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OPEN

ORIGINAL ARTICLE

Florbetapir F 18 amyloid PET and 36-month cognitive decline:

a prospective multicenter study
PM Doraiswamy1, RA Sperling2, K Johnson2, EM Reiman3, TZ Wong1, MN Sabbagh4, CH Sadowsky5, AS Fleisher3,6, A Carpenter7,

AD Joshi7, M Lu7, M Grundman6,8, MA Mintun7, DM Skovronsky7, MJ Pontecorvo7 For the AV45-A11 Study Group9

This study was designed to evaluate whether subjects with amyloid beta (Aβ) pathology, detected using florbetapir positron

emission tomorgraphy (PET), demonstrated greater cognitive decline than subjects without Aβ pathology. Sixty-nine cognitively

normal (CN) controls, 52 with recently diagnosed mild cognitive impairment (MCI) and 31 with probable Alzheimer’s disease (AD)

dementia were included in the study. PET images obtained in these subjects were visually rated as positive (Aβ+) or negative

(Aβ− ), blind to diagnosis. Fourteen percent (10/69) of CN, 37% (19/52) of MCI and 68% (21/31) of AD were Aβ+. The primary

outcome was change in ADAS-Cog score in MCI subjects after 36 months; however, additional outcomes included change on

measures of cognition, function and diagnostic status. Aβ+ MCI subjects demonstrated greater worsening compared with

Aβ− subjects on the ADAS-Cog over 36 months (5.66 ± 1.47 vs −0.71 ± 1.09, P= 0.0014) as well as on the mini-mental state exam

(MMSE), digit symbol substitution (DSS) test, and a verbal fluency test (Po0.05). Similar to MCI subjects, Aβ+ CN subjects showed

greater decline on the ADAS-Cog, digit-symbol-substitution test and verbal fluency (Po0.05), whereas Aβ+ AD patients showed

greater declines in verbal fluency and the MMSE (Po0.05). Aβ+ subjects in all diagnostic groups also showed greater decline on

the CDR-SB (Po0.04), a global clinical assessment. Aβ+ subjects did not show significantly greater declines on the ADCS-ADL or

Wechsler Memory Scale. Overall, these findings suggest that in CN, MCI and AD subjects, florbetapir PET Aβ+ subjects show greater

cognitive and global deterioration over a 3-year follow-up than Aβ− subjects do.
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INTRODUCTION

The prognostic evaluation of people at risk for AD, such as normal
elderly or those with mild cognitive impairment (MCI) is
challenging due to considerable variability in progression rates
and underlying pathologic heterogeneity. A reliable biomarker
that could accurately identify subjects at greatest risk for
progressive cognitive decline could enhance the clinical evalua-
tion of at-risk subjects and accelerate the testing of preventive
strategies.1–3

Accumulation of amyloid-β (Aβ) fibrils in the form of amyloid
plaques is a neuropathological requirement for definitive diag-
nosis of dementia due to Alzheimer’s disease (AD).4 Insights
gained from pathologic and biomarker studies suggest that Aβ
changes in the brain begin years, and possibly decades, before
cognitive symptoms emerge. Two recent cross-sectional studies of
carriers at-risk for familial AD estimated that Aβ changes may
occur 15 years prior to expected symptom onset.5,6 Likewise,
biomarker studies of older asymptomatic and MCI subjects have
reported an increased rate of AD pathologic changes. Such
findings have led to the concept of preclinical7 and MCI stages of
AD;2 however, the predictive value of available biomarkers at both

the individual patient level and group level is not yet fully
elucidated.
Among the various biomarkers in development to assess Aβ,

