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[1] This paper describes the transition from open channel flow to flow over submerged
vegetation using velocity measurements collected with acoustic Doppler velocimetry
(ADV) and particle-image velocimetry (PIV). Submerged canopies were constructed from
arrays of rigid circular cylinders of height 4 in water of depth H. Both the canopy density,
described by the frontal area per volume (@), and degree of submergence (H/h) were varied.
Flow adjustment occurs in three stages. First, velocity begins to decelerate upstream of the
canopy, due to a high-pressure region generated at the canopy leading edge, and continues
to decelerate within the canopy, due to canopy drag. Rapid flow deceleration within the
canopy creates strong vertical flux out through the top of the canopy that extends over a
length proportional to the canopy drag length scale, (Cpa) ', with Cp being the canopy
drag coefficient. Second, a mixing layer develops at the canopy interface, with the stress at
the top of the canopy initially increasing, but eventually reaching a constant value. At this
point, the flow within the canopy is fully developed. The length scale for mixing-layer
development is related to canopy drag (Cpa) and the depth ratio (H/A). In the third stage, the
boundary layer above the mixing layer adjusts to the channel boundary conditions. A model
is developed to predict the adjustment of vertically averaged velocity within the canopy.
Measurements confirm that the flow adjustment is not dependent on canopy length.

Citation:
Res., 49, 5537-5551, doi:10.1002/wrcr.20403.

1. Introduction

[2] Aquatic vegetation plays a key role in many ecosys-
tems [e.g., Bunn and Arthington, 2002]. It alters mean and
turbulent flow, which in turn can influence the transport of
sediment [e.g., Lopez and Garcia, 1998, 2001, Nepf, 2012].
The modified hydrodynamics can also impact nutrient
uptake [Morris et al., 2008], light availability [Madsen
et al., 2001], and metabolic function [Nikora, 2010]. The
magnitude of flow through a canopy impacts the growth of
organisms within the canopy. For example, reduced flow
affects the food availability and growth of bivalves in a sea-
grass canopy [Bostrom et al., 2006].

[3] Most previous research has focused on fully devel-
oped flow over long canopies of vegetation (see review in
Nepf[2012]). However, vegetation often grows in a mosaic
of short patches [Sand-Jensen and Madsen, 1992], with
individual patches too short to reach fully developed condi-
tions. For typical river macrophytes, the distance to reach
fully developed flow over a long canopy is 1-10 m [Sukho-
dolov and Sukhodolova, 2006; Ghisalberti and Nepf,
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2009]. A few researchers have made observations of the
transition in the mean and turbulent velocity at the leading
edge of a canopy [Gambi et al., 1990; Fonseca and Koehl,
2006; Kregting et al., 2011; Sukhodolova and Sukhodolov,
2012], and these transition regions have been associated
with higher nutrient uptake rates [Morris et al., 2008] and
distinctive sediment deposition patterns [Zong and Nepf,
2010].

[4] Terrestrial vegetation has been studied more exten-
sively than aquatic vegetation, with experimental and nu-
merical methods describing flow adjustment at a forest
edge [e.g., Brunet et al., 1994; Irvine et al., 1997; Morse
et al., 2002; Yang et al., 2006; Dupont et al., 2011]. These
studies introduce the following basic features of flow
adjustment near a canopy leading edge (Figure 1). Let x
and z be the streamwise and vertical directions, with veloc-
ity u and w, respectively. Overbar will denote time aver-
ages and prime will denote deviations from the time
average, i.e., turbulent fluctuations.

[s] First, velocity begins to decelerate some distance
upstream of the canopy, due to the high-pressure region
generated at the canopy leading edge, and continues to
decelerate within the canopy (x > 0), due to the canopy
drag. From continuity, the deceleration of velocity within
the canopy (U,) is associated with a vertical velocity out
from the canopy (w > 0). The initial adjustment extends
from the leading edge over length X (subscript D denotes
deflection and deceleration). In this region, the mean verti-
cal advection (uw) is significant relative to vertical turbu-
lent transport («/w’) at the top of the canopy [Yang et al.,
2006], and turbulence development is restricted by the
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Figure 1. (a) Sketch of the flow adjustment from open channel flow to flow over submerged vegeta-
tion. H is the channel depth; /4 is the canopy height. X}, is the length of the initial adjustment, which cor-
responds to the deceleration of flow within the canopy. X is the length required for the mixing layer at
canopy interface to reach its fully developed stage, at which point the friction velocity at the top of the
canopy reaches a constant value, u, = (—u’w’ ) h‘/ 2. Beyond X-, U, is the vertically averaged flow within
the canopy (0 <z <h), and U, is the vertically averaged flow above the canopy (4 <z < H). (b) Longitu-
dinal (x) profiles of time-mean vertical velocity (w) and turbulent stress (—u’w’ ), both measured at the

top of the canopy (z=h).

upward flow [Irvine et al., 1997; Morse et al., 2002]. Most
terrestrial studies scale Xp with canopy height, / (typically
8—12 h), but acknowledge that X}, is dependent on the can-
opy density [e.g., Yang et al., 2006; Dupont and Brunet,
2009]. Belcher et al. [2003] suggest that X, scales with the
canopy drag length scale, L., which is a function of the
frontal area per canopy volume (a), the canopy drag coeffi-
cient Cp, and the canopy solid volume fraction ¢. Specifi-
cally, L. = 2(1 — ¢)/Cpa. Since most aquatic canopies
have high porosity (¢ <0.1), this may be approximated
LC =2 / CDa.

