathcal{X}$ and $f^{a n}=\bar{f}$.

References

[Ar 1] M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277-291.
[Ar 2] , Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23-58.
[Ar 3] , Algebraization of formal moduli. II. Existence of modifications, Ann. of Math. (2) 91 (1970), 88-135.
[C-G] N. Chriss and V. Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Boston, MA, 1997.
[EGA III] A. Grothendieck, Eléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Etudes Sci. Publ. Math. No. 11 (1961), 167 pp.
[De] P. Deligne, Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Études Sci. Publ. Math. No. 35 (1968), 259-278.
[Fl] H. Flenner, Extendability of differential forms on non isolated singularities, Invent. Math. 94 (1988), no. 2, 317-326.
[Fr 1] B. Fresse, Théorie des opérades cohomology Koszul et homologie des algèbres de Poisson, Ann. Math. Blaise Pascal 13 (2006), no. 2, 237-312.
[Fr 2] , Homologie de Quillen pour les algèbres de Poisson, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 9, 1053-1058.
[Ge-Sc] M. Gerstenhaber and S. D. Schack, Algebraic cohomology and deformation theory, in Deformation theory of algebras and structures and applications (Il Ciocco, 1986), 11-264, Kluwer Acad. Publ., Dordrecht.
[G] A. Grothendieck, On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. No. 29 (1966), 95-103.
[G-K] V. Ginzburg and D. Kaledin, Poisson deformations of symplectic quotient singularities, Adv. Math. 186 (2004), no. 1, 1-57.
[Gr] M. Gross, Deforming Calabi-Yau threefolds, Math. Ann. 308 (1997), no. 2, 187220.
[Hi] H. Hironaka, On the equivalence of singularities. I, in Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), 153-200, Harper \& Row, New York.
[Ka 1] D. Kaledin, Symplectic resolutions: deformations and birational maps, math.AG/0012008
[Ka 2] , Symplectic singularities from the Poisson point of view, J. Reine Angew. Math. 600 (2006), 135-156.
[Ka 3] \qquad , On the coordinate ring of a projective Poisson scheme, math.AG/0312134
[K-M] J. Kollár and S. Mori, Classification of three-dimensional flips, J. Amer. Math. Soc. 5 (1992), no. 3, 533-703.
[K-V] D. Kaledin and M. Verbitsky, Period map for non-compact holomorphically symplectic manifolds, Geom. Funct. Anal. 12 (2002), no. 6, 1265-1295.
[Kaw] Y. Kawamata, Unobstructed deformations. A remark on a paper of Z. Ran: "Deformations of manifolds with torsion or negative canonical bundle", J. Algebraic Geom. 1 (1992), no. 2, 183-190, Erratum, ibid, 6 (1997), no. 4, 803-804.
[Na] Y. Namikawa, On deformations of \mathbb{Q}-factorial symplectic varieties, J. Reine Angew. Math. 599 (2006), 97-110. math.AG/0506534.
[Na 2] , Extension of 2-forms and symplectic varieties, J. Reine Angew. Math. 539 (2001), 123-147.
[Na 3] , Deformation theory of singular symplectic n-folds, Math. Ann. 319 (2001), no. 3, 597-623.
[Na 4$]$, Birational geometry of symplectic resolutions of nilpotent orbits, in Moduli spaces and arithmetic geometry, 75-116, Adv. Stud. Pure Math. 45, Math. Soc. Japan, Tokyo; see also math.AG/0404072, math.AG/0408274
[Na 5$]$, Calabi-Yau threefolds and deformation theory, [translation of Sūgaku 48 (1996), no. 4, 337-357], Sugaku Expositions 15 (2002), no. 1, 1-29.
[Na 6] Y. Namikawa, Poisson deformations of affine symplectic varieties, math.AG/0609741
[Q] D. Quillen, On the (co-) homology of commutative rings, in Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968), 65-87, Amer. Math. Soc., Providence, RI.
[Ri] D. S. Rim, Analytic equivalence of a singular set, Amer. J. Math. 90 (1968), 463-475.
[Sch] M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222.
[Wa] J. M. Wahl, Equisingular deformations of normal surface singularities. I, Ann. of Math. (2) 104 (1976), no. 2, 325-356.