position emission tomorgraphy (PET) tracers offer the potential of
directly imaging changes in cortical Aβ. 11C-labeled Pittsburgh
compound B (PiB) was the first PET tracer to image cortical Aβ
plaques8,9, and prior PiB studies have shown that PiB-positive
normal and MCI subjects are more likely to show faster cognitive
deterioration than PiB-negative subjects.10–19 The short half-life of
11C (20 min) limits its viability for routine clinical use. Florbetapir F
18 is a PET ligand with high affinity and specificity to Aβ,20,21 and a
multicenter clinical histopathologic study has shown a significant
correlation between visual ratings of florbetapir PET in living
subjects and autopsy measured Aβ pathology.22 It was recently
approved by FDA to detect neuritic plaques in the evaluation of
patients with progressive cognitive decline. Other F 18 amyloid
PET tracers are also being developed.23,24 A limitation of current F
18 amyloid PET tracers has been the relative lack of longitudinal
data. The current study was designed to test whether florbetapir
PET can predict subsequent cognitive decline in older at-risk
subjects.
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MATERIALS AND METHODS

This prospective, observational study (AV45-A11 (NCT00857506)) was
sponsored by Avid Radiopharmaceuticals (a subsidiary of Eli Lilly & Co.) and
conducted at 21 US clinical sites. It was a longitudinal extension of a cross-
sectional Phase 2 florbetapir PET study (AV45-A05; NCT00702143). Baseline
cross-sectional results25,26 and 18-month interim findings27 have been
reported separately.

Subjects

Participants in the longitudinal study included 69 cognitively normal (CN)
healthy controls, 52 MCI and 31 clinically diagnosed AD dementia patients.
All previously received a florbetapir PET scan in the cross-sectional study.
AD patients met NINCDS-ADRDA28 criteria for probable AD with mini-
mental state examination (MMSE) scores between 10 and 24. MCI subjects
were recently diagnosed (either at the screening visit or within the past
year) on the basis of a global clinical dementia rating (CDR) score of 0.5
with an MMSE>24. All had memory complaint or cognitive impairment
corroborated by an informant, but no episodic memory threshold was
imposed. CN subjects were assessed clinically as cognitively normal, with a
Global CDR of 0.0 and an MMSE of 29–30. CN subjects were all ≥50 years of
age, recruited approximately equal distribution across age deciles (50–59,
60–69, 70–79 and ≥80 years of age). At the screening visit, subjects
underwent a medical history, clinical interview, physical and neurologic
examinations and laboratory evaluations. MRI was obtained at screening or
within 6 months prior to enrollment to rule out significant central nervious
system lesions. Subjects who had other neuropsychiatric diseases, contra-
indications to PET, received anti-amyloid investigational drugs, or were
unable to complete psychometric testing were excluded.

Baseline assessments

Baseline measures included a clinical diagnostic interview and a cognitive/
functional battery comprised of the Alzheimer’s Disease Assessment Scale
(ADAS-cog; 11-item version), MMSE, CDR Global (CDR Global) and Sum of
Boxes (CDR-SB), Alzheimer’s Disease Cooperative Study Activities of Daily
Living Scale (ADCS-ADL), Digit-Symbol Substitution (DSS), Category Verbal
Fluency (animals and vegetables) and Wechsler Logical Memory (immedi-
ate and delayed recall).

Florbetapir PET Scan

Site PET scanners were qualified with a Hoffman brain phantom. PET
amyloid imaging was performed as part of study AV45-A05.25 Fifty minutes
after intravenous injection of 10mCi (370MBq) of florbetapir F 18, a 10-
min emission scan (acquired in 2 × 5min frames) was obtained. PET
scanners included Discovery LS PET/CT (GE, Fairfield, CT, USA), Advance
PET (GE), ECAT HR+ (Siemens, Washington DC, USA) and Biograph PET/CT
(Siemens) models. Image reconstruction utilized an iterative algorithm
(4 iterations, 16 subsets) and a post reconstruction Gaussian filter of 5 mm.
Three nuclear medicine physicians, blinded to clinical data, indepen-

dently rated the PET images at an imaging core lab (ICON Medical Imaging,
Warrington, PA, USA). A binary qualitative scale (amyloid positive: Aβ+ or
amyloid negative: Aβ− ) was implemented in this study according to the
pattern of tracer uptake observed in cortical gray matter areas. The PET
rating methods, visual rater training and reliability have been described
previously.22,25,27 In brief, scans were rated as amyloid negative if tracer
retention was seen predominantly in white matter, with no appreciable or
low levels of tracer retention in cortical gray matter. Scans were rated as
amyloid positive when tracer showed a gray matter pattern of distribution
with accumulation along the midline and surface of the cortex.

