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Floquet topological insulator in semiconductor

quantum wells
Netanel H. Lindner1,2*, Gil Refael1,2 and Victor Galitski3,4

Topological phases of matter have captured our imagination over the past few years, with tantalizing properties such as
robust edge modes and exotic non-Abelian excitations, and potential applications ranging from semiconductor spintronics
to topological quantum computation. Despite recent advancements in the field, our ability to control topological transitions
remains limited, and usually requires changing material or structural properties. We show, using Floquet theory, that a
topological state can be induced in a semiconductor quantum well, initially in the trivial phase. This can be achieved by
irradiation with microwave frequencies, without changing the well structure, closing the gap and crossing the phase transition.
We show that the quasi-energy spectrum exhibits a single pair of helical edge states. We discuss the necessary experimental
parameters for our proposal. This proposal provides an example and a proof of principle of a new non-equilibrium topological
state, the Floquet topological insulator, introduced in this paper.

T
he discovery of topological insulators in solid-state devices
such as HgTe/CdTe quantum wells1,2, and in materials such
as BixSb1−x alloys, Bi2Te3 and Bi2Se3 (refs 3–5) brings us

closer to employing the unique properties of topological phases6,7

in technological applications8,9.
Despite this success, the choice of materials that exhibit these

unique topological properties remains rather scarce. In most cases
we have to rely on serendipity in looking for topological materials in
solid-state structures and our means to engineer Hamiltonians and
control topological phase transitions are very limited.

Ourwork demonstrates that newmethods to achieve and control
topological structures are possible in non-equilibrium conditions,
where external time-dependent perturbations represent a rich and
versatile resource that can be used to achieve topological spectra in
systems that are topologically trivial in equilibrium.

In particular, we show that time-periodic perturbations may
give rise to new differential operators with topological insulator
spectra, dubbed Floquet topological insulators (FTI), that exhibit
chiral edge currents when out of equilibrium and possess
other hallmark phenomena associated with topological phases.
These ideas, combined with the highly developed technology
for controlling low-frequency electromagnetic modes, can enable
devices in which fast switching of edge state transport is possible
and the spectral properties (velocity) of the edge states can
be easily controlled.

The Floquet topological insulators discussed here share many
features investigated in previous works. Topological states have
been explored from the perspective of quantum walks10. Also,
a similar philosophy led to proposals for effective magnetic
fields11,12 and spin–orbit coupling13 in cold-atom systems. A
photovoltaic effect has been proposed in graphene14. Another
insightful analogy is the formation of zero-resistance states
in Hall bars at low magnetic fields using radio frequency
radiation15–18. There is also an article19 proposing that elec-
tric fields with frequencies well below the bandgap can trans-
form the topological phase of the Haldane model20 into a
trivial insulator.
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Definition of a Floquet topological insulator

Let us first provide a general construction and definition for a
Floquet topological insulator in a generic lattice model, and then
discuss a specific realization: a HgTe/CdTe quantum well. The
generic many-body Hamiltonian of interest is

Ȟ(t )=
�

k∈BZ

Hnm(k,t )cn,k
†cm,k +h. c. (1)

where cn,k
† and cm,k are fermion creation/annihilation operators,

k is the momentum defined in the Brillouin zone, and the italic
indices, n,m=1,2,...,N label some internal degrees of freedom (for
example, spin, sublattice, layer indices, and so on). The N ×N k-
dependent matrix Ȟ (k,t ) is determined by lattice hoppings and/or
external fields, which are periodic in time, Ȟ(T+t )= Ȟ(t ).