Added in the proof: In the proof of Theorem 14, it is claimed that the T^{0}-lifting property implies the pro-representability of PD. But, the argument here is not correct. One can find a correct argument in [Na 6].

[^0]: Communicated by S. Mukai. Received June 9, 2006. Revised February 8, 2007.
 2000 Mathematics Subject Classification(s): 14B07, 14E05,14E30, 14E35, 14J17, 14J40, 32G07, 32G11, 32J20.
 *Department of Mathematics, Graduate school of Science, Kyoto University, Japan. e-mail: namikawa@math.kyoto-u.ac.jp

[^1]: ${ }^{1}$ After submitting this paper, the author showed in [Na 6$]$ that the conjecture is true if the minimal model conjecture holds.

[^2]: ${ }^{2}$ The definition of the Poisson cochain complex is subtle because the sheafication of each component of the Harrison complex is not quasi-coherent (cf. [G-K]).

[^3]: ${ }^{3}$ Exactly, one can prove the following. Let $T:=\operatorname{Spec}(S)$ with a local Artinian C-algebra S with $S / m_{s}=\mathbf{C}$. Let $X \rightarrow T$ be a Poisson deformation of a convex symplectic variety X_{0} with only terminal singularities. Assume that T is a closed subscheme of T^{\prime} defined by the ideal sheaf $I=(a)$ such that $a \cdot m_{S^{\prime}}=0$. Denote by $\operatorname{PD}\left(X / T, T^{\prime}\right)$ the set of equivalence classes of Poisson deformations of X over T^{\prime}. If $\operatorname{PD}\left(X / T, T^{\prime}\right) \neq \emptyset$, then $\operatorname{HP}^{2}\left(U_{0}\right) \cong \operatorname{PD}\left(X / T, T^{\prime}\right)$.

[^4]: ${ }^{4}$ Since X is convex, there is a projective birational morphism f from X to an affine variety Y. Take a reflexive sheaf F on $X^{a n}$ of rank 1. The direct image $f_{*}^{a n} F^{*}$ of the dual sheaf F^{*} is a coherent sheaf on the Stein variety $Y^{a n}$. Hence $f_{*}^{a n} F^{*}$ has a non-zero global section; in other words, there is an injection $\mathcal{O}_{X^{a n}} \rightarrow F^{*}$. By taking its dual, F is embedded in $\mathcal{O}_{X^{a n}}$. Thus, $F=\mathcal{O}(-D)$ for an analytic effective divisor D. So, for any reflexive sheaf F of rank 1, the double dual sheaf $\left(F^{\otimes m}\right)^{* *}$ becomes an invertible sheaf for some m.

[^5]: ${ }^{5}$ The twistor deformation associated with L and the one associated with $L^{\otimes m}$ are essentially the same. The latter one is obtained from the first one just by changing the parameters t by $m t$.

[^6]: ${ }^{6} \hat{\times}$ means the formal product. Let B be the completion of $\hat{A}[t, 1 / t]$ by the ideal $m \hat{A}[t, 1 / t]$ where $m \subset \hat{A}$ is the maximal ideal. Then $\mathbf{C}^{*} \hat{x} \hat{Y}=\operatorname{Spec}(B)$. The scheme $\mathbf{C}^{*} \hat{X} \hat{X}$ is defined as the fiber product of $\mathbf{C}^{*} \times \hat{X} \rightarrow \mathbf{C}^{*} \times \hat{Y}$ and $\mathbf{C}^{*} \hat{x} \hat{Y} \rightarrow \mathbf{C}^{*} \times \hat{Y}$.

