
FLoSS: Facility Location for Subspace Segmentation

Nevena Lazic

nevena@comm.utoronto.ca

Inmar Givoni

inmar@psi.utoronto.ca

Brendan Frey

frey@psi.utoronto.ca

Parham Aarabi

parham@ecf.utoronto.ca

University of Toronto, Dept. of Electrical and Computer Engineering

10 Kings College Road, Toronto ON, Canada, M5S 3G4

Abstract

Subspace segmentation is the task of segmenting data

lying on multiple linear subspaces. Its applications in

computer vision include motion segmentation in video,

structure-from-motion, and image clustering. In this work,

we describe a novel approach for subspace segmentation

that uses probabilistic inference via a message-passing al-

gorithm.

We cast the subspace segmentation problem as that of

choosing the best subset of linear subspaces from a set of

candidate subspaces constructed from the data. Under this

formulation, subspace segmentation reduces to facility lo-

cation, a well studied operational research problem. Ap-

proximate solutions to this NP-hard optimization problem

can be found by performing maximum-a-posteriori (MAP)

inference in a probabilistic graphical model. We describe

the graphical model and a message-passing inference algo-

rithm.

We demonstrate the performance of Facility Location for

Subspace Segmentation, or FLoSS, on synthetic data as well

as on 3D multi-body video motion segmentation from point

correspondences.

1. Introduction

Many statistical models used for data analysis in vision

assume that high-dimensional input data has an intrinsic

low-dimensional representation. Furthermore, many such

models assume the data can be well approximated as ly-

ing on a linear subspace. For instance, principal component

analysis (PCA) [13], independent component analysis [12],

factor analysis [10], and nonnegative matrix factorization

[16] are all highly popular methods that attempt to recover a

low dimensional linear representation of the data. Although

the linearity assumption is often inaccurate, it nevertheless

turns out to be a reasonable and useful approximation in

many cases [25, 26, 30]. Even in non-linear dimensionality

reduction, many methods assume that data is locally linear,

and can be represented as some configuration of local linear

subspaces [19, 31].

In subspace segmentation, the underlying assumption is

that the data is composed of points lying on several distinct

linear subspaces, not necessarily of the same intrinsic di-

mension. The goal of subspace segmentation is to recover

the underlying subspaces and to assign the data points to

one subspace each. The toy data sets shown in Fig. 1 il-

lustrate this idea. Thus, subspace segmentation is a more

flexible model compared to the single linear subspace rep-

resentation, but it still retains some of the computationally

favorable properties of linear subspace models.

Subspace segmentation has a variety of computer vision

applications. One example is clustering images of differ-

ent objects under varying illumination. It has been shown

in [11] that a set of images of a Lambertian object un-

der varying lighting conditions forms a convex polyhedral

cone in the image space, which is well-approximated by a

low dimensional subspace. As images of different objects

lie on different subspaces, subspace segmentation can be

used for clustering images. Another application is in 3D

multi-body video motion segmentation from point corre-

spondences. Given the image coordinates of several key-

points lying on a rigid object, undergoing motion over F
video frames, it can be shown that vectors (of length 2F)

of stacked point coordinates lie on a linear subspace of di-

mension 2, 3 or 4 [24, 29]. When there are several moving

objects in the video, with tracked keypoints on each object,

the motion segmentation task is to cluster these points - an-

other instance of subspace segmentation.

In this work, we describe a novel subspace segmentation

method called Facility Location for Subspace Segmentation

(FLoSS), where we formulate subspace segmentation as an

instance of the facility location problem - a classical NP-

hard problem in combinatorial optimization and operational

1

Figure 1. Examples of data lying on multiple linear subspaces

research [17]. The facility location problem can be stated as

follows: given a set of customers, a set of potential facili-

ties that can be opened to serve customers, the cost of open-

ing each facility, and the distances between customers and

facilities, open a subset of facilities and assign customers

to one facility each, such that the sum of facility costs and

customer-facility distances is minimized.