First, we recall that without the time dependence, the topological
classification reduces to an analysis of the matrix function, Ȟ (k),
and is determined by its spectrum21,22. An interesting question is
whether a topological classification is possible in non-equilibrium
situation, that is, when the single-particle Hamiltonian, Ȟ (k,t ), in
equation (1) does have an explicit time dependence, and whether
there are observable physical phenomena associated with this non-
trivial topology. Consider the single-particle Schrödinger equation
associated with equation (1):

[Ȟ (k,t )− iǏ∂t ]Ψk(t )= 0, with Ȟ (k,t )= Ȟ (k,t +T ) (2)

The Bloch–Floquet theory states that the solutions to equation (2)
have the form Ψk(t ) = Šk(t )Ψk(0), where the unitary evolution
is given by the product of a periodic unitary part and a
Floquet exponential

Šk(t )= P̌k(t )exp[−iȞF(k)t ], with P̌k(t )= P̌k(t +T ) (3)

where ȞF(k) is a self-adjoint time-independent matrix associated
with the Floquet operator

�

Ȟ (k,t )− iǏ∂t
�

acting in the space
of periodic functions Φ(t ) = Φ(t + T ), where it leads to a
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time-independent eigenvalue problem, [Ȟ (k, t ) − iǏ∂t ]Φ(k, t ) =

ε(k)Φ(k, t ). The quasi-energies ε(k) are the eigenvalues of the
matrix ȞF(k) in equation (3), and in the cases of interest can be
divided into separate bands. The full single-particle wavefunction
is therefore given by Ψ(t )= e−iεt

Φ(t ). Note that the quasi-energies
are definedmodulo the frequencyω=2π/T .

The Floquet topological insulator is defined through the
topological properties of the time-independent Floquet operator
ȞF(k), in accordance with the existing topological classification of
equilibrium Hamiltonians21,22.

Most importantly, we show below that the FTI is not only a
mathematical concept. We explicitly demonstrate that topological
properties can be induced in an otherwise topologically trivial
HgTe/CdTe quantum well by using experimentally accessible
electromagnetic radiation in themicrowave-THz regime.

Topological transition inHgTe/CdTe heterostructures

Below we outline a proposal for the realization of a FTI
in zincblende structures such as HgTe/CdTe heterostructures,
which are in the trivial phase. These are described by the
effective Hamiltonian1

H (kx ,ky)=

�

Ȟ (k) 0
0 Ȟ ∗(−k)

�

(4)

where

Ȟ (k)= �(k)Ǐ +d(k) ·σ̌ (5)

k= (kx ,ky) is the two-dimensional wavevector, and σ̌ = (σ̌x ,σ̌y ,σ̌z)
are the Pauli matrices. The vector d(k) is an effective spin–orbit
field. The upper block Ȟ (k) is spanned by states with mJ =

(1/2,3/2), whereas the lower block, with mJ = (−1/2,−3/2), is its
time-reversed partner.

Let us focus on the upper sub-block. The Hamiltonian (5) has
two bands with energies �±(k)= �(k)±|d(k)|.

The TKNN formula provides the sub-band Chern number23,
which for the Hamiltonian (5) can be expressed as an integer
counting the number of times the vector d̂(k) wraps around
the unit sphere as k wraps around the entire FBZ. In integral
form, it is given by

C± = ±
1

4π

�

d2k d̂(k) ·[∂kx d̂(k)×∂ky d̂(k)] (6)

where d̂(k)= d(k)/|d(k)| is a unit vector and the (±) indices label
the two bands.

This elegant mathematical construction also yields important
physical consequences, as it is related to the quantized Hall
conductance associated with an energy band,

σxy =
e2

h
C (7)

Considering now the full Hamiltonian equation (4), each band
is degenerate with its time-reversed partner, which exhibits an
opposite Chern number. Although the sum of the Chern numbers
for the doubly degenerate band vanishes, their difference does not,
and signifies the quantum spinHall conductance.

Let us return to the upper block of equation (4). Around
the � point of the first Brillouin zone (FBZ) we can expand
the vector d(k) as1,24

d(k)= (Akx ,Aky ,M −Bk2) (8)

where the parametersA<0,B>0 andM depend on the thickness of
the quantumwell and on parameters of the materials. We can easily

ω

Figure 1 | Inducing an FTI from a trivial insulator. Energy dispersion �(k)

and pseudospin configuration −d̂(k) for the original bands of Ȟ(k) in the

non-topological phase (M/B<0). The non-topological phase is

characterized by a spin-texture that does not wrap around the unit sphere.

