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The Su-Schrieffer-Heeger model of polyacetylene is a paradigmatic Hamiltonian exhibiting non-trivial edge

states. By using Floquet theory we study how the spectrum of this one-dimensional topological insulator is

affected by a time-dependent potential. In particular, we evidence the competition among different photon-

assisted processes and the native topology of the unperturbed Hamiltonian to settle the resulting topology at

different driving frequencies. While some regions of the quasienergy spectrum develop new gaps hosting Flo-

quet edge states, the native gap can be dramatically reduced and the original edge states may be destroyed or

replaced by new Floquet edge states. Our study is complemented by an analysis of Zak phase applied to the

Floquet bands. Besides serving as a simple example for understanding the physics of driven topological phases,

our results could find a promising test-ground in cold matter experiments.

PACS numbers: 67.85.Hj; 73.20.At; 78.67.-n

I. INTRODUCTION

Since the discovery of the integer quantum Hall effect [1],

the physics of topological states has established itself as a

privileged crossroads for diverse communities. A quarter of

a century later, the discovery of topological insulators [2] has

propelled the interest in this area [3, 4]. This time, rather

than high magnetic fields, the key ingredient was the spin-

orbit coupling which is naturally strong in compounds made

of heavy elements. Recent studies hint that there might be a

third alternative enabling non-trivial topology: shining a laser

on a sample [5–8] to generate Floquet topological states [7, 9–

12]. The sample could be either graphene [5, 6, 8, 13], a trivial

insulator [7], 3D Dirac semimetal [14], or a topological insu-

lator [15]. The opening of laser-induced bandgaps has already

been observed [16] and new experiments [17–19] and theories

are being developed to unveil the states’ fingerprint of their

topology [8, 20–23], e.g. the bulk boundary correspondence

[24–26], their dynamics [27, 28], occupation [29, 30], trans-

port properties [31–34] and the connection between the Hall

response and the edge states [35].

At the time of the birth of the integer quantum Hall effect

[1, 36] another important finding was the discovery of con-

ducting polymers [37, 38]. Later on, it became clear that the

simple tight-binding model proposed by Su, Schrieffer and

Heeger [37] in 1979 to describe the dimerization in poly-

acetylene (today named the SSH model) is, indeed, a mini-

mal example of a one-dimensional topological insulator (see

for example Refs. 39 and 40). The topologically trivial or

non-trivial character of the dimerized chain is controlled by

the relative strength of the intracell-to-intercell couplings: A

tight-binding chain with hoppings bearing alternating values

γ1 and γ2 (γ1 being the intracell hopping as represented in

Fig. 1(a)) sustains one topological state localized at each ter-

mination if |γ1/γ2| < 1, and zero otherwise (as shown in Fig.

1 (c) and (b)). The existence of such states, in turn, is related

to a topological invariant called Zak phase.

Here we inquire about the effect of a time-dependent per-

turbation on the SSH model, thereby providing a minimal case
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FIG. 1. (color online) (a) Scheme representing a finite section of the

Su-Schrieffer-Heeger model with N unit cells and where γ1 and γ2
are the intra- and intercell hoppings, respectively. While the bulk

spectrum is independent of the ratio |γ1/γ2| (shown in (b) and (c) in

gray for δ = 0 and black line for δ 6= 0), the spectrum of a finite

chain (shown in blue dots in panels (b) and (c)) differs in the absence

(b, |γ1/γ2| > 1) or presence (c, |γ1/γ2| < 1) of mid-gap states. (d)

Scheme of the driven SSH model considered in the text.

of a driven topological insulator. The driving considered here

consists of a modulation of the hoppings with spacial period d
(the same as for the SSH model, see scheme in Fig. 1(d)). In

particular, a relevant question is how driving affects the native

topology. For example, if starting from the undimerized chain

one adds a time-dependent modulation of the hoppings, then,

as the instantaneous ratio |γ1/γ2| changes, snapshots taken

at different times would correspond to configurations consis-

tent with a switching from a topologically trivial insulator to

a non-trivial one, back and forth. Although previous works

have addressed driven one-dimensional systems in a variety
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of contexts [29, 41], the above question still remain.