FLoSS formulates subspace segmentation as facility lo-

cation by first constructing a large initial set of candidate

subspaces (or facilities), and assigning costs to them that

are based on their complexity (dimensionality). The can-

didate subspaces are initialized from the data by randomly

selecting D-tuples of linearly independent points, with 2 ≤
D ≤ D, where D is the original data dimension. Each data

D-tuple defines a linear subspace of dimension (D − 1).
Given the normal distances of data points to candidate sub-

spaces and the costs for utilizing subspaces, subspace seg-

mentation is framed as finding the optimal subset of sub-

spaces that best explains the data, i.e. the subset that mini-

mizes the subspace costs and the point-subspace distances -

an instance of facility location.

We find approximate facility location solutions by us-

ing a message-passing algorithm on a factor-graph repre-

sentation of the problem. The approach is closely related to

Affinity Propagation [8], an exemplar-based clustering al-

gorithm.

2. Previous work

There exist numerous notable subspace segmentation al-

gorithms, having different underlying approaches to the

problem. When the number of subspaces is unknown, a

sensible approach is to search for them one at a time, and

select the one that represents a large number of points well

at each pass. One such algorithm is random sample con-

sensus (RANSAC) [6, 23, 28], a generic algorithm for out-

lier detection. RANSAC fits a (D − 1)-dimensional sub-

space by iteratively (1) constructing a basis from D ran-

domly sampled points, (2) computing the normal distance

from all points to this subspace, and (3) labeling those above

some distance threshold as outliers. This is repeated until a

specified number of inliers is reached, or a sufficient num-

ber of points have been sampled. Multiple subspaces are

found iteratively, by removing the inliers from the previ-

ous step and repeating. A similar idea - that of iteratively

searching for a subspace with the most inliers - is used by

Da Silva et al. [3]. They formulate this task as an uncon-

strained, but non-convex optimization problem, with im-

proved efficiency over RANSAC. Neither method provides

a direct way of estimating subspace dimensionalities. One

proposed solution is to start with the highest-dimensional

model, and recursively check each found solution for lower-

dimensional models [2]. An alternative is to simultaneously

apply the algorithm on multiple hypotheses and use model

selection [7, 20].

When the number of subspaces and their dimensionali-

ties are specified, it is more intuitive to determine all sub-

spaces at once. One approach is to iterate between assigning

points to their nearest subspaces, and re-estimating the sub-

space bases from the assigned points. k-subspaces [11], an

extension of the k-means algorithm, iterates between mak-

ing hard assignments of points to subspaces based on min-

imal point-subspace normal distance, and re-computing the

subspace bases using PCA. Mixture of pPCA (mpPCA) [22]

makes this process probabilistic by using latent variables to

indicate the assignment of each point to one of k proba-

bilistic PCA models. The model parameters and the prob-

ability distribution over the latent variables are estimated

iteratively, using the Expectation Maximization (EM) algo-

rithm [4]. Both methods can be sensitive to initialization

and local optima.

Another possible approach, when the subspace number

and dimensionality are available, is to construct the solution

algebraically. Generalized PCA (GPCA) [27] represents a

union of k subspaces embedded in ℜD by a set of homo-

geneous polynomials of degree k in D variables. The poly-

nomial coefficients can be estimated linearly from the data.

The complexity of GPCA scales as kD, and the number of

data points needed to estimate polynomials is exponential

in k; hence, it is only practical for a small number of low-

dimensional subspaces. When the number of subspaces is

unavailable, the authors determine it by estimating the rank

of a matrix. A recursive approach similar to [2] can be used

when subspace dimensionalities are unknown.

Subspace separation (SS) [14] is also an algebraic ap-

proach. It relies on the observation that when the sub-

spaces are linearly independent and noise-free, it is possi-

ble to compute a binary data interaction matrix, indicating

whether two points lie on the same subspace or not. Noise

is addressed by using model selection to decide whether to

merge subspaces.

Overall, none of the methods provide an effective way of

estimating the number of subspaces and their dimensional-

ities. However, there exist applications in which subspace

structures are known beforehand, the most notable being

motion segmentation. In motion segmentation, the subspace

dimensionalities are 2, 3, or 4, and the possible challenges

posed by the data are well understood. Indeed, many sub-

space segmentation methods were actually designed as mo-

tion segmentation algorithms [14, 21, 29].

The multi-stage learning (MSL) algorithm of [21] for

motion segmentation refines the subspace segmentation re-

sults of SS using three stages of mpPCA of increasing com-

plexity, each corresponding to a different type of motion.