On application of a periodic modulation of frequency ω greater than the

bandgap, a resonance appears; the green circles and arrow depict the

resonance condition.

see that the Chern number implied by d(k) depends crucially on the
relative sign ofM and B. Within the approximation of equation (8),
far away from the � point, d(k) must point south (in the negative
z direction). At the � point, d(k) is pointing north for M > 0,
but south for M < 0. For the simplified band structure, the Chern
numbers are clearly C± =±

�

1+ sign(M/B)
�

/2. For a generic band
structure corresponding to equation (8) near the �-point, the same
logic applies, andwe can easily see that a change of sign inM induces
a change of the Chern number, C , by 1.

Starting with the trivial phase (M < 0), we study periodic
modulation of the Hamiltonian, which creates a circle in the
FBZ where transitions between the valence and conduction band
are at resonance (see Fig. 1). A reshuffled spectrum arises, with
new bands consisting of the original ones outside the resonance
circle, whereas inside the circle, the original bands are swapped.
On the circle, we expect an avoided crossing separating the
reshuffled bands. From Fig. 1, we see that this leads to a pseudospin
configuration that can potentially have non-trivial topology. Note
that the resulting FTI includes contributions from both blocks
of equation (4). As we shall show, by tuning the form of the
periodic modulation, the FTI could be chosen to be an analog
of the quantum spin Hall insulator, protected by an effective
time-reversal symmetry, or a quantumHall insulator where no such
symmetry is present.

Floquet topological insulator

Let us next consider the Floquet problem in a zincblende spectrum
in detail.We add a time-dependent field to theHamiltonian (5)

V̌ (t )=V ·σ̌cos(ωt ) (9)

where V is a three-dimensional vector that must be carefully
chosen to obtain the desired result. It is convenient to transform
the bare Hamiltonian to a ‘rotating frame of reference’ such that
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Figure 2 |A topological Floquet band. Pseudospin configuration n̂k (blue

arrows) and dispersion of the lower band of HI. Note the dip in the energy

surface near k=0, resulting from the reshuffling of the lower and upper

bands of Ȟ(k).

the bottom band is shifted by h̄ω. This is achieved by using
the unitary transformation Ǔ (k, t ) = P̌+(k) + P̌−(k)eiωt , where
P̌±(k) = 1/2[Ǐ ± d̂(k) · σ̌] are projectors on the upper and lower
bands ofH (k). This results in the followingHamiltonian:

ȞI (t )= P̌+(k)�+(k)+ P̌−(k)[�−(k)+ω]+ Ǔ †V̌ (t )Ǔ (10)

where �±(k) are the energies corresponding to P̌±(k). In the
‘rotating’ picture, the two bands cross ifω is larger than the gapM .

HI is solved by the eigenstates |ψI
±(k)�, which for the values

of momenta, k, away from the resonance ring are only weakly
modified compared to the equilibrium, V̌ = 0, case. We define the
vector n̂k = �ψI

−(k)|σ̌|ψI
−(k)�, which characterizes the pseudospin

configuration in the lower (−) band of HI (the pseudospin
configuration in the upper (+) band points in the opposite
direction). The vector n̂k, which will encode the topological
properties of the FTI, is plotted in Fig. 2 forM/B<0. Indeed, we see
that n̂k points towards the south pole near the � point, and towards
the north pole for larger values of k. These two regimes are separated
by the resonance ring, denoted by γ, for which ω = �+(k)− �−(k)
(the green curve in Fig. 1).

The topological aspects of the reshuffled bands depend crucially
on the properties of n̂k on γ. These are best illustrated by employing
the rotating wave approximation, as we shall proceed to do
below. An exact numerical solution, which does not rely on this
approximation, will be presented in the next section.