Follow-up assessments

Eligibility to participate in the follow-up protocol was contingent upon
completing a PET scan in the Phase II study AV45-A05. A brief phone
screen and status update with the subject/informant was conducted every
6 months. A diagnostic interview and a cognitive and functional test
battery were administered in the clinic 18 and 36 months after the PET
scan. Subjects were classified as CN, MCI, AD or non-AD dementia based on
these evaluations. Clinical diagnoses were generated without knowledge
of the florbetapir scan results.

Standard protocol approvals, registrations and patient consents

This study (NCT00857506) was approved by the Institutional Review Boards
at all participating sites and all subjects or their appropriate representa-
tives provided informed consent. The study sponsor was involved in all
aspects of the study. The first author had full access to the statistical
analyses and planned study report.

Statistical analysis

The primary analysis used analysis of covariance (ANCOVA) to compare the
magnitude of change from baseline on the ADAS-Cog between Aβ+ and
Aβ− subjects in the MCI population at 36 months. A last observation
carried forward (LOCF) methodology was implemented to impute the
missing values during the followup. Subjects who had at least one post-
baseline visit were included in the analysis, and the ANCOVA models were
adjusted for baseline test score and age. As a sensitivity analysis, with
observed data only, a mixed-effect repeated measure (MMRM) model was
implemented that included fixed effects for baseline amyloid beta status
(Aβ+ or Aβ− ), visit, amyloid-by-visit interaction, baseline score and age to
compare the least square mean (LSM) change from baseline between Aβ+
and Aβ− at month 36. An unstructured covariance structure was used to
model the within-subject correlation. We also generated illustrative line
graphs using mixed model analyses that included fixed effects for amyloid
status, age and month of followup, to estimate slopes of cognitive test
score change per month. Key secondary analyses compared the
percentage of Aβ+ and Aβ− subjects in the MCI population who
experienced a 4-point change in the ADAS-Cog, or had a change in
diagnosis from MCI to AD dementia using Fisher’s exact test. Other
secondary analyses included the change from baseline ADAS-Cog and
CDR-SB in CN and AD patients. Analyses of other psychometric and
functional assessments, conversions in diagnosis, time to first AD
medication (donepezil, rivastigmine, galantamine and memantine), were
also done for all relevant patient groups.
All statistical tests were conducted with a two-sided type I error rate of

0.05, unless otherwise noted. Differences between diagnostic groups and
Aβ status on baseline characteristics continuous variables were assessed
with two-sample t-tests; categorical variables were assessed with χ2 tests.
The Mantel–Haenszel statistic was used to test for trend differences
between Aβ+ and Aβ− MCI subjects converting to either CN or AD. The
Pearson χ2 test was used to test for differences in AD medication use
between Aβ+ and Aβ− groups. Fisher’s exact test was used when a
frequency table had a cell count less than or equal to 5. Analyses were con-
ducted with SAS Windows (Version 9 or later). P-values for the secondary
and exploratory analyses are unadjusted for multiple comparisons.

RESULTS

Subject disposition

A total of 152 of 184 subjects from the cross-sectional study
(AV45-A05) enrolled in the follow-up study (AV45-11) due to an
approximate 8-month delay between the start of the two studies
(Supplementary Figure 1). Of these 152 subjects (69 CN; 52 MCI; 31
AD), 97% of CN, 88% of MCI and 87% of AD completed 18 months
of followup, while 74% of CN, 71% of MCI and 52% of AD
completed 36 months of followup. The most common reasons for
termination were withdrawal of consent (N= 38) and loss to follow
up (N= 8). The proportion of study completers did not differ by
visual ratings of amyloid status in the AD, MCI or CN groups
(P= 0.52, P= 0.21, P= 0.33, respectively).