The simplest mpPCA model is initialized using SS, and the

results at each stage are used to initialize the next stage.

In this way, MSL accounts for the cases where SS fails,

namely, when the subspaces are co-dependent. This can oc-

cur frequently in motion data, especially when the motion

of the points is in part due to a moving camera.

Another multi-body motion segmentation method is lo-

cal subspace affinity (LSA) [29]. It is an algebraic method

that first projects points onto the first R principal compo-

nents and then onto a hyper-sphere SR−1. A local subspace

is fit around each point and its k nearest neighbors. The

points are then clustered using spectral clustering [18] with

pairwise similarities computed using angles between the lo-

cal subspaces. Misclassification can occur near the inter-

section of two subspaces (as the nearest neighbors lie on

different subspaces), or when the nearest neighbors do not

span the selected subspace. Model selection is used to se-

lect appropriate subspace dimensionality, which is 2, 3 or

4.

In comparison to previous methods, FLoSS is essen-

tially an iterative method that constructs subspaces from

randomly sampled D-tuples of data, similarly to RANSAC.

However, it considers all constructed subspaces (of possi-

bly different dimensionality) simultaneously, and selects all

k subspaces at once. Its complexity does not depend on the

dimensionality of the original data; however, it increases

with the total number of subspaces provided at initializa-

tion. FLoSS requires subspace dimensionalities or their

range as inputs, and discovers the number of subspaces au-

tomatically.

3. A graphical model for subspace segmenta-

tion

3.1. Problem setup

Given N data points, we begin by creating a large set

of M candidate subspaces by randomly drawing sets of

D << N linearly independent points for different values

of D where each set defines a (D − 1)-dimensional candi-

date subspace. We evaluate dnm, the squared normal dis-

tances from point n to subspaces m ∈ M . In addition, we

associate a cost cm with each subspace m, which is set to

be the sum of all pairwise distances between points defin-

ing the subspace. The purpose of assigning costs is to pre-

vent overfitting the data with very high-dimensional sub-

spaces or with too many subspaces. Using the sum of all

pairwise distances is a sensible way of setting costs since it

assigns lower costs to lower-dimensional subspaces and to

subspaces generated by points that are close to one another.

Having generated the set of candidate subspaces, we

would now like to select a subset M ⊂ M of subspaces,

and associate each point with one subspace in M, such

that the sum of normal distances from points to their as-

signed subspaces and the total cost of subspaces in M is

minimized. This optimization problem can be seen as an

instance of facility location (FL), a well studied NP-hard

problem. In FL, given a set of potential facilities (sub-

spaces, in our case), the goal is to select an optimal subset

of facilities and assign customers (data points) to one facil-

ity each such that the sum of facility costs and the distance

between customers to their assigned facilities is minimized.

Let xnm be a binary indicator variable, equal to 1 if point

n is assigned to subspace m and 0 otherwise, and let x =
{x11, . . . , xnm} be a vector of all the xnm variables . The

FL optimization problem can be stated as:

min
x

∑

m

∑

n

dnmxnm +
∑

m∈M

cm (1)

subject to
∑

m

xnm = 1 ∀n (2)

M = {m|
∑

n

xnm > 0} (3)

xnm ∈ {0, 1} (4)

The constraint (3) ensures that each point is assigned to

exactly one subspace.

3.2. Factorgraph representation and the maxsum
algorithm

The FL problem can be described in terms of a proba-

bilistic graphical model where each xnm is treated as a hid-

den binary random variable. The graphical model for the

problem is shown in Fig. 2, where we have used a factor-

graph notation [15]. Recall that a factor-graph is a bipartite

graph consisting of variable nodes and factor nodes. The

factor nodes evaluate potential functions over the variable

nodes they are connected to. The probability distribution

described by the graph is proportional to the product of the

factor potentials. The potential functions we associate with

the graphical model incorporate facility costs and customer-

facility distances, and enforce the constraint on the xnm

variables.