The driving field V̌ (t ) contains both counter-rotating and co-
rotating terms. The rotating wave approximation, which is valid
under the condition that the detuning,∆=|(�+ −�−)−ω|, satisfies
∆� (�+ −�−)+ω, describes correctly the single photon resonance
between the conduction and valence bands. In this approximation,
counter-rotating terms are omitted and the driving term is given by

V̌RWA = P̌+(k)(V ·σ̌)P̌−(k)+ P̌−(k)(V ·σ̌)P̌+(k) (11)

Next, we decompose the vectorV as follows

V=
�

V ·d̂(k)
�

d̂(k)+V⊥(k) (12)

A substitution in equation (11) gives

V̌RWA =V⊥(k) ·σ̌ (13)

On the curve γ we have

n̂k = −V⊥(k)/|V⊥(k)| (14)

Now, V⊥(k) lies on the plane defined by d̂(k) and V. On the curve
γ, d̂(k) traces a closed loop encircling the north pole on the unit

 

d(k)

z V

V
⊥

(¬π, π)

(¬π, ¬π)

(π, π)

(π, ¬π)

Γ

Figure 3 | The geometrical condition for creating topological quasi-energy

bands. The purple arrow and green circle depict d̂(k) on the curve γ in the

FBZ (depicted on the right), for which the resonant condition holds. The red

arrow and curve depict V⊥(k) on γ. The blue arrow depicts the driving field

vector V. As long as V points within the loop traced by d̂(k), the vector

V⊥(k) winds around the north pole, which is indicated by the black arrow.

sphere. If this loop encircles the vector V, then V⊥(k) will also trace
a (different) loop encircling the north pole, as illustrated by Fig. 3.

We can define a topological invariant CF similar to C in
equation (6), by replacing d̂(k) with n̂k. Under the conditions
stated above and with M < 0, the vector field n̂k starts from the
south pole at the � point and continues smoothly to the northern
hemisphere for larger values of |k| while winding around the
equator. For values of k further away from the curve γ, n̂k ≈−d̂(k),
as the driving field is off resonance there. The contribution
of these ks to CF is therefore equal to their contribution to
C . Therefore it is evident that C±

F = C± ± 1. Note that for
M > 0, C±

F =C± ∓1.
A comment is in order regarding the time dependence of CF. As

the solutions to the time-dependent Schrödinger equation are given
by the transformation,

|ψ±(t ,k)� =U (t )|ψ±
I (k)� (15)

the pseudospin configuration in the Brillouin zone of
these solutions,

n̂k(t )= �ψ−(k,t )|σ̌|ψ−(k,t )� (16)

will also depend on time. However, as we show below, both n̂k and
n̂k(t ) (at any time) give the same, time-independent CF. Indeed,
the fact that HI is non-degenerate, implies that both n̂k and n̂k(t )
are well defined in the FBZ. Therefore, CF, as calculated by either
of them is a topological invariant that is quantized to an integer
and is robust to smooth variations of these vector fields. The two
vector fields n̂k, n̂k(t ) coincide at t = 0 and the time dependence
resulting from equation (15) constitutes a smooth deformation of
n̂k(t ). Therefore, they both define the same, time-independent,
topological invariant CF.

Non-equilibrium edge states

One of the most striking results of the above considerations
is the existence of helical edge states once the time-dependent
field is turned on. Below we demonstrate the formation of
edge states in a tight binding model that contains the essential
features of equation (5). The Fourier transform of the spin–orbit
coupling vector, d(k) in the corresponding lattice model is given
by, c.f., equation (8),

d(k)= (Asinkx ,Asinky ,M −4B+2B[coskx +cosky ]) (17)

We consider the above model with the time-dependent field
of the form V0σ̌z cos(ωt ) in the strip geometry, with periodic
boundary condition in the x direction, and vanishing boundary
conditions at y = 0,L.
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Figure 4 | Edge states in the quasi-energy spectrum. Quasi-energy

spectrum of the Floquet equation (3) of the Hamiltonian (17), in the strip

geometry: periodic boundary conditions in the x direction, and vanishing

ones in the y direction. The driving field was taken to be in the ẑ direction.

The horizontal axis labels the momentum kx. The vertical axis labels the

quasi-energies in units of |M|. Two linearly dispersing chiral edge modes

traverse the gap in the quasi-energy spectrum. The parameters used are

ω = 2.3|M|, |V| =A= |B| =0.2|M|. The inset shows the dispersion of the

original Hamiltonian (17), for the same parameters.