By using Floquet theory we show that driving can in-

duce new gaps depending critically on the driving fre-

quency/strength and change dramatically the gaps of the un-

driven model. Interestingly, the newly formed gaps may host

Floquet edge states while those at the pre-existent gaps can be

annihilated by the driving. The topological transitions lead-

ing to such changes are studied in detail complementing our

numerical study with a calculation of the relevant topological

invariant, i.e. the Zak phase [42]. Our results reveal a subtle

competition between the different available photon-assisted

processes and the native topology of the model to set the fi-

nal character of each gap. We show that as the frequency is

lowered, each time new inelastic processes come to play one

has that either that the pre-existent edge states are destroyed,

if they already exist, or new ones are created, if they were not

present before. These Floquet topological transitions could be

tested in cold matter where there is much interest in driven

topological phases from the theoretical point of view [43–45]

and where recent experimental progress has allowed the real-

ization of the SSH model [46], the Haldane model [18], the

Hofstadter model[47], and even the measurement of the rele-

vant topological invariants [46, 47].

II. FLOQUET APPROACH AND OPENING OF

BANDGAPS IN THE QUASIENERGY SPECTRUM

A. Floquet theory applied to the driven SSH model

The Su-Schrieffer-Heeger (SSH) model [37] describes the

dimerization that occurs in a one-dimensional periodic sys-

tem subject to a cell doubling perturbation in the spirit of the

Peierls transition[48, 49]. Here we consider a variant of the

SSH model where the hoppings are modulated in time so that

nearby bonds have opposite phases:

H = −
∑

j

(

γ
1
c†A,jcB,j + γ

2
c†B,j−1

cA,j + h.c.
)

+

+
∑

j

(

v(t)c†A,jcB,j − v(t)c†B,j−1
cA,j + h.c.

)

,

where c†α,j and cα,j are the creation (anihilation) operators

at site α (which can be either A or B-type) of the j-th unit

cell, γ1 = γ0 + δ and γ2 = γ0 − δ, δ being the dimerization

strength and v(t) = 2Vac cos(Ωt) with Vac being the driving

amplitude. The onsite energies Eα,j may all be taken equal

to a reference energy (zero energy), γ0 is taken as the unit of

energy and the lattice constant for the dimerized phase is d (as

represented in Fig. 1(a)).

The first term on the rhs of Eq. (1) corresponds to the usual

SSH model and the second term accounts for the driving. In

the bulk limit, the static part of the Hamiltonian can also be

written as Hk = hk.σ, where Hk is a 2 × 2 matrix written

in the basis of A and B sites, σ is the vector of Pauli matrices

(σx, σy, σz) and hk is a vector with vanishing z-component

since A and B have the same local energy. The latter assures

that chiral symmetry is preserved [50]: if +ε is an eigenvalue

then its opposite −ε is one too (the spectrum is therefore sym-

metric). Imposing this symmetry ensures the existence of two

distinct topological phases (δ > 0 and δ < 0) for the static

system. One can verify that the driving term satisfies a gener-

alized chiral symmetry and the Floquet spectrum is symmetric

with respect to ε = m~Ω/2 (m integer).

The properties of interest in our work can be obtained by

using Floquet theory which is particularly tailored for time-

periodic Hamiltonians [51, 52]. Given a time-periodic Hamil-

tonian with period T , there is a complete set of Floquet so-

lutions of the form ψα(r, t) = exp(−iεαt/~)φα(r, t), where

εα are the so-called quasienergies and φα(r, t+T ) = φα(r, t)
are the associated Floquet states. By inserting these solutions

into the time-dependent Schrödinger equation, one gets that

the Floquet states satisfy an equation analogous to the time-

independent Schrödinger equation with the Hamiltonian being

replaced by the Floquet Hamiltonian ĤF ≡ Ĥ − i~ ∂
∂t

. Thus,

one has an eigenvalue problem in the direct product Floquet

space [53]: R ⊗ T , R being the usual Hilbert space and T

the space of periodic functions with period T = 2π/Ω which

is spanned by the functions exp(inΩt). The index n can be

assimilated to the number of ‘photon’ excitations [54], and

defines a subspace also called nth Floquet replica. Note that

in this energy domain solution we do not need to resort to the

consideration of the time-evolution operator.

In our calculations we used different codes including: a

code built on Kwant [55] and a home-made implementation

using recursive Green’s functions allowing to deal with a

semi-infinite system. The numerical calculation of the Zak

phase was carried out using the Python Tight-Binding pack-

age (PythTB).