Baseline Florbetapir PET Amyloid Positivity by Diagnosis

Figure 1 depicts illustrative amyloid positive (Aβ+) and negative
(Aβ− ) PET scans. As reported previously25, 37% (19/52) of MCI,
14% (10/69) of CN and 68% (21/31) of AD dementia subjects were
rated as PET Aβ+ (Po0.0001) at study entry.

Baseline demographic characteristics and cognitive performance

At baseline (Table 1), Aβ+ subjects classified by visual ratings
tended to be older and have worse cognitive performance at
baseline than Aβ− subjects on some measures. Because of these
potential differences, we adjusted for baseline score and age in
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longitudinal statistical models evaluating rate of change by
amyloid status.

Florbetapir PET and rate of change from baseline to 36 months

Table 2 provides the observed changes on each measure at
36 months for Aβ+ and Aβ− classified subjects analysed by
ANCOVA (LOCF) and by MMRM, adjusting for baseline age and
cognitive function scores. The significance of the results using
either analytical method was similar. At month 36, the LS mean
change from baseline in ADAS-Cog in the MCI group (the primary
outcome variable) was 5.66 (worsening) for MCI subjects who had
Aβ+ scans, compared with −0.71 (improvement) for MCI
subjects who had Aβ− scans (P= 0.0014). For CN subjects, the

mean change from baseline at month 36 for subjects who had
Aβ+ scans was 3.24 (worsening), compared with −0.09 (improve-
ment) for subjects who had Aβ− scans (P= 0.0013). For subjects
with clinically diagnosed AD dementia, the mean change from
baseline at month 36 for subjects who had Aβ+ scans was
8.88, compared with 3.81 for subjects who had Aβ− scans (P>0.05).
For both the MCI and CN groups, the percentage of subjects
with a clinically significant 4-point worsening in ADAS-Cog
was significantly greater for subjects who had Aβ+ scans
than for subjects who had Aβ− scans (Aβ+ MCI 8/17, 47%, Aβ−
MCI 3/30 10%, Po0.01; Aβ+ CN 4/10, 40%, Aβ− CN 3/57 5%,
Po0.01).
Exploratory analyses of other cognitive outcomes (Table 2): In

ANCOVA analyses adjusting for age and baseline score, Aβ+ MCI

Figure 1. Example images of Aβ− and Aβ+ subjects clinically classified as CN, MCI and AD. Normalized SUVR images (color) and gray scale
images (used for visual interpretation of Aβ− vs Aβ+ status) from representative subjects. Note the absence of gray matter uptake and the
difference in average cortical SUVR in the Aβ− vs Aβ+ classified scans. The color images are shown for illustrative purposes.

Table 1. Baseline characteristics in Aβ+ and Aβ− subjects classified by visual ratings on florbetapir F 18 PET

Cognitively normal Mild cognitive impairment AD dementia

Aß+ (N= 10) Aß− (N=57) P Aß+ (N= 17) Aß− (N= 30) P Aß+ (N = 19) Aß− (N=9) P

Age in years 77.30 (8.04) 68.70 (11.32) 0.0250 74.47 (7.72) 70.40 (10.72) 0.1762 77.63 (7.29) 73.33 (12.98) 0.3750
Gender: Female N (%) 4 (40%) 36 (63.2%) 0.1685 9 (52.9%) 16 (53.3%) 0.9793 9 (47.4%) 2 (22.2%) 0.2032