We solve the Floquet equation numerically by moving to
frequency space and truncating the number of harmonics. The
wavevector kx is therefore a good quantum number, and the
solutions Φ(t ) are characterized by ε and kx . The quasi-energies
for this geometry are shown in Fig. 4. The quasi-energies of the
bottom and top bands represent modes that are extended spatially,
whereas for each value of kx there are two modes that are localized
in the y direction.

As is evident from Fig. 4, the quasi-energies of these
modes disperse linearly, ε(kx) ∝ kx , hence they propa-
gate with a fixed velocity. Consider a wave packet that
is initially described by f0(kx). From equation (3) we see
that it will evolve into ψ(t ) =

�

dkxeiε(kx )t f0(kx)Φe
kx
(y, t ),

where Φ
e
kx

denotes the quasi-energy edge states with mo-
mentum kx . Clearly, this will give a velocity of �ẋ� =
�

dkx |f (kx)|2(∂ε/∂kx).
In general, the solutions Φε,kx (t ) are time-dependent. An

important finding is that the density of the edge modes are
only very weakly dependent on time. This can be seen in
Fig. 5, in which we plot the time dependence of the density
profile of these modes.

Experimental realization of the FTI

To experimentally realize the proposed state, we need to identify a
proper time-dependent interaction in the HgTe/CdTe wells. Below
we consider several options, of which the most promising uses a
circularly polarized electric field.

Magnetic field realization. Perhaps the simplest realization
of a time-dependent perturbation of the form (9) is by a
microwave-THz oscillating magnetic field, polarized in the ẑ
direction. The effect of Zeeman energies in thin Hg/CdTe
quantum wells can be evaluated by recalling that the effec-
tive model (4) includes states with mJ = ±(1/2,3/2) in the
upper and lower block respectively. This would result in an
effective Zeeman splitting between the two states in each

0
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Figure 5 | Time dependence of the edge states. Density of edge mode as

function of time, |φ(y,t)|2, a for kx =0, and b for kx =0.84, where the edge

modes meet the bulk states. The horizontal axis shows the distance from

the edge, y, in units of the lattice constant, and the time in units of 2π/ω.

For clarity the density for only the 20 lattice sites closest to the edge

are shown.

block24. The value for the g -factor for HgTe semiconductor
quantum wells was measured to be g ≈ 20 (ref. 25). Therefore,
a gap in the quasi-energy spectrum on the order of 0.1 K
can be achieved using magnetic fields of 10mT. Larger gaps
may be achieved by using Se instead of Te, as its g -factor is
roughly twice as large26.

As can be seen by inspecting equation (12), the Chern numbers
CF for each block in this realization depend only on the
winding of the vector d̂(k). Therefore, the two blocks will
exhibit opposite CF, resulting in two counter-propagating helical
edge modes. As we explain in the next section, the counter-
propagating edge modes cannot couple to open a gap in the
quasi-energy spectrum, even though a magnetic field is odd
under time reversal.

Stress modulation. Stress modulation of the quantum wells using
piezo-electric materials would lead to modulation of the parameter
M in (5) and to two counter-propagating edge states.

Electric field realization. An in-plane electric field can produce
large gaps in the quasi-energy spectrum and lead to robust co-
propagating edgemodes. The electric field is given by

Ě =Re (E ·expiωt )i∇k (18)

Inserting this into equation (11), we get

V⊥(k)= d̂(k)× (ReE ·∇k)d̂(k)− (ImE ·∇k)d̂(k) (19)

As before, the vector field V⊥(k) is orthogonal to d̂(k), and
again, we would like it to wind around the north pole. Now
if we take E = E(−ix̂ − ŷ) we get, expanding equation (19) to
second order in kx ,ky ,

V⊥(k)=
A(A2 −4BM )E

M 3

�

1

2
(kx

2 −ky
2)x̂+kxky ŷ

�

(20)

Evidently, the vector field V⊥(k) winds twice around the equator.
Therefore, for the above choice of E , the Chern numbers will be
C±