[6] Second, a mixing layer with coherent vortex struc-
tures grows with distance from the leading edge, eventually
reaching a fixed vertical size. As the layer grows, the turbu-
lent stress at the top of the canopy (—u'w’, Figure 1b)
increases and eventually reaches a constant value at dis-
tance X+ from the leading edge. The subscript * connects
this length scale to the maximum friction velocity at the
top of the canopy, which we denote wu-=max
(—ww)__,'/?. Considering a forest canopy edge, Irvine
et al. [1997] noted that all turbulence statistics eventually
reach constant values in equilibrium with the canopy inter-
face. This results in an equilibrium layer of finite height
embedded within a boundary layer that continues to grow
with distance from the leading edge. Unlike terrestrial
flows, which are unbounded, aquatic flows are bounded by
the water surface (Figure 1), so that the boundary layer can
also reach a fully developed stage. In addition, small ratios
of water depth (H) to canopy height (4) may impact flow

adjustment. The objective of this paper is to describe the
adjustment of flow from open channel conditions to vege-
tated flow, focusing on aquatic systems and the influence of
water depth ratio (H/h). The following three questions will
be addressed. What length scales describe the initial decel-
eration and mixing-layer growth? Does the initial flow
adjustment depend on the canopy length? How much flow
remains within the canopy layer?

2. Experimental Methods

[7]1 Experiments were conducted in a 16 m long, 1.2 m
wide recirculating flume. The canopy was constructed with
circular wooden dowels of diameter d = 0.64 cm. The dow-
els were held in a staggered pattern by a perforated base-
board. The array extended across the channel width, so that
flow adjustment occurred only in the vertical plane. The
canopy height was 2 =7 cm above the baseboard. The fron-
tal area per canopy volume is defined as a =nyd, with n;
the number of dowels per unit bed area. Three canopy den-
sities were tested; @ =2.3, 5.1, and 19.4 m™". Correspond-
ing to these densities, three canopy lengths were used,
L=4.38, 3.0, and 1.5 m, respectively, chosen to ensure that
the flow within the canopy reached full development, i.e.,
L > X.. Because flow development was more rapid for
denser canopies, we were able to make them shorter, which
saved on labor and materials. For the medium density can-
opy, we added additional cases with L <X- (Table 1). The
water depth was set by a downstream weir, and we targeted
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Table 1. Parameters for Experiments®

a L 0 U H U, Us U L. X, Xp X u-
Scenario (m™") (m) (%) (cm/s) (cm) (cm/s) (cm/s) (cm/s) (m (cm) (m) (m) (cm/s)
Al 2.3 4.8 1.2 6.5 14.0 5.1 7.9 73 0.86  43(11)  13(03)  24(0.3) 0.97
A2 2.3 4.8 1.2 5.9 27.7 3.0 6.9 45 0.86 59(7) 1.8(0.2) 1.9 (0.3) 0.81
A3 5.1 3.0 2.6 6.1 14.0 3.7 8.4 6.8 0.38 39 (6) 1.2(0.2) 2.0 (0.2) 1.12
A4 5.1 3.0 2.6 6.3 21.8 2.8 8.0 5.2 0.38 38(5) 1.1(0.2) 1.8(0.2) 1.05
AS 5.1 3.0 2.6 6.3 28.2 2.3 7.6 4.3 0.38 39(2) 1.2 (0.1) 1.6 (0.2) 0.97
A6 19.4 1.5 9.8 6.2 14.0 1.5 11.0 7.0 0.06 17 (3) 0.5(0.1) 1.1(0.2) 1.20
A7 19.4 1.5 9.8 6.3 22.3 0.8 8.8 4.6 0.06 16 (2) 0.5(0.1) 1.0 (0.2) 1.10
A8 19.4 1.5 9.8 6.4 27.6 0.7 8.3 3.8 0.06 19 (1) 0.6 (0.1) 1.1(0.1) 1.00
Bl 5.1 0.6 2.6 6.4 21.8
B2 5.1 1.8 2.6 6.2 21.8
B3 5.1 3.0 2.6 6.2 21.8

0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.04

“For the A scenarios, the canopy length (L) is longer than X-. For the B scenarios, the canopy length (L) is less than X-, so U,, U,, X,,, Xp, X+, u- are not
reported. X, is the e-folding decay length for w, as discussed in section 4. u- is the final, maximum friction velocity at the canopy interface (z=h). The
last row provides the uncertainties for a, L, ¢ , U,., H, U, U,, and u-. Uncertainties in X,,, Xp, X+ are given in parentheses adjacent to the report value.