APOE4+ N (%) 3 (30%) 13 (23.2%) 0.6446 11 (73.3%) 4 (13.3%) o0.0001 11 (73.3%) 2 (22.2%) 0.0150
Education in years 15.90 (0.74) 15.21 (2.39) 0.0860 14.47 (2.18) 15.27 (2.42) 0.2681 14.18 (2.08) 14.22 (3.38) 0.9709
SUVR 1.34 (0.18) 1.00 (0.09) 0.0001 1.50 (0.15) 1.00 (0.08) o0.0001 1.57 (0.17) 1.05 (0.11) o0.0001
MMSE 29.50 (0.53) 29.65 (0.48) 0.3761 27.29 (2.14) 27.53 (1.63) 0.6691 21.53 (3.96) 22.33 (1.73) 0.4604
ADAS-COG 5.60 (2.50) 4.51 (2.42) 0.1953 10.88 (4.85) 8.53 (4.45) 0.0993 20.74 (8.87) 13.33 (3.32) 0.0037
CDR-SB 0.00 (0.00) 0.02 (0.09) 0.1591 1.59 (0.87) 1.38 (0.91) 0.4541 5.68 (2.34) 5.39 (2.53) 0.7637
Activities of daily living 75.80 (2.44) 77.40 (1.46) 0.0711 72.29 (7.79) 75.27 (3.70) 0.1541 64.05 (11.63) 62.67 (10.79) 0.7658
Digital symbol substitution 41.90 (7.71) 49.95 (9.46) 0.0135 35.41 (9.83) 39.97 (11.15) 0.1677 20.05 (12.15) 28.89 (13.20) 0.0920
Verbal fluency animals 18.30 (4.45) 20.00 (4.24) 0.2500 16.41 (4.40) 16.07 (4.52) 0.8007 11.11 (4.58) 12.25 (4.33) 0.5527
Verbal fluency vegetables 13.10 (3.21) 14.02 (3.51) 0.4437 11.59 (3.81) 11.63 (3.74) 0.9687 6.79 (2.80) 7.38 (3.07) 0.6335
WMS delayed recall 10.40 (4.38) 12.86 (3.52) 0.0535 7.29 (4.71) 9.23 (4.54) 0.1719 1.11 (1.79) 3.67 (4.82) 0.1568
WMS immediate recall 11.90 (4.20) 14.11 (2.77) 0.0363 9.35 (4.47) 11.10 (3.34) 0.1348 3.16 (2.85) 7.89 (4.78) 0.0029

PET cortical global SUVR (standard uptake values relative to cerebellum) was quantified as reported previously.27 Please see Materials and Methods section for

statistical details and abbreviations of test names.
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subjects also showed a significantly greater deterioration than
Aβ− rated subjects on the CDR-SB, MMSE, DSS and verbal fluency
(vegetables). Aβ+ CN subjects similarly had greater decline on the
CDR-SB, DSS and verbal fluency for vegetables. Among clinically
diagnosed AD dementia subjects, Aβ+ classification predicted
greater decline on the CDR-SB, MMSE, tests of verbal fluency and a
trend on the ADCS-ADL. Significantly greater declines by amyloid
status on the ADCS-ADL and Wechsler Memory Scale were not
observed across any of the diagnostic groups.
Figure 2 illustrates the slopes calculated for the ADAS-COG,

CDR-SB and MMSE by clinical diagnosis in Aβ+ and Aβ− classified
subgroups. In contrast to Aβ− subjects in whom significant
declines were generally not observed, significant declines in
slopes were observed for all Aβ+ classified subgroups regardless
of clinical diagnosis.

Florbetapir PET ratings and change in diagnosis

The proportion of MCI subjects progressing to AD dementia or
reverting to CN over the 36-month study can be seen in Figure 3a.
Overall, more MCI Aβ+ subjects converted to dementia and fewer
converted to CN status than Aβ− subjects (P= 0.036). MCI
subjects rated Aβ+ had an ~3.5-fold higher conversion rate to
AD dementia (6/17 Aβ+ MCI subjects (35.3%) vs 3/30 rated Aβ−
(10.0%); P= 0.054). Fewer Aβ+ (1/17 (5.9%)] vs Aβ− (5/30, (16.7%))
MCI subjects reverted to CN status, although this difference was
not statistically significant. Among the 30 MCI Aβ− subjects, 27
failed to progress to dementia and failed to show clinically
significant worsening (a 4-point decline on the ADAS-Cog) over 36
months resulting in a negative predictive value of florbetapir PET
for both outcomes of 90% (95% CI: 74.4%-96.5%). In MCI subjects,

the positive predictive value was 47% with respect to a clinically
significant ADAS-Cog decline by 4 points and 35.3% for
conversion to AD dementia. The positive and negative predictive
values based on SUVR were similar to those for the visual reads.