B. Driving-induced gaps in the bulk spectrum

Let us focus first on the quasienergy spectrum of the bulk

system. Figures 2 (a) and (b) show the spectrum of the un-

driven system without (δ = 0) and with (δ 6= 0) the cell-

doubling perturbation, respectively. While the former does

not have a gap, the latter does have one at zero energy of mag-

nitude ∆0 = 4|δ|. The color scale represents the weight on

different replicas, from blue for unit weight on the n = 0
replica to grey. This weight can be interpreted as the contri-

bution of each state of energy ε to the time-averaged density

of states at the same energy [5].

The most relevant effects of driving take place at the points

where the spectrum becomes degenerate. For simplicity, we

will focus only on the energy range spanned by the n = 0
replica. In that case, the degenerate points at the frequency

plotted in Fig. 2 (a-d) are located at either ε = 0 or ε± ~Ω/2.

Once the time-dependent perturbation is switched on (as

in Figs. 2 (c) and (d)), the degeneracies at ±~Ω/2 (involv-

ing states with n = 0 and n = ±1) are lifted leading to

the driving-induced bandgaps. Similar gaps were previously

found in the context of carbon nanotubes affected by the in-

teraction with a single optical phonon mode [56, 57], which

gives a quantized version of our model.
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FIG. 2. (color online) Quasienergy spectra for the (bulk) Su-

Schrieffer-Heeger model obtained for different set of values of the

dimerization constant δ and the driving amplitude Vac. In the avail-

able range we can distinguish the Floquet replicas with n = −1, 0, 1,

and the color bar indicates the contribution to the time-averaged den-

sity of states. Starting from the undriven model (a) and (b), and con-

sidering the process related to the n = 0 replica, we can see how the

model develops gaps at ±~Ω/2 in (c) and (d), and also at ±~Ω in

(f). In these plots ~Ω = 2.8γ0 for (c) and (d) and ~Ω = 1.3γ0 for

(e) and (f); δ = 0.3γ0 in (b),(d) and (f); and Vac = 0.1γ0 (c) to (f).

What is the origin of such gaps in this one-dimensional

system? In contrast to the driving-induced gaps in graphene

illuminated with a circularly polarized laser [5, 58], where

opening a gap among the n = 0 and n = ±1 replicas re-

quires breaking time-reversal symmetry (TRS), the gap open-

ing mechanism in the driven SSH model relies on the spa-

cial periodicity of the time-dependent perturbation (no TRS

breaking is necessary). Indeed, the time-dependent perturba-

tion must have a component with a spacial period d to mix

different Floquet replicas, so that the degeneracies between

states at ±~Ω/2 are lifted as shown in Figs. 2(c) and (d).

The gap has a magnitude of ∆1 ≃ 4|Vac|. Since this pro-

cess involves the Floquet replicas with n = 0 and n = ±1,

energy exchange (photon emission/absorption) is crucial for

these gaps to occur, thereby highlighting their non-adiabatic

nature.

When the frequency is low enough so that more replicas

overlap with each other, one can notice how higher order ef-

fects develop (new degeneracies appear within the spectral

support of the n = 0 replica). This is the case in Figs. 2(e) and

(f) where ~Ω = 1.1γ0. The gaps at ±~Ω/2 are almost unno-

ticeable in this case and there are new driving induced gaps at

ε = ±~Ω which appear only when δ 6= 0 (see panels (e) and

(f)) and correspond to the mixing of the n = 0 and n = ±2
replicas. The processes leading to those gaps are more sub-

tle and involve virtual transitions through intermediate states.

The magnitude of the gap, that we denote with ∆2, can be

worked out analytically. One gets: ∆2 ≃ (∆1/(2~Ω))
2∆0,

hence, the gap is proportional to V 2

ac
× ∆0. The gap at zero

energy (which is reduced as compared to panels (c) and (d))

is also determined now by ∆2.

III. FLOQUET EDGE STATES, TOPOLOGICAL

TRANSITIONS AND ZAK PHASE

The analysis of the previous section gives a first hint on

the spectrum of the driven SSH model but does not reveal its

most interesting face: Are the Floquet gaps topological? Do

we have Floquet topological edge states? How does this de-

pend on the topology of the undriven model? To answer these

questions we analyze the Floquet spectrum of a semi-infinite

system in a wide range of frequencies chosen to match the ex-

perimentally relevant regime in cold matter experiments. Due

to the existence of an edge one can infer on the topology from

the eventual presence of edge states (a result which we will

later on confirm based on the Zak phase). The results are

shown in Figs. 3(a) for |γ1/γ2| > 1 and 3(b) for |γ1/γ2| < 1.