water depth ratios, H/h =2, 3, and 4. The upstream velocity
was set around U, =6 cm s ', but the specific values
(Table 1) varied a bit with weir conditions. The range of
water depths (14-28 cm), corresponded to depth-scale
Reynolds numbers Re;; = 8400-16,800 and Froude num-
bers Fr=0.04-0.05, indicating that the flow was fully tur-
bulent and subcritical for all cases, so that no dependence
on Rey or Fr was expected. Drag coefficient Cp, is deter-
mined from the cylinder Reynolds number, Re; = ud/v,
evaluated at the leading edge, using relations provided in
Tanino and Nepf [2008]. In general, Cp increases with
increasing ¢ and decreasing Re,. For the two smallest solid
volume fractions (¢ =1.2% and 2.6%), Cj, is close to that of
an isolated cylinder [Tanino and Nepf, 2008]. Using the em-
pirical relation for an isolated cylinder, Cp =1+ 10Re,; %3,
we estimate Cp = 1.2 [White, 1991]. For ¢ =9.8% (a=19.4
m™ "), Cp= 1.6 from Tanino and Nepf[2008]. Experimental
parameters are summarized in Table 1.

[8] The streamwise coordinate is x, with x=0 at the
leading edge of the canopy. The lateral coordinate is y,
with y =0 at the centerline of the flume. The vertical coor-
dinate is z, with z=0 at the bed. The three instantaneous
components of velocity (u, v, w), corresponding to the
streamwise, lateral and vertical coordinates, respectively,
were measured with a Nortek Vectrino at a sampling rate of
25 Hz. Spikes in the velocity record were removed using
the acceleration-threshold method [Goring and Nikora,
2002]. After despiking, each velocity record was decom-
posed into time-averaged (u,v,w) and fluctuating compo-
nents (¢/,v/,w'), from which the turbulent intensities (4.5,
W,ms) and the Reynolds stress (—u/w’) were calculated.

[0] Flow inside a model canopy varies spatially at the
scale of individual cylinders. This can be seen in the lateral
profile of streamwise velocity taken at mid canopy height,
z="h/2 (Figure 2). In this study, we are interested in the
longitudinal evolution of velocity at scales larger than the
heterogeneity associated with individual cylinders, and so
we will only consider the spanwise-averaged velocity sta-
tistics, which we estimate using the following method. The
spanwise average is shown in Figure 2 by a dashed line.
We select from the lateral transect a measurement location
(marked as cross in Figure 2) where the local velocity is
close to the spanwise average. The measurement position,

marked as cross, is also shown in the dowel array (Figure
2d). For the streamwise velocity, this method provides an
estimate within 5% of the average. Figures 2b and 2¢ con-
firm that at the selected measurement location, the local
values of vertical velocity (Figure 2b) and Reynolds stress
(Figure 2c) are also representative, within 12% and 30%,
respectively. The staggered array pattern repeats in the
streamwise direction, so that we can use the same relative
measurement position, as shown in Figure 2d, for each lon-
gitudinal measurement position. Because the array pattern
varies with array density, this procedure was repeated for
each density to identify the correct measurement position,
which varies with array pattern. For the interested reader,
we note that at the selected measurement point the lateral
velocity and lateral flux do not reflect the spanwise aver-
age, which by definition are zero. However, this does not
impact our analyses, which are restricted to spanwise aver-
age conditions

[10] Longitudinal transects of velocity began upstream
of the canopy and extended to the end of the canopy.
Depending on the canopy length and density, the spacing
between measurement points was between 6 and 20 cm.
For most cases, longitudinal transects were made at mid
height (z=//2) and at the top (z=/h) of the canopy. Using
the longitudinal transects as a guide, we selected locations
for vertical profiles. For each measurement point, velocity
was recorded for 4 or 6 min.

[11] Since vertical velocity was small, mostly less than 1
em s ', acoustic streaming generated by the Vectrino
acoustic pulses may affect the measurement of vertical ve-
locity [Poindexter et al., 2011]. The acoustic streaming can
range from negligible to more than 2 cm s™', depending on
the Vectrino settings. In addition, if the probe is not aligned
to vertical, streamwise velocity can be read as vertical ve-
locity. In this case, the measured vertical velocity is corre-
lated to the streamwise velocity, i.e., w = u sin 6, with 6
the angular deviation of the probe axis from vertical. To
evaluate probe alignment, we measured a vertical profile
without model vegetation. We adjusted the vertical align-
ment until w(z) was not correlated to #(z), indicating that
the probe was aligned. Once aligned, the depth-averaged
vertical velocity should be zero. The measured depth-
averaged vertical velocity was —0.2 cm s~ ', which was
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Figure 2. Lateral (y) profiles of time-averaged (a) stream-
wise velocity, (b) vertical velocity, and (c) Reynolds stress
at midheight within the canopy (z=//2) for case A7. The
horizontal dashed lines indicate spanwise averages. The
gray lines are smooth fits. (d) Dowel array. In each subplot,
the measurement location is indicated by cross. The dash
line in Figure 2d is the centerline between two rows.

consistent with the expected magnitude for acoustic
streaming. Therefore, we concluded that acoustic streaming
was present, contributing an offset of this magnitude to all
vertical velocity measurements.