Florbetapir PET Ratings and Cumulative AD medication use over
time

The proportion of MCI subjects taking AD medications at the start
of the study was greater among Aβ+ than Aβ− subjects (6/17 Aβ+
(35.3%) vs 1/30 Aβ− (3.3%); P= 0.0062) (Figure 3b). By study end,
12/17 Aβ+ MCI subjects (70.6%) were taking AD medications vs
7/30 rated Aβ− (23.3%) (P= 0.0022). Among MCI subjects not
taking AD medications at baseline, Aβ+ subjects had a greater
likelihood of starting AD medications during the study (6/11 Aβ+
subjects (54.5%) vs 6/29 Aβ− (20.7%); P= 0.056).

DISCUSSION

These results, from the first multicenter, 36-month follow-up study
of florbetapir F 18 amyloid imaging, confirm and extend results
from our prior 18-month interim report27 and prior prognostic
studies of 11C-PiB10–18,29,30 and CSF Aβ42. Subjects with Aβ+
florbetapir PET scans displayed greater cognitive and global
deterioration than Aβ− subjects over the course of 36 months,
regardless of diagnostic status. Conversely, the minimal decline in
the Aβ− group is an important finding that has impact on clinical
trials at all stages of AD when these subjects are included.
The diagnostic classification of MCI indicates an increased risk

for AD but is not a definitive diagnosis. An Aβ biomarker may
increase the probability that the MCI syndrome is due to AD.2

Table 2. Change from baseline to 36 months by florbetapir PET amyloid status

Change over 36 months (LOCF) Change over 36 months (MMRM)

Aß+ Aß− P Aß+ Aß− P

CN ADAS score 3.24 (0.90) −0.09 (0.37) 0.0013 3.65 (0.96) −0.18 (0.43) 0.0007

CDR sum of box 0.76 (0.15) 0.10 (0.06) 0.0002 0.82 (0.16) 0.10 (0.07) o0.0001

Mini mental state examination −0.74 (0.33) −0.40 (0.13) 0.3412 −0.74 (0.30) −0.28 (0.13) 0.1598
Activities of daily living −0.63 (0.73) −0.19 (0.28) 0.5878 −0.76 (0.77) −0.28 (0.34) 0.5742
Digital symbol substitution −6.52 (2.91) 0.21 (1.17) 0.0383 −7.05 (2.65) 0.78 (1.15) 0.0099

Verbal fluency animal −2.78 (1.57) −0.62 (0.64) 0.2114 −3.54 (1.55) −0.66 (0.70) 0.0986
Verbal fluency vegetable −2.09 (1.02) 0.16 (0.42) 0.0481 −2.23 (0.97) 0.16 (0.44) 0.0311

Wechsler logical memory scale −0.43 (1.13) 0.97 (0.45) 0.2613 −0.44 (1.12) 1.12 (0.48) 0.2135
WMS immediate recall −0.93 (1.06) 0.93 (0.42) 0.1127 −0.82 (1.10) 1.07 (0.48) 0.1252

MCI ADAS score 5.66 (1.47) −0.71 (1.09) 0.0014 6.62 (1.71) −0.84 (1.20) 0.0009

CDR sum of box 1.99 (0.53) 0.39 (0.40) 0.0223 2.33 (0.59) 0.54 (0.42) 0.0170

Mini mental state examination −2.88 (0.81) −0.30 (0.60) 0.0148 −2.78 (0.96) −0.32 (0.66) 0.0421

Activities of daily living −4.93 (2.20) −2.84 (1.63) 0.4624 −7.03 (2.76) −4.35 (1.93) 0.4333
Digital symbol substitution −10.94 (2.16) 0.13 (1.61) 0.0002 −9.34 (2.87) −0.45 (1.85) 0.0143

Verbal fluency animal −3.18 (1.10) −0.53 (0.82) 0.0630 −3.48 (1.34) −0.59 (0.93) 0.0864
Verbal fluency vegetable −2.28 (0.82) 0.76 (0.61) 0.0051 −2.12 (0.91) 0.61 (0.64) 0.0195