At each frequency, the Floquet spectrum is plotted on the ver-

tical scale. For easier interpretation a (blue) color scale corre-

sponding to the weight of the states on the n = 0 Floquet sub-

space is used (thus, it gives the time-averaged density of states

for that electronic energy). On the other hand, edge states

are plotted in red, irrespective of their weight on a particular

replica, this way one can spot them in the full range with-

out zooming-in the plot. By following the midgap states with

the driving frequency, Figure 3 resembles the fan diagrams

widely used for Landau levels as a function of the magnetic

field.

In the following we discuss first the set of relevant frequen-

cies where the topology may change (the transition points).

We then analyze these transitions by looking at the presence

of edge states and Zak phase. As we will see below, whenever

a new pair of replicas starts to contribute at a given midgap

energy, the Zak phase acquires a π shift, therefore destroying

the pre-existent edge states or creating new ones.

A. High and low-frequency regimes and transition points

Figure 3 shows how the gaps at ε = 0,±~Ω/2 evolve with

frequency. It also reveals two very distinct regimes: high and

low frequency. For simplicity let us imagine that the driving is

turned off while keeping the Floquet picture. Then one has the

original energy bands and the replicas, which are displaced by

n~Ω, as in Fig. 2(b). The high frequency regime occurs when

different Floquet replicas do not overlap at the energy of inter-

est. This is satisfied if the frequency is so large that the repli-

cas are well separated. If we are interested in what happens,
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FIG. 3. (color online) Floquet spectrum ((a) and (b)) and Zak phases (c-f) as a function of the driving frequency Ω from 0.8 to 4.4 γ0. The

calculations correspond to Vac = 0.1γ0 and δ = +0.3γ0 (panels (a), (c) and (e)) and δ = −0.3γ0 (panels (b), (d) and (f)). The color scale

from grey to blue in panels (a) and (b) indicates the weigth of the corresponding bulk state on the n = 0 Floquet subspace (white indicates

the absence of states, i.e. the existence of a gap in the bulk spectrum). The midgap states are all shown in red, irrespective of their weight on

a particular Floquet replica. These edge states are localized at the end of the system. The modulus squared of the the eigenvector components

as a function of position for two of such edge states marked with a diamond in (a) and up triangle in (b) are shown in the corresponding insets

(scatters). (a)-inset shows the modulus squared on the n = +1 replica, which is the same as the one on n = −1, while (b)-inset shows the

weight on the n = 0 replica (which is numerically equal to that on the n = +1 replica). They follow an exponential decay (grey lines) with

a decay length inversely proportional to the corresponding gap. (c) and (d) ((e) and (f)) show the Zak phase for the sates filled up to ε = 0

(ε = ~Ω/2). Up to 13 replicas are used for the calculations in the range shown in the figures.

say, close to ε = 0, as long as ~Ω > 2|γ0| one is in the high

frequency regime. On the other hand, close to ε = ±~Ω/2,

the high frequency regime takes place for ~Ω > 4|γ0| and the

gaps at ±~Ω/2 do not form. As the frequency is lowered, the

replicas overlap enough with each other so that two or more of

them have states close to the energy we are interested in and

we get into the low-frequency regime. Whenever a new set

of replicas enter into the game (or leave it) defines a potential

transition point, where the topology of the bandstructure may

change.

When lowering the frequency, whenever new bands ac-

quire spectral weight at ε = 0 they do it in pairs (because

of the electron-hole symmetry of the Hamiltonian). The first

of such events occurs at ~Ω = 2|γ0| and subsequent ones fol-

low the rule ~Ω = 2|γ0|/m, m = 1, 2, .... Analogously, the

pairs of replicas cease to have spectral weight at frequencies

given by ~Ω = 2|δ|/m, m = 1, 2, .... A similar behavior is

found when looking at ε = ±~Ω/2, in this case when low-

ering the frequency new bands enter into the game whenever

~Ω = 4|γ0|/(2m − 1) and gets out at ~Ω = 4|δ|/(2m − 1).
For example, in the range shown in Fig. 3, this occurs with

the n = 0 and n = 1 replicas at frequencies 4|γ0| and 4|δ|,
respectively. These four equations define the transition points.

In the next paragraphs we will aim to describe the topologi-

cal transitions at those transition points. But before that, let us

examine when does the spectrum remains gapped and when

it does not. This is, of course, unless all the Floquet replicas

present at the energy of interest are simultaneously gapped.