[12] Particle imaging velocimetry (PIV) was employed
to confirm trends in flow evolution with higher spatial reso-
lution. A Coherent Innova 70 Laser System was used to
illuminate the flow. Polyamid seeding particles with a di-
ameter of 50 um (Dantec Inc.) were added to the water. A
Dalsa Falcon HG camera was used to capture images. The
camera has a resolution of 1400 by 1024 and maximum
frame rate of 100 fps. For each measurement window
(approximately 20 cm by 20 cm, shown in Figure 3) images
were collected for 50 s at frame rates of 30—40 fps, which
corresponds to 1500-2000 frames. The processing was per-
formed with free software PIVIab. To improve image qual-
ity, the laser sheet wasn’t placed on the centerline of the
flume, but 30 cm away from centerline, closer to the glass
side wall (Figure 3). To verify the PIV measurements, we
compared PIV and Vectrino profiles measured in the chan-
nel without vegetation. The difference between the two

Laser

profiles was less than 5%. Since the optimum measuring
window was much smaller than the canopy length, a series
of windows were measured along the canopy and joined to-
gether in postprocessing.

3. Results of PIV: An Overview of Flow
Development

[13] Streamwise velocity, vertical velocity and Reynolds
stress for scenario A7 (the most dense case) are shown in
Figure 4. The patch began 3.5 m from the upstream end of
the channel, which was not a sufficient distance to generate
a fully developed boundary layer before the canopy. This is
evident in the velocity profile upstream of the canopy,
within which the velocity is 7 cm s™' over most of the
depth (yellow shading), decreasing toward the bed only for
z <4 cm. Approaching the canopy leading edge (x = 0), the
flow begins to adjust first near the bed, with deceleration
beginning 15 cm upstream of the canopy. Belcher et al.
[2003] called this the upstream impact region. The deceler-
ation upstream of the canopy is a response to the high-
pressure zone created at the leading edge [e.g., Yang et al.,
2006]. The length of the upstream impact region is compa-
rable to the canopy height (A =7 cm), which is consistent
with previous studies of flow approaching porous layers
[Rominger and Nepf, 2011; Chen et al., 2012]. As the ve-
locity decreases near the bed, it must increase above the
canopy, and continuity dictates a local region of high verti-
cal velocity near the leading edge (Figure 4b). The maxi-
mum vertical velocity (W =1.5 cm s~') occurs at the
leading edge (x=0), after which it decays with distance,
returning to zero at about x=40 cm. Beyond this point
(x >40 cm), the streamwise velocity at the top of the can-
opy is constant with streamwise distance, x (U, =0.05 m
s~ , dark green), but the sheared region above the canopy
continues to expand until it reaches the water surface. This
reflects the sequential evolution of the mixing layer at the
top of the canopy followed by the evolution of the bound-
ary layer above the mixing layer. This progression is fur-
ther illustrated by the evolution of the Reynolds stress.

[14] Along the top of the canopy, the Reynolds stress
(Figure 4c) increases slightly directly at the leading edge,
but then remain constant until x=40 cm (blue region),
which corresponds to the end of the region with strong ver-
tical velocity (Figure 4b). As previously noted by Morse
et al. [2002] and Belcher et al. [2003], the region of strong

[ Laser
X

‘Measurement
| window

kL

\

L1111

Figure 3. Sketch of laser and camera setup. The vertical coordinate is exaggerated. (left) A side view
of the channel with the placement of PIV measurement windows. (right) The channel with flow into the
page. The model canopy has height % in water depth H.
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Figure 4. PIV contour plots of (a) streamwise velocity,
(b) vertical velocity, and (c) Reynolds stress —u'w’ for the
most dense canopy, case A7 (a=19.4 m~', h=7.0 cm,
H=223 cm). The contours are evenly spaced with the
intervals 0.01 m/s, 0.002 m/s and 0.2 x 10 *m?%/s* for
streamwise velocity, vertical velocity, and Reynolds stress,
respectively.

vertical velocity at the leading edge interferes with the ini-
tial development of the canopy shear layer. Beyond x =40
cm, the Reynolds stress increases linearly with x, until it
levels to a value of 1 x 10~*m? s~ near x = 1 m, signaling
the end of mixing-layer growth. As with the streamwise ve-
locity, the profile of Reynolds stress above the canopy con-
tinues to develop until the boundary layer reaches the water
surface.

[15] Although not the focus of this study, we note that in
the wake of the canopy (x> 1.5 m) the velocity remains
diminished to the end of the measurement region, which is
50 cm (7h) from the canopy trailing edge. Although not
visible in the contour plot, a recirculation (negative local
velocity) occurs at 10 cm (or about one canopy height)
behind the trailing edge of the canopy. A peak in Reynolds
stress occurs behind and slightly above the top of the can-
opy (x=1.7 cm, y =10 cm). These features have also been
noted and discussed in previous studies of wakes behind
model canopies [Folkard, 2005 ; Detto et al., 2008].