Wechsler logical memory scale −1.46 (1.12) 0.49 (0.84) 0.1781 −1.22 (1.30) 0.57 (0.92) 0.2729
WMS immediate recall −1.87 (0.99) 0.50 (0.74) 0.0674 −1.89 (1.32) 0.66 (1.00) 0.0914

AD dementia ADAS score 8.88 (2.88) 3.81 (4.43) 0.3763 14.76 (4.71) 4.11 (5.65) 0.1705
CDR sum of box 4.05 (0.80) 0.12 (1.17) 0.0116 5.46 (1.09) 0.49 (1.51) 0.0165

Mini mental state examination −3.92 (1.24) 1.17 (1.83) 0.0327 −5.96 (1.97) 0.76 (2.63) 0.0680
Activities of daily living −20.79 (4.52) −5.67 (6.63) 0.0746 −28.16 (6.52) −7.62 (8.83) 0.0846
Digital symbol substitution −5.99 (2.24) −0.01 (3.35) 0.1651 −6.48 (4.29) 0.44 (5.51) 0.3543
Verbal fluency animal −4.77 (0.81) 0.08 (1.27) 0.0041 −6.26 (1.21) −0.04 (1.58) 0.0067

Verbal fluency vegetable −3.05 (0.70) 0.62 (1.10) 0.0105 −4.52 (0.95) 0.99 (1.21) 0.0029

Wechsler logical memory scale −0.18 (0.67) 1.49 (1.01) 0.1949 0.35 (0.90) 1.13 (1.33) 0.6413
WMS immediate recall −0.89 (0.82) − 0.23 (1.26) 0.6862 −1.49 (0.88) −0.05 (1.20) 0.3910

Abbreviations: LOCF, last observation carried forward; MMRM, mixed model repeated measure. P-valueso0.05 are noted in bold. Please see Materials and

Methods for details of models.
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In this study, compared with Aβ− subjects, Aβ+ MCI subjects showed
greater mean worsening on the ADAS-Cog, MMSE, CDR-SB and
tests of executive function (DSS, fluency for vegetables). Aβ+ MCI
subjects were also more likely to experience a 4-point decline on
the ADAS-Cog, a previously used benchmark for evaluating
clinically meaningful change.31–33 The greater deterioration on
the CDR-SB and greater rate of AD medication prescriptions in
Aβ+ MCI suggest that the declines observed in these subjects are
relevant for clinicians and to the design of clinical trials. CN Aβ+
subjects worsened significantly more than CN Aβ− subjects on the
ADAS-Cog, CDR-SB, DSS and verbal fluency test (vegetables).
These findings confirm prior PiB study results in normal
subjects10,18 extend them over a broader range of tests relevant
to clinical trials and practice, and provide optimism that it may be
possible to identify preclinical AD in CN, and test preventive
interventions in these subjects. Among clinically diagnosed AD
dementia subjects, Aβ+ classification predicted greater decline on
the CDR-SB, MMSE, tests of verbal fluency and a trend on the
ADCS-ADL. Cognitive decline in Aβ+ patients was typically least in
the CN cohort and greatest in the AD cohort and (Figure 2)
consistent with slower cognitive decline at earlier stages of the
disease. In contrast, the slope of cognitive decline was relatively
flat for Aβ− subjects, regardless of diagnostic classification.
Despite the consistent changes in psychometric test scores, the

difference in percentage of MCI subjects converting to AD fell just
short of significance (P= 0.054). The latter may be due, in part, to

the small sample size of the MCI cohort (a post hoc power analysis
demonstrated only 56% power for this endpoint) and the limited
3-year duration of followup. The present findings suggest that
amyloid PET may have bidirectional predictive value in MCI for
progressing to AD dementia or reverting to CN. The 3.5-fold lower
conversion rate from MCI to AD and the threefold higher reversion
rate to normal status in Aβ− compared with Aβ+ MCI suggest that
Aβ− MCI has a diverse etiology and is less likely to indicate a
progressive neurodegenerative disease.
Rates of conversion from PiB Aβ+ MCI to AD dementia have

varied in prior studies from 29–82% depending on entry criteria
and duration of follow-up.11,12,14,16,27 The relatively low conversion
rate to AD dementia in our study (35% over 36 months) should be
interpreted in the context of some key issues; as noted previously, 27