Given the following functions,

hnm(xnm) = −dnmxnm (5)

fm(x1m, . . . , xNm) =

{

−cm,
∑

n xnm > 0

0, otherwise.
(6)

gn(xn1, . . . , xnM) =

{

0,
∑

m xnm = 1

−∞, otherwise,
(7)

the joint probability distribution can be written as

p(x) ∝
∏

m,n

exp(hnm(xnm)) (8)

×
∏

m

exp(fm(x1m, . . . , xNm)) (9)

×
∏

n

exp(gn(xn1, ..., xnM)) (10)

x11
...

...

......

.
.
.

.
.
.

.
.
.

.
.
.

f1

h11

hn1

hN1

h1M

hnM

hNM

...

...

.
.
.

.
.
.

h1m

hnm

hNm

g1

x1m x1M

xn1

xN1

xnm xnM

xNm xNM

fm fM

gn

gN

Figure 2. Factor graph representation of p(x)

The functions hnm and fm account for distances and

costs, respectively, while the functions gn enforce the con-

straint that each point is assigned to exactly one subspace.

Maximizing log p(x) corresponds to the FL optimization

problem stated in Equation 1. Finding a solution to the

FL problem is carried out by finding maximum-a-posteriori

(MAP) estimates for the xnm using the max-product (belief

propagation) algorithm [15]. Max-product is a local mes-

sage passing algorithm known to converge to the MAP val-

ues of the variables on cycle-free graphs, and empirically

observed to give good results on graphs with cycles, as the

one described here. For notational convenience as well as

computational stability, we use the log-domain version of

the algorithm, max-sum. The general form of the max-sum

local messages between a function f and a variable x is [1]:

µf→x(x) = max
x1,...,xK

[f(x, x1, . . . , xK) (11)

+
∑

xi∈ne(f)\x

µxi→f (xi)] (12)

µx→f (x) =
∑

fl∈ne(x)\f

µfl→x(x) (13)

The messages are passed iteratively between function to

nodes and nodes to functions, and the algorithm is said to

converge once the message values no longer change. The fi-

nal variable assignment is based on the sum of all incoming

messages to a variable:

x∗ = arg max
x

∑

fl∈ne(x)

µfl→x(x) (14)

When the messages are functions of binary random vari-

ables (as in the factor graph in Fig. 2), they are of length

two. However, in practice it suffices to only pass the dif-

ference between the two values, µ = µ(1) − µ(0). For the

graph of Fig. 2, it can be shown that these messages are:

µhnm→xnm
= −dnm (15)

µxnm→gn
= µfm→xnm

− dnm (16)

µxnm→fm
= µgn→xnm

− dnm (17)

µgn→xnm
= −max

l 6=m
µxnl→gn

(18)

µfm→xnm
= min[0,−cm +

∑

l 6=n

max(0, µxlm→fm
)]

(19)

To find the MAP assignment, we only need to compute

the messages received by each xmn. By substituting in, we

can reduce the number of message updates to only these two

types:

ηnm ≡ µgn→xnm
= max

l 6=m
(−dnl + αnl) (20)

αnm ≡ µfm→xnm
= min[0,−cm +

∑

l 6=n

max(0, ηlm − dnm)](21)

We also note that all the ηmn and αmn message updates

can be done in a parallel fashion, i.e. without looping over

m and n. At convergence, we calculate the variable assign-

ments as

x∗
nm =

{

1 [ηnm + αnm − dnm] > 0

0 otherwise.
(22)

3.3. Relationship to affinity propagation

Affinity propagation (AP) [8] is an exemplar-based clus-

tering algorithm that selects data exemplars using local mes-

sage passing. It has been shown in [9] that affinity propaga-

tion can be represented using a factor graph that is similar

to Fig. 2, having binary random variables indicating the

membership of points to clusters. The differences between

AP and FL are in that (1) in AP, the available cluster cen-

ters are data points (as opposed to general facilities), and

(2) there is an additional constraint: if a point i chooses j
as its exemplar, j must also choose itself as its exemplar. A

somewhat different derivation of facility location as an in-

stance of affinity propagation has been been applied in the

past to computational biology problems [5].

4. Experiments

We evaluate the performance of FLoSS on both syn-

thetic and real data sets. We use synthetic data to illustrate

and compare the performance of the subspace segmentation

methods FLoSS, RANSAC, mpPCA and GPCA on differ-

ent types of data. We then apply FLoSS to rigid body mo-

tion segmentation from video, and compare it both to the

above mentioned subspace segmentation methods, as well

as to the MSL and LSA motion segmentation algorithms.