4. Initial Adjustment Region

[16] In the initial adjustment region, the streamwise ve-
locity within the canopy decelerates, resulting (by continu-
ity) in a vertical velocity at the top of the canopy, with a
maximum vertical velocity at the leading edge (Figure 4b).
Previous researchers have shown that the streamwise veloc-
ity decays exponentially within the canopy [Lee, 2000;
Belcher et al., 2003], from which continuity dictates that
the vertical velocity also decays exponentially, as we see in
Figure 5. We use the following procedure to estimate the
development length, X, from the longitudinal transects of
vertical velocity measured at z =/ (Figure 5). Let wy be the

acoustic streaming offset, discussed in the methods section,
and let Wy be the value at the leading edge (x =0). The evo-
lution of vertical velocity in x will have the following form
(e.g., solid line in Figure 5)

W(x) =W, + (Wo — wy) exp(—x/X,) (1)

in which X, is the e-folding decay length for w. For each
canopy condition, X, and its 95% confidence limit are
extracted from (1) using a linear regression of x versus
In[(w — w;)/(Wo — Wy)] (Table 1). A y intercept of zero is
statistically supported (p > 0.05) for all cases, except A3
(p=0.02). We define X, at the point of 95% decay in w,
ie., Xp=3X,.

[17] In Table 1, we see that X,, decreases as a increases.
This is consistent with previous studies [Belcher et al.,
2003 ; Rominger and Nepf, 2011] that correlated the length
scale for flow adjustment to the drag length-scale L. ~ a .
However, the scaling is not linear. Specifically, for our
three canopy densities (¢=2.3, 5.1, and 19.4 m™") the
scale factor increases with canopy density, Xp=2.1L,
3.6L., 9L, respectively. Coceal and Belcher [2004] per-
formed several numerical experiments to simulate the
adjustment of a logarithmic wind profile to an urban can-
opy, varying the canopy density. From these experiments
and a scale analysis, they proposed,

Xp =3L.InK )

with K=(U,/u+)(h/L.). U, is the streamwise velocity and u-
is the friction velocity, both at the top of canopy. For forest
canopies, the factor 3 In K is typically in the range 4.5-6
[Belcher et al., 2012] and for urban canopies in the range
1.5-6 [Coceal and Belcher, 2004]. In general, the scale fac-
tor 3 In K has a larger value for denser canopies, which is
consistent with the trend observed in our study. However,
for the aquatic canopies considered in this study, (2) returns
a negative value for cases Al and A2, because K is less
than 1 in these cases. This suggests that we cannot adopt

= = =
= =) %o
T :

Wems")

=
(]

0,

02+

04 :
-50 0 50 100 150

X (cm)

Figure 5. Vertical velocity (w) along top of canopy
(z=nh) for cases A3, A4, and AS5. For these three cases the
depth ratio (H/h) is 2, 3, and 4, respectively, and the canopy
density is a=5.1 m~', ah=0.36. The black line is
equation (1) fitted for A4 (triangles).
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the scaling defined in (2) for aquatic canopies. To gain
insight into when the scaling breaks down, we explore the
term K= (U,/ux) (Cpah(1 — ¢)/2) appearing in (2). This pa-
rameter can be simplified with the following approxima-
tions. The velocity ratio U,/u« is fairly constant (3—6)
across a wide range of canopy conditions [Finnigan, 2000;
Ghisalberti, 2009], and in many aquatic canopies the
factor (1 —¢) is close to 1. With these simplifications
K = (1.5—3) Cpah. Because K<l returns an invalid
result in (2), we now see that (2) cannot be used for sparse
canopies, specifically for Cpah < (0.3 —0.7). Next, we
propose a modification to the scaling that does not have
this limitation.

[18] Consider the double-averaged momentum equation
[e.g., Wilson and Shaw, 1977; Nikora et al., 2007].

_, Ou)
() o
oy (I1)

+<W>@ :7i7777—nCDa<ﬁ>z

The overbar indicates a time average that removes temporal
fluctuations at turbulent time scales. The bracket indicates
a spatial average that removes the stem-scale heterogeneity
within the canopy. The spatial average excludes the volume
occupied by the canopy elements, which introduces the
canopy porosity, n =1 — ¢. Because we only consider can-
opies of sufficient density to produce mixing layers
(ah > 0.1, e.g., Nepf [2012, and references therein]), the
dispersive stresses resulting from the spatial variation of
time-averaged velocity are neglected. Poggi et al. [2004a]
showed that for dense canopies (ah > 0.13) the dispersive
stress is less than 10% of the Reynolds stress. We assume
that the model canopy, like the canopy in our experiment,
is spatially uniform, and specifically n # f (x, z), so that po-
rosity is only important in the drag term.