MCI subjects in this study were recently diagnosed and with
respect to age, APOE4 status, ADAS-Cog and memory perfor-
mance (Wechsler memory scale), they were more similar to early
MCI than to late MCI subjects in prior studies such as ADNI (See
Supplementary Table 1).34–37 No threshold on delayed recall
performance was required for inclusion in order to more closely
simulate the diagnostic process typically used in clinical practice 2

and to not bias the amyloid status results toward only those MCI
subjects who were more rapidly progressing or closest to
conversion to AD dementia. These factors may also explain the
lower rate of amyloid positivity observed in our MCI subjects
(37%) compared with late MCI subjects in ADNI1(~62%), and the

Figure 2. Baseline test score and change in score per month (estimated slopes) for the ADAS-Cog, CDR-SB and MMSE in Aβ+ and Aβ− subjects
classified as CN, MCI and AD. Baseline scores and slopes estimated from MMRM model adjusted for baseline age. See text for details.
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greater similarity to early MCI subjects from ADNI-GO/2 (~43%).38

A significant proportion of Aβ+ subjects were already on cognitive
medications at baseline, and there was a disproportionately
higher rate of cholinesterase therapy initiation among Aβ+
subjects (71% vs 23% among Aβ− MCI subjects), which might
have reduced conversion rates. Although the majority of Aβ+ MCI
subjects did not decline to the point that they were considered
‘converted’, they did decline sufficiently to warrant pharmacolo-
gical intervention. Dropouts between 18 and 36 months may have
also resulted in a lower estimated conversion rate (and our power
for detecting differences); however, the dropout rate in our study

is consistent with similar length industry sponsored trials. Finally,
prior studies have noted a prolonged gestation period between
amyloid deposition and development of dementia suggesting
that longer follow-up periods may be necessary to ascertain the
ultimate conversion rate in Aβ+ MCI subjects, which would be
consistent with the higher observed positive predictive value
(47%) observed for 4-point decline on the ADAS-Cog.
Some limitations should be considered when evaluating the

present results. The primary objective succeeded in demonstrat-
ing greater decline on the ADAS-Cog in Aβ+ MCI patients;
however, we did not adjust for multiple comparisons in the
secondary and exploratory analyses; these analyses should there-
fore be interpreted in that context, despite general consistency
across the ANCOVA, MMRM and conversion analyses. The Aβ+
subjects tended to be older than Aβ− subjects, so we included age
as an adjustment factor in our analyses. We attempted to explore
the effect of APOE ε4 in combination with amyloid status on
cognitive and functional decline. However, as we and others have
previously reported,27,39 these two factors often provide over-
lapping information, leading to statistical models that
fail to converge or require elimination of one factor from the
model; in our exploratory analyses, typically only one of these
variables was retained in the model indicating that when amyloid
status was included in the model APOE ε4 generally did not
provide additional prognostic information. The majority inter-
pretation of three readers may differ from that provided by an
individual reader in the clinical setting. Finally, we did not collect
CSF, FDG-PET or MRI volumetric data and could not test the
comparative or combined utility of florbetapir with other
biomarkers.
Our results suggest that amyloid PET has promise for detecting

risk of subsequent cognitive decline in patients with MCI and CN
older adults, and support the negative predictive value of amyloid
PET40,41 in identifying patients unlikely to show clinical deteriora-
tion over several years of followup. Future longitudinal PET and
cognitive data should further clarify the prognostic role of amyloid
PET in the clinical setting, its ability to improve confidence in the
recently proposed diagnoses of dementia42 and MCI2 due to AD,
and for subject enrichment of therapeutic trials in the preclinical
stages of AD.7
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