This may occur only at precise energies where the global

Floquet spectrum is symmetric, in our case ε = m~Ω/2
with m an integer. In particular, at ε = 0 in the range

|γ0| < ~Ω < 2|γ0| (this is, in between the first and the second
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transition points), the zero energy gap of the n = 0 replica

matches the weaker gap at ~Ω above (below) the center of the

n = −1 (n = +1) replica (with magnitude ∆2). Thus, the

gap is preserved but its width is now set by the smaller one,

∆2 (as shown in Fig. 2 (f)). As the frequency is lowered fur-

ther and new transition points are traversed, the gap acquires

a progressively higher order in Vac and therefore decreases to

the level where it can be hardly noticed. A similar analysis

holds for the gaps at ±~Ω/2.

B. Topological transitions in the Floquet spectra

The topology of the undriven system is controlled by the

ratio |γ1/γ2|, being trivial when |γ1/γ2| > 1 and non-trivial

when |γ1/γ2| < 1. Figures 3(a) and (b) show the driven sys-

tems in both situations. We have checked that all the midgap

states correspond to edge states, which are indeed absent in a

bulk calculation. Two of such states are presented in the insets

of Fig. 3 (a) and (b), showing an exponential decay with an

exponent determined by half the corresponding gap width. As

expected, in the high frequency regime, the topology of the

driven system corresponds to that of the undriven one. This

can be inferred from the gaps and the absence/presence of

midgap states: Fig. 3(a) does not have midgap states at zero

energy while (b) does. In the low-frequency regime, there

may also be midgap states appearing at ±m~Ω/2. For odd

m, they turn out to be insensitive to the native topology of the

undriven model. In contrast, for even m those gaps appear

only when δ 6= 0 and their topology depends on that of the

undriven model.

Let us analyze in more detail the midgap states. As men-

tioned before, at ε = 0 and high frequency (~Ω > 2|γ0|), they

follow the same prescription as in the undriven SSH model. At

~Ω = 2|γ0|, the replicas with n = ±1 acquire a finite spec-

tral weight at that energy so that the gap closes and a smaller

gap reopens for ~Ω → 2|γ0|
− (the width being this time ∆2).

By examining the midgap states we see a topological change

when traversing the transition point at ~Ω = 2|γ0|. Indeed,

the topological trivial phase of the SSH model (|γ1/γ2| > 1)

becomes non trivial and viceversa. Therefore, in the latter case

driving annihilates the topological edge states present in the

undriven system while in the former it creates new edge states

localized on the replicas with n = ±1.

At ~Ω ≤ |γ0|, Floquet replicas with n = ±2 enter into

the game reducing the gap width and changing the topology

once again. This is, the Floquet edge states are now absent if

|γ1/γ2| > 1 or they re-emerge if |γ1/γ2| < 1 (one observes

one edge state on each edge, two edge states in total). In the

latter case, the nature of the new states is different from the

native ones as they have a weight which is predominantly on

the n = ±2 replicas.

If we now look at the midgap states at ε = ±~Ω/2, one

observes that they share the same topology, irrespective of

the one of the undriven system (i.e. both Figs. 3(a) and (b)

are equivalent in these gaps). Starting from high frequencies,

when ~Ω becomes smaller than 4|γ0|, the gaps at ±~Ω/2 open

up hosting midgap edge states. This is preserved until the

next transition point located at ~Ω = 4|γ0|/3 when topology

changes due to the mixing of Floquet replicas with n = 2
and n = −1. The process is reversed at the following tran-

sition point located at ~Ω = 4δ = 1.2γ0 in Figs. 3(a) and

(b) (where the replicas with n = 1 and n = 0 cease to have

spectral weight at ε = ±~Ω/2).

In contrast to the topological transitions predicted in the lit-

erature for illuminated graphene [31, 59, 60] (the reader may

find detailed maps in Ref.60), here we have a case where the

system bears native topological states (which we show that

can be destroyed or even be replaced by new ones) and where

the number of possible edge states are restricted to a binary

value.