[19] From (3), we see that the adjustment of velocity in
the streamwise direction (term I) depends on: the mean
vertical advection of streamwise momentum (term II); the
pressure gradient (term III); the Reynolds stress gradient
(term IV); and the canopy drag (term V). Previous studies
considered a reduced form of (3) that included only the
deceleration (term I) and canopy drag (term V), from which
one expects Xp ~ Lo ~ 2(1 — $)(Cpa)~" [e.g., Belcher
et al., 2003]. However, Yang et al. [2006] showed that the
pressure gradient and the vertical advection are both signif-
icant near the leading edge. Therefore, we retain these
terms in the analysis of the adjustment length. However,
we drop the Reynolds stress term, which is observed to be
small near the leading edge (see discussion of Figure 1
above, and Belcher et al. [2003]). The following character-
istic variables are used to scale (3),

() ~ Ux 4)
where U, is the upstream velocity.
x~Xp (5)
From continuity,

(W) ~ Usch/Xp. (6)

14 .
O This study
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> Yang et al.(2006)
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Figure 6. Initial adjustment length (Xp) normalized by

canopy drag length scale (L.) versus dimensionless canopy
density, Cpah. The solid line is the best fit of equation (9).
The 95% confidence limits of the fit are « =2.3 = 0.2 and
B=1.5%0.2. Sources of individual data sets are discussed
in the text.

Based on previous studies [Rominger and Nepf, 2011;
Belcher et al., 2003], the elevation of pressure at the lead-
ing edge, Ap, increases with increasing canopy density

(drag).

Ap
pUs?

~ CDah (7)

[20] Substituting (4) through (7) into (3), and dropping
the Reynolds stress, we get

Us?  CpahUs? 1

2
% % 2T g CoaUs" (8)

The following linear form satisfies the scale relation in
equation (8)

)% — B(1 + aCpah) )

c

with scale factors o and ( to be determined from experi-
mental data. Note that (9), unlike (2), directly reflects the
contribution of pressure elevation at the leading edge,
which leads to a nonlinear relationship between X, and L...

[21] Data from five previous studies and measurements
made in the present study support the relation proposed
in (9) between Xp/L. and Cpah (Figure 6). Okamoto et al.
[2012] measured the velocity near the leading edge of a
submerged canopy with PIV. In their experiment 7 =15 cm,
U, =20 cm s ', and the water depth was H=15 cm (H/
h=3). The canopy densities were a=17.1, 7.6, and 1.9
m~'. The drag coefficient Cj,=1.8 was found in another
discussion of the same experiments [Nezu and Sanjou,
2008]. We estimated Xp, (0.4, 0.6, and 1.5 m, respectively)
from streamwise profiles of vertical velocity [Okamoto
et al., 2012, Figure 4]. Coceal and Belcher [2004] con-
ducted numerical experiments of the adjustment of wind
through model urban areas. The canopy height was 2.3 m,

5542



CHEN ET AL.: FLOW ADJUSTMENT THROUGH A SUBMERGED CANOPY

1.5
O a=23m”
. a=44m”
O a=5.1m"
+ =] a=7.7m’'
1r A =19 4m’
=
=" ..'.""'.' """"" ﬁ """"
%% o
05t g™ %
¢ 4 44
0 L
1 2 3 4 5 6
Hih

Figure 7. Variation of the shear length scale (Ly/h) with
H/h and canopy density. Nezu and Sanjou [2008] (gray
squares); Nepf and Vivoni [2000] (gray circles); the point
(@a=5.1m"", H/h=5) is from D. Meire (unpublished data,
2012); other data from present study.

and the flow domain was nominally unbounded, i.e., H/h
was effectively infinity. Three canopies were considered,
with L.=18.4, 13.1, and 7.8 m, which corresponded to X/
L.=1.8, 2.3, and 2.8, respectively. Dupont and Brunet
[2009] simulated the flow development at the leading edge
of a forest with height #=18 m and drag coefficient
Cp=0.2. Two cases (L.=90 and 36 m) were considered,
which resulted in adjustment lengths of 104 and 8%, respec-
tively. For the LES (Large Eddy Simulation) presented in
Yang et al. [2006] (h=7.5m, Cp=0.2, a=0.27 m™ ") the
vertical velocity at the top of the canopy went to zero at
Xp={11=%1) h, from Yang’s Figure 6. Finally, Dupont
et al. [2011] also considered a forest canopy (k=22 m,
Cp=0.26). The canopy-average frontal areca was
a=0.11*0.01 m~"' (Figure 2 of that paper). From Dupont
et al. [2011, Figure 7], w.—, = 0 between 11 and 124, so
Xp=250 = 10 m. Data from the present study are summar-
ized in Table 1. The solid line shown in Figure 6 represents
the best fit of all data to equation (9), which yields,
a=23*02and 5=15%0.2.