We note that the number of subspaces k is not an input to

FLoSS. This is due to the FL formulation where the num-

ber of subspaces is automatically determined as a trade-off

between distances and costs. The value of k can be con-

trolled indirectly by changing the value of the costs cm; in

general, lower costs will result in selecting a larger num-

ber of subspaces to use from the set of potential subspaces.

To compare FLoSS to methods that specify the number of

underlying subspaces k, we use the following procedure to

adjust the costs so that FLoSS finds exactly k subspaces

• If kFL < k, change costs to c′m = 0.75cm and run

again.

• If kFL > k, iteratively merge subspaces until kFL =
k. To decide on which subspace to merge, we form

a kFL × kFL matrix F whose entry Fij is the aver-

age normal distance of points assigned to subspace i
from subspace j; Fij =

∑

n xnidnj/
∑

n xni. We find

the smallest Fij such that i 6= j, and merge the corre-

sponding subspaces.

4.1. Synthetic data

We first investigate the case of subspaces of the same

dimensionality. We generate several synthetic data sets by

sampling data points from planes in ℜ3, and adding orthog-

onal Gaussian noise with variance at 5% of data variance.

For all algorithms, we specify the number of subspaces

k and their dimensionality. The segmentation results are

shown in Fig. 3, where the colors indicate subspace mem-

bership.

In general, RANSAC does not give very good results,

and its performance mainly depends on the number of it-

erations. mpPCA performs well on most data sets. How-

ever, as it is geared towards modeling mixtures of linear

segments rather than infinite subspaces, it may assign two

disjoint pieces of the same subspace to different mixture

components, as illustrated in the top row of Fig. 3. In addi-

tion, mpPCA can have difficulties distinguishing linear seg-

ments that overlap close to their means, as is the case for the

data shown in the middle row of Fig. 3. Although GPCA

gives good results on a variety of subspace configurations,

its performance degrades as the number of subspaces k in-

creases since the number of data points needed to estimate

subspaces is exponential in k. This explains its poor perfor-

mance on the 4-plane data set in the bottom row of Fig. 3.

GPCA can also be susceptible to noise; in fact, as noted in

[27], it is suboptimal compared to the other algorithms in

the Gaussian noise case when k > 1.

FLoSS gives very good results on the example configu-

rations. It treats subspaces as infinite, and its performance is

not affected by disconnected segments of the same subspace

or the point of intersection of several subspaces. Increasing

the number of subspaces k does not degrade its performance

either, although higher values of k may require using more

facilities at initialization.

We illustrate a case where FLoSS may fail using a more

challenging data set, shown in Fig. 4. The data set contains

a plane and two co-planar lines, at two levels of noise: 1%
and 5% of data variance. We use a fixed dimensionality of

2 for mpPCA, RANSAC and GPCA1, and initialize FLoSS

with both 1D and 2D subspaces.

On this data set, only mpPCA and GPCA correctly iden-

tify the subspaces, and only in the low-noise case. FLoSS,

on the other hand, groups the two lines into one plane

at both noise levels. In general, FLoSS prefers lower-

dimensional subspaces through lower costs. However, hav-

ing several densely sampled D-dimensional subspaces em-

bedded in a (D + 1)-dimensional subspace may offset the

cost difference, causing FL to choose the (D + 1) dimen-

sional subspace. As the structure of the subspaces is un-

known in general, it is difficult to set facility costs so as to

prevent this; a possible remedy could be the recursive ap-

proach of [2].