How different are the new edge states as compared with

those in the undriven model? For the undriven model a simple

and elegant argument can describe all the topological phases

providing a flavor on the nature of the edge states. Indeed, by

considering the fully dimerized limit (when one of the hop-

pings is zero) one immediately gets all the possible distinct

phases: If γ2 = 0 then there are no edge states, whereas if

γ1 = 0 one has one edge state at each end of the chain, fully

localized on opposite sublattices. In the driven case this sim-

ple argument describes the high frequency regime but fails to

accomodate for midgap states at zero energy when ~Ω < 2γ0
or those at ±~Ω/2. The finite bandwidth is crucial for the

new driven phases to occur since they arise because of its in-

terplay with the photon energy (allowing or restricting inelas-

tic processes). As shown in the insets of Fig.3, the new edge

states have a non-vanishing weight on more than one Floquet

replica.

C. Zak phase for the driven SSH model

To further confirm the topological nature of these states, we

resort to the calculation of topological invariants. The relevant

invariant in our case is the Zak phase [42] Z defined as:

Z = i

∮

dk 〈uk|∂kuk〉 , (1)

where |uk〉 are the cell-periodic Bloch states. The Zak phase

is essentially the geometric phase acquired after an adiabatic

loop in the Brillouin zone. This phase has been connected to

the existence of edge states in graphene [61] and, interestingly,

it has been measured in cold matter systems simulating the

(undriven) SSH model [46] and also in acoustic systems [62].

Differences between Zak phases for topologically non-

trivial systems in one-dimension are quantized in units of π
even though the value by itself depends on the choice of the

unit cell [46]. The sum of the Zak phases for all the bands

with energy below a given gap indicates the existence (with

the relevant cumulative phase being π) or absence (vanishing

cumulative phase) of topological mid-gap states.

To compute the Zak phase for the Floquet quasienergy

spectrum one needs to truncate the Floquet space. The number

of replicas needs to be chosen so that all relevant transitions

at the desired energy are kept. For example, for ~Ω = 2.8γ0,

the analytic calculation of the phases Zα for each of the bands
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marked with letters A-F in Fig. 2(d) (considering just those 3

replicas) gives:

Zα =

{

0 (α = A,F )
π (α = B,C,D,E)

; |γ1/γ2| > 1, (2)

Zα =

{

π (α = A,F )
0 (α = B,C,D,E)

; |γ1/γ2| < 1. (3)

One verifies that the sum of the Zak phases do correspond

with the edge states found in the simulation of Fig.3 (a) and

(b). We have also verified this by numerical calculation in the

frequency range shown in Fig. 3. This is shown in Figs. 3(c-

f), where panels (c) and (d) show the results for the cumulative

phase up to ε = 0, while (e) and (f) are for ε = ~Ω/2, for the

trivial and non-trivial undriven system respectively.

Considering both the results of the Floquet spectrum and

of the Zak phase, and assuming that the bulk boundary corre-

spondence holds at all frequencies, the behavior of the driven

system both at zero energy and at ±~Ω/2 can be put in a nut-

shell with a simple argument: When lowering the driving fre-

quency, every pair of new replicas entering into the game at

a given energy adds a π to the cumulative Zak phase, thereby

switching the topology from trivial to non-trivial and vicev-

ersa.

IV. FINAL REMARKS.

In summary, we analyze the influence of driving on a one-

dimensional topological insulator given by the SSH model.

Our analysis reveals the creation of driving-induced bandgaps

at ±m~Ω/2 (m integer) and their evolution. More interest-

ingly, we show that the topology of these bands turns out to

exhibit transitions as the driving frequency changes. Both the

native gap and the gaps at ε = ±~Ω/2 switch topology from

non-trivial to trivial and viceversa. We attribute these topolog-

ical transitions to the competition between the native topol-

ogy and the one due to the driving and also among different

photon-assisted processes themselves. Our numerical results

are supported by an analysis based on the Zak phase for the

Floquet bands.

The simple model studied here may find a realization in ul-

tracold matter, where the current state of the art allows for ma-

nipulations beyond the reach of condensed matter. Previously,

the realization of the undriven SSH model in a cold-atom

setup permitting the direct measurement of the Zak phase has

been demonstrated [46]. There, the additional driving term

could be introduced by modulating the lasers used to produce

the dimmerized potential, and the topology of the bands could

be characterized by measuring the Zak phase. Furthermore,

with the help of the newly developed high-resolution detec-

tion and manipulation techniques [63, 64], one could detect

the presence of edge states in finite-size systems. Among all

the transitions shown in this manuscript, the detection of those

occurring at higher frequencies, such as ~Ω = 4γ0 (opening

of the gap at ±~Ω/2 containing topological midgap Floquet

edge states) and eventually also of the transition at ~Ω = 2γ0
(annihilation of the native topological states at zero energy),

look particularly promising.
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