X,
L—D: 1.5(1 4 2.3Cpah)

C

(10)

[22] It is important to note that these data represent a
wide range of submergence, H/h =2 to effectively infinity
(terrestrial cases), suggesting that X}, is not sensitive to sub-
mergence. This is seen explicitly in Table 1 for cases with
a=5.1and 19.4 m™". Further, for the numerically modeled
terrestrial canopies of Yang et al. [2006], Dupont and
Brunet [2009], and Dupont et al. [2011], the frontal area of
the canopy was a function of height, i.e., a =f{z). For this
analysis, however, we used the vertically averaged value of
a, which is shown to produce good agreement with the
trends of all data and with equation (10).

[23] Note that when Cpah >> 1, equation (10) reduces
to Xp="7(1 — ¢)h. That is, Xp becomes predominantly a
function of the canopy height, with the canopy density
entering only through the porosity (1 — ¢). This is similar
to Rominger and Nepf [2011], who considered an aquatic

canopy model that was uniform over flow depth (emer-
gent), but of finite width (b =canopy half width). They
found that for high flow blockage (large Cpab), Xp ~ b,
and specifically Xp,=7b. However, some caution is
required when extrapolating (10) to large values of Cpah,
because the assumption that Ap/pU,.* increases linearly
with Cpah (equation (7)), cannot extend indefinitely. As
the canopy density approaches a solid body (¢ =1), the
pressure at the leading edge must asymptote to stagnation
pressure, ie., Ap/pUs?=1 (e.g, see Figure 6 in
Rominger and Nepf [2011]), for which X, is indeterminate
in (8), but physics suggests X, must approach zero.

5. Mixing-Layer Growth and Final Scale

[24] For canopies of sufficient density (ak > 0.1), flow at
the top of a canopy resembles a mixing layer, rather than a
boundary layer, although a boundary layer form is recov-
ered at some distance above the canopy interface [e.g.,
Raupach et al., 1996; Ghisalberti and Nepf, 2002]. The
mixing layer region is also known as the canopy-shear
layer, equilibrium layer, or roughness sublayer. The canopy
shear layer initially grows with distance from the leading
edge, but the layer and the coherent structures it supports
eventually reach a fixed size [Ghisalberti and Nepf, 2009]
and a maximum contribution to vertical turbulent flux,
which is manifest in a constant (with x) value of friction ve-

—N\1)2
locity, u. = (—u'w’) defined at the top of the canopy

(data discussed below). The distance from the canopy lead-
ing edge to the fully developed mixing layer is denoted as
X-. Below, we first discuss the vertical scale of the fully
developed mixing layer, and then return to discuss its evo-
lution from the leading edge.

[25] The scale of the fully developed mixing layer and
the coherent structures it contains are determined by both
the canopy density and the depth of submergence. The
shear length scale, L, = U, /(0 < u > /0z),, is a measure
of the coherent structure scale within the mixing layer
[Raupach et al., 1996]. Note that this measure assumes that
the shear at the top of the canopy is the maximum shear in
the mixing layer, which has been observed to be true. Nepf
and Vivoni [2000] suggested that the shear-length scale
(L,), as well as the penetration of coherent structures into
the canopy, is constrained by the water surface if H/h <2,
and this limit was confirmed by Wilson et al. [2003]. Spe-
cifically, for a fixed canopy density (e.g., a=4.4 m™ ', gray
circles in Figure 7), L, is constant for H/h>2, but
decreases with decreasing depth (H) for H/h <2. A more
recent study by Nezu and Sanjou [2008] suggests a smaller
transition point (H/h =1.5), which may indicate some de-
pendence on canopy density (gray squares, Figure 7). Ghi-
salberti [2009] suggested that the water surface constrains
the mixing layer when Cpa(H — h) < 0.5. Nevertheless, for
all cases shown in Figure 7, L, is not a function of H/h
when H/h > 2, and this may be useful as a general limit.

[26] The shear length scale is a function of canopy den-
sity (a), with Ly/h decreasing as Cpah increases (Figure 8).
For canopies with Cpah < 0.3, the values L/h > 1 suggest
that the mixing layer penetrates through the canopy height
to the bed. This is consistent with the penetration scale, 6./
h=1[0.23 £ 0.06]/(Cpah), which describes the distance that
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Figure 8. Shear-length scale normalized by canopy
height, L,/h, is inversely dependent on nondimensional can-
opy density, Cpah. Data sources are given in legend. Only
cases with H/h > 2 are included. The solid line correspond
to curve Ly/h = 0.4 (Cpah) "

the shear layer penetrates into the canopy, measured from
the top of the canopy [Nepf et al., 2007]. That is, the coher-
ent structures penetrate to the bed for Cpah < 0.23. For
denser canopies Cpah > 0.3 (Figure 8) the mixing layer
does not penetrate the full canopy height (Ly/h < 1).

[27] Poggi et al. [2004b] suggested the scaling L; ~
(2/Cpa)(u-/Uy)*. However, the dependence on u-/Uj, is typi-
cally weak for canopies of sufficient density. Specifically,
for Cpah > 0.3, (U), — U;y) = 2.6u- [Ghisalberti, 2009]. Fur-
ther, for dense canopies, U; << U,, indicating that u-/U), is
roughly constant, suggesting the simplification L/h
~ (Cpah)~". Fitting the data Cpah > 0.3 produces the rela-
tion Ly/h = 0.4 (Cpah)~"', shown as solid line in Figure 8.