4.2. 3D motion segmentation

The 3D motion segmentation of points lying on rigidly

moving objects can be shown to correspond to segmen-

1Although it is possible to specify different dimensionalities for GPCA,

we found that fixed dimensionality gives better results using the code avail-

able at http://perception.csl.uiuc.edu/gpca/

(a) (b) (c) (d)

Figure 3. Comparison of different algorithms on data sets con-

sisting of planes, (a) RANSAC, (b) mpPCA, (c) GPCA, and (d)

FLoSS

(a) (b) (c) (d)

Figure 4. Mixed dimensionality subspaces, two noise levels: σ
2 =

0.01 (top row) and σ
2 = 0.05 (bottom row). (a) RANSAC, (b)

mpPCA, (c) GPCA, and (d) FLoSS

tation of linear subspaces [24, 29]. Briefly, let {wfp ∈

ℜ2}f=1,...,F
p=1,...,P be the image projections of P 3D points

{Xp ∈ P3}p=1,...,P , lying on a rigidly moving object, over

F frames of a rigidly moving camera. Under the affine pro-

jection model, wfp = AfXp, where Af ∈ ℜ2×4 is the

affine camera matrix at frame f . Let W ∈ ℜ2F×P be a

matrix whose columns are the 2D point trajectories. Then,

W2F×P =

A1

...

AF

2F×4

[

X1 · · · XP

]

2F×4
(23)

Therefore, the trajectories are embedded in a subspace of

dimension rank(W) that can be either 2, 3 or 4, depending

on the type of motion. When the points lie on multiple mov-

ing objects, the trajectories lie on multiple linear subspaces

of ℜ2F ; this observation is the basis of most rigid body 3D

motion segmentation algorithms.

Figure 5. Example frames with keypoints (left) and trajectories

(right) of checkerboard, traffic, and articulated motion sequences

from the Hopkins155 database. The keypoints colors denote hand

labeled objects.

A benchmark database for multi-body motion seg-

mentation from point correspondences is the Hopkins155

database [24]. The database contains 50 video sequences

of indoor and outdoor scenes, each containing two or three

motions. Additionally, the 35 three-motion videos are split

into
(

3
2

)

groups containing only two out of three motions,

resulting in a total of 155 sequences. The data contains sub-

spaces of different dimensionalities. The three video types

that make up the database are:

• Checkerboard: 104 video sequences with 2

checkerboard-pattern objects. The camera under-

goes rotation, translation, or both.

• Traffic: 38 sequences of outdoor traffic scenes, taken

by a moving hand-held camera.

• Articulated and non-rigid sequences: 13 video se-

quences of motions constrained by joints and non-rigid

motions.

Example frames from the three types of video sequences

are shown in Fig. 5.

We used the Hopkins155 database to evaluate the mo-

tion segmentation performance of the subspace segmenta-

tion models specified in Section 4.1, as well as that of two

motion segmentation algorithms: LSA and MSL. The num-

ber of objects in each sequence was specified for all algo-

rithms.

Except for FLoSS and mpPCA, the reported results were

obtained from [24], where the following settings were used:

GPCA was run on the first 5 principal components of the

data matrix W , and LSA was run on the first k principal

components, where k was the number of objects present.

For RANSAC, the dimension of all subspaces was assumed

to be 4; the algorithm was run 1000 times on each sequence,

and the average results were recorded. mpPCA was run on

the first 12 principal components of W , and the subspace

dimensionality was set to 4. FLoSS was also run on the first

12 principal components of W , and initialized with random

subsets of 3, 4 and 5 points (corresponding to subspaces of

dimension 2, 3, and 4).

The segmentation errors, calculated as the percentage of

misclassified points, are summarized in Tables 1 and 2. We

note that no single method outperforms all others for all data

sets. While GPCA achieves very good results for the 2 ob-

jects data, it performs poorly for the 3 objects data. As for

the motion segmentation algorithms, LSA performs well,

although inconsistently; while it is one of the best meth-

ods for the checkerboard sequences, it has the worst per-

formance on traffic. MSL also performs well overall, no-

tably better than mpPCA. Recall that MSL consists of three

stages of mpPCA, initialized using the subspace separation

algorithm, and adapted to different types of motion includ-

ing degenerate. The large gap in the performance of the

two methods is an indication of the sensitivity of mpPCA to

initialization and variable subspace dimensionality.

FLoSS outperforms all other methods on the traffic se-

quences, and achieves comparable results on the checker-

board and articulated motion sequences. The FLoSS er-

ror median is typically low; however, some large errors do

occur, most frequently as a consequence of choosing the

wrong subspace dimensionality. This is illustrated in Fig.

6, which shows the first 3 principal components of data

corresponding to the checkerboard sequence2 shown in Fig.