F = ±2 (and CF = 0 for the lower block). Therefore, each edge
of the system will have two co-propagating chiral modes, which
cannot be gapped out. Naturally, a choice of E = E(−ix̂+ ŷ) will
giveCF

± =∓2 for the lower block andCF =0 for the upper block. For
HgTe/CdTe quantum wells with thickness of 58 Å (ref. 1), we have
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|V(k)/E | ≈ 0.1mm at |K | ∼ 0.1 Å. Such a resonance leads to a gap
in the quasi-energy spectrum on the order of 10K even for modest
electric fields, on the order of 10V/m, which are experimentally
accessible with powers < 1mW. Decreasing the well thickness
increases27 the value of |A/M |, which can help achieve even larger
gaps in the quasi-energy spectrum. We note that, in general,
multiple photon resonances can openmore gaps in the quasi-energy
spectrum. However, these effects will be highly suppressed for the
illumination intensities and frequencies considered here.

Discussion

In summary, we have shown that the quasi-energy spectrum of
an otherwise ordinary band insulator irradiated by electromagnetic
fields can exhibit non-trivial topological invariants and chiral
edge modes. A realization of these ideas in zincblende systems,
such as HgTe/CdTe semiconducting quantum wells, can lead to
Floquet topological insulators that support either co- or counter-
propagating helical edge modes. The Floquet operators of these
realizations belong, respectively, to symmetry classes analogous to
classes A (no symmetry) and AII (time-reversal symmetry with
T 2 = −1) in ref. 21.

The symmetry class of the Floquet topological insulator indeed
requires careful consideration when two counter-propagating edge
states are present, as in the oscillating magnetic-field realization
suggested in the previous section. In time-independent systems,
topological phases exhibiting counter-propagating edges are only
distinct from trivial phases under the restriction T Ȟ T −1 = Ȟ,
where T is the anti-unitary time-reversal operator satisfying
T 2 = −1. In the time-periodic case, the Hamiltonian at any
given time may not possess any symmetry under time reversal.
Nevertheless, when the condition

T Ȟ(t )T
−1 = Ȟ(−t +τ ) (21)

holds (for some fixed τ ), the Floquet matrix of equation (3)
satisfies T̃ ȞF(k)T̃ −1 = ȞF(−k), where T̃ is an anti-unitary operator
that is related to T by T̃ = V † T V , with V = Šk(−(T + τ )/2),
c.f. equation (3). Clearly, T̃ 2 =−1. Therefore, under this condition,
the quasi-energy spectrum consists of analogues to Kramer’s
doublets, which cannot be coupled by the Floquet matrix. The
counter-propagating edge-modes are such a Kramer’s pair, which,
therefore, cannot couple and open a gap (in the quasi-energy
spectrum) under any perturbations satisfying equation (21) (see
also ref. 28). We note that equation (21) holds for any Hamiltonian
of the form Ȟ(t )= Ȟ0+V̌ cos(ωt+φ), with time-reversal invariant
Ȟ0, and V̌ having unique parity under time reversal, that is,
T V̌ T −1 =±V̌ . An oscillating magnetic field, being odd under time
reversal, therefore obeys equation (21) and leads to two counter-
propagating edge modes.

An important question concerns the onset and steady states29

of the driven systems. We emphasize that in the presence of time-
dependent fields, response functions including Hall conductivity
will be determinednot only by the spectrumof the Floquet operator,
but also by the distribution of electrons on this spectrum. These
in turn depend on the specific relaxation mechanisms present in
the system, such as electron–phononmechanisms30,31 and electron–
electron interaction32,33.

One way to minimize the unwanted non-equilibrium heating
effects would be to use an adiabatic build-up of the Floquet
topological insulator state, for example, with the frequency of the
modulation gradually increasing from zero to a value larger than
the bandgap while keeping the amplitude constant. This should
result, at least initially, in an adiabatic loading of the Floquet
band originating from the valence band. Nevertheless, relaxation
mechanisms will always producemobile bulk quasi-particles. These
effects might be suppressed by restricting the corresponding optical

modes in the environment. An analysis of the non-equilibrium
states of the systemwill be the subject of future work.
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