[28] At some distance above the canopy, the velocity
profile transitions from a mixing-layer type to a boundary
layer type with a logarithmic form. Poggi et al. [2004b]
suggest that the transition to an overlying log layer occurs
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Figure 9. The normalized shear length scale, L/h,
evolves from the leading edge of canopy. Canopy density
a=5.1m"" (A3, A4, A5, ah=0.36) and 19.1 m~' (A6,
A7, A8, ah=1.3). The vertical solid and dashed lines indi-
cate Xp and X., respectively, for a=5.1 m~' and
a=19.4m ", See Table 1 for exact values.
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Figure 10. Evolution of streamwise velocity and Reyn-
olds stress along the canopy for A5 (H=28.2 cm, a=5.1
m ™). (aand d) x=30 cm; (b and ¢) x=60 cm; (c and f)
x =140 cm. Vertical scales shown in each graph depict the
mixing layer thickness predicted from 6§ = 2(AU/U,,)L;.

at z=2h. Similarly, Nezu and Sanjou [2008, Figure 14 of
that paper] estimated the transition occurred between
z/h=1.65 and 1.80, with no dependence on canopy density.
Finally, assuming a mixing layer height of 24 produced a
good fit to profiles measured over eelgrass in the field
[Lacy and Wyllie-Echeverria, 2011].

[29] We now consider how the mixing layer develops
from the leading edge of the canopy. The shear length-
scale Ly/h increases with distance from the leading edge
(Figure 9). The growth continues past the initial adjustment
length Xp,, but approaches a constant value around X-,
which will be discussed later. The progression of vertical
profiles shown in Figure 10 gives more detail regarding the
growth of the mixing layer. In a pure mixing layer, the
physical thickness of the layer, 6, is twice the vorticity
thickness (6, = AU/(0u/0z) ), With AU the velocity
difference across the layer [Pope, 2000; Sukhodolova and
Sukhodolov, 2012]. From these scales, we expect the mix-
ing layer thickness to be 6 = 2(AU/Uj,)Ly, and this length
scale is indicated alongside each profile in Figure 10. The
lower limit of the mixing layer is taken at the point where
the Reynolds stress decays to zero, within uncertainty. At
x = 140 cm, the mixing layer has just touched the bed. Note
that the mixing layer is not symmetric around the canopy
interface, which has been noted previously [Ghisalberti
and Nepf, 2002 ; White and Nepf, 2007]. In particular, Ghi-
salberti and Nepf'[2002] found that the center of the mixing
layer is positioned 0.56 above the canopy interface, with 6
the momentum thickness of the layer. The asymmetry is
explained by the fact that once formed, the mixing-layer
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Figure 11. Reynolds stress at the top of the canopy,
—u'w'j, normalized by the maximum value achieved (i)
and shown (a—c) as a function of distance from the leading
edge and also (d—f) as a function of the normalized
distance. Three depths are considered: (filled circles)
H=14 cm; (solid triangles) H=22 cm; (open squares)
H=28 cm. Three canopy densities are considered:
(aand d) a=23 m'; (b and ¢) a=5.1 m™'; (c and f)
a=194m".

coherent structures are influenced by the canopy drag, and
they grow more away from the canopy than within it [ White
and Nepf, 2007]. Finally, in the field, Sukhodolova and
Sukhodolov [2012] observed that ¢ grew linearly from the
leading edge of a submerged meadow, which is consistent
with Figure 10.

[30] The Reynolds stress at the top of the canopy
(—u'w;) is an indicator of turbulent momentum exchange
between the canopy and overflow. As the mixing layer
evolves from the leading edge, —u'w/, increases, but
reaches a final, maximum value, u+, once the mixing layer
is fully developed (Figure 11). In some cases, the stress
holds a nearly constant value for some distance at the lead-
ing edge, before beginning to increase. This is most evident
for the densest canopy (Figure 11c¢, squares and triangles),
for which the stress does not begin to increases until 40 cm
past the leading edge (also shown in Figure 4c). Similarly,
for a=5.1 m~' (Figure 11b), the constant stress near the
leading edge extends to 50 cm. As mentioned above, this
region of constant stress corresponds to the region of high
vertical velocity, and the mixing layer only begins to de-
velop after the vertical velocity becomes negligible com-
pared to the friction velocity at the top of the canopy [e.g.,
Belcher et al., 2003].

[31] The mixing layer adjustment length (X-) is the dis-
tance from the leading edge to the point at which the final,

maximum Reynolds stress () is reached (Figure 11). This
length scale has a clear inverse dependence on canopy den-
sity, with X- increasing from 100 cm for the densest canopy
(a=19.4 m™") to 200 cm for the sparsest canopy (a=2.3
m~") considered here (Figures 11a—11c and Table 1). For
the densest canopy (¢=19.4 m ') X. is the same within
uncertainty for all depths of submergence (Table 1). How-
ever, for the other canopy densities