5. Here, instead of a higher-dimensional subspace, FLoSS

chooses two lower-dimensional subspaces embedded in it.

GPCA and LSA correctly group the two embedded sub-

spaces. On the other hand, FLoSS outperforms other meth-

ods on data that contains two disjoint parts of the same sub-

space, such as the data shown in Fig. 7, corresponding to

the traffic sequence3 shown in Fig. 5. In this case, LSA fails

due to the non-local structure, and GPCA fails because very

few points lie on two of the three groups. Such cases oc-

2The sequence 1RT2RTCRT −B
3The sequence cars2− 07

cur more frequently in traffic data when a large number of

keypoints are detected on disjoint pieces of the background

(due to, for example, trees and grass), in contrast to only

a few keypoints per car. In comparison to the other non-

motion segmentation specific methods (RANSAC, mpPCA,

and GPCA) FLoSS is either better (the traffic and articu-

lated motion data for 3 objects), or performs very closely

to the best method (GPCA for 2 objects checkerboard and

articulated motion, mpPCA for 3 objects checkerboard).

(a) (b) (c) (d)

Figure 6. Checkerboard sequence, first 3 principal components. (a)

Ground truth, (b) FLoSS, (c) GPCA, and (d) LSA

(a) (b) (c) (d)

Figure 7. Traffic sequence, first 3 principal components. (a)

Ground truth, (b) FLoSS, (c) GPCA, and (d) LSA

5. Conclusions and future work

We described a new subspace segmentation method

that discovers linear subspaces in data using a message

passing algorithm. We demonstrated its advantages over

other methods on synthetic geometrical data, and evaluated

its performance on multi-body motion segmentation from

video.

The presented framework for subspace segmentation

suggests numerous future work directions. We have de-

scribed a way of finding an approximate facility location

solution using the max-sum algorithm, and formulated sub-

space segmentation as an instance of facility location. The

same approach could be applied to any other task that can

be formulated as facility location, with different distances

and costs. In addition, it is possible to adopt alternative

approaches to the suggested method for discovering a can-

didate set of subspaces such as an iterative refinement pro-

cedure to re-sample candidate subspaces by using, for in-

stance, PCA on points assigned to each subspaces.

References

[1] C. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2006. 4

Error RANSAC mpPCA GPCA FLoSS LSA MSL

Checkerboard Average 6.52 9.89 6.09 7.70 2.57 4.46

Median 1.75 2.49 1.03 1.23 0.27 0.00

Traffic Average 2.55 21.41 1.41 0.14 5.43 2.23

Median 0.21 17.61 0.00 0.00 1.48 0.00

Articulated Average 7.25 25.13 2.88 4.69 4.10 7.23

Median 2.64 19.44 0.00 1.30 1.22 0.00
Table 1. Motion segmentation percent error, 2 objects

Error RANSAC mpPCA GPCA FLoSS LSA MSL

Checkerboard Average 25.7 15.44 31.95 16.45 5.80 10.38

Median 26.01 12.71 32.93 16.79 1.77 4.61

Traffic Average 12.83 37.02 19.83 0.29 25.07 1.80

Median 11.45 30.89 19.55 0.00 23.79 0.00

Articulated Average 21.38 53.12 16.85 8.51 7.25 2.71

Median 21.38 53.12 16.85 8.51 7.25 2.71
Table 2. Motion segmentation percent error, 3 objects

[2] O. Chum, T. Werner, and J. Matas. Two-view geometry estimation

unaffected by a dominant plane. CVPR, 2005. 2, 5

[3] N. da Silva and J. Costeira. Subspace segmentation with outliers: A

grassmannian approach to the maximum consensus subspace. CVPR,

1:1–6, 2008. 2

[4] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from

incomplete data via the em algorithm. Journal of the Royal Statistical

Society, Series B, 39:1–38, 1977. 2

[5] D. Dueck, B. Frey, N. Jojic, G. G. V. Jojic, A. Emili, G. Musso, and

R. Hegele. Constructing treatment portfolios using affinity propa-

gation. Research in Computational Molecular Biology (RECOMB),

4955:360–371, 2008. 5

[6] M. A. Fischler and R. C. Bolles. Random sample consensus: a

paradigm for model fitting with applications to image analysis and

automated cartography. Communications of the ACM, 24(6):381–

395, 1981. 2

[7] D. Forsyth, J. Haddon, and S. Ioffe. The joy of sampling. IJCV,

41:109–134, 2001. 2

[8] B. Frey and D. Dueck. Clustering by passing messages between data

points. Science, 315(5814):972–976, 2007. 2, 5

[9] I. Givoni and B. Frey. A binary variable model for affinity propaga-

tion. Neural Computation, 21:1–12, 2009. 5

[10] R. Gorsuch. Factor analysis. Lawrence Erlbaum, Hillsdale NJ, 1983.

1

[11] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman. Clustering

appearances of objects under varying illumination conditions. CVPR,

1:11–18, 2003. 1, 2

[12] A. Hyvarinen, J. Karhunen, and E. Oja. Independent Component

Analysis. J. Wiley, New York, 2001. 1

[13] I. Jolliffe. Principal component analysis. Springer Series in Statis-

tics, Berlin, 1986. 1

[14] K. Kanatani. Motion segmentation by subspace separation and model

selection. In Proc. 8th ICCV, pages 586–591, 2001. 2, 3

[15] F. Kschischang, B. Frey, and H.-A. Loeliger. Factor Graphs and the

Sum-Product Algorithm. IEEE Transactions on Information Theory,

47(2):498 – 519, 2001. 3, 4

[16] D. Lee and H. Seung. Algorithms for non-negative matrix factoriza-

tion. In NIPS, pages 556–562, 2000. 1

[17] M. Mahdian, Y. Ye, and J. Zhang. Improved approximation algo-

rithms for metric facility location problems. In In Proc. of the 5th

Int’l. Workshop on Approximation Algorithms for Combinatorial Op-

timization, pages 229–242, 2002. 2

[18] A. Ng, Y. Weiss, and M. Jordan. On spectral clustering: analysis and

an algorithm. In NIPS 14, pages 849–856. MIT Press, 2001. 3

[19] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally

linear embedding. Science, 290(5500):2323–2326, 2000. 1

[20] K. Schindler and D. Suter. Two-view multibody structure-and-

motion with outliers. CVPR, 2005. 2

[21] Y. Sugaya and K. Kanatani. Geometric structure of degeneracy for

multi-body motion segmentation. Workshop on Statistical Methods

in Video Processing, 2004. 3

[22] M. Tipping and C. Bishop. Mixtures of probabilistic principal com-

ponent analyzers. Neural Computation, 11(2):443–482, 1999. 2

[23] P. Torr. Geometric motion segmentation and model selection. Phil.

Trans. Royal Society of London, 356:1321–1340, 1998. 2

[24] R. Tron and R. Vidal. A benchmark for the comparison of 3-d motion

segmentation algorithms. CVPR, 1:1–8, 2007. 1, 6, 7

[25] M. Turk and A. Pentland. Face recognition using eigenfaces. CVPR,

1:586–591, 1991. 1

[26] R. Urtasun, D. Fleet, and P. Fua. Temporal motion models for

monocular and multiview 3d human body tracking. Computer Vi-

sion and Image Understanding, 104(2):157–177, 2006. 1

[27] R. Vidal, Y. Ma, and S. Sastry. Generalized principal component

analysis (gpca). IEEE Trans. PAMI, 27(12):1945–1959, 2005. 2, 5

[28] A. Yang, S. Rao, and Y. Ma. Robust statistical estimation and seg-

mentation of multiple subspaces. In CVPR workshop on 25 years of

RANSAC, 2006. 2

[29] J. Yanv and M. Pollefeys. A general framework for motion segmenta-

tion: Independent, articulated, rigid, non-rigid, degenerate and non-

degenerate. ECCV, 3954:94–106, 2006. 1, 3, 6

[30] J. Zhang, Y. Yan, and M. Lades. Face recognition : Eigenface, elastic

matching, and neural nets : Automated biometrics. In In Proceedings

of the IEEE, volume 85(9), pages 1423–1435, 1997. 1

[31] Z. Zhang. Principal manifolds and nonlinear dimension reduction

via local tangent space alignment. SIAM Journal of Scientific Com-

puting, 26:313–338, 2004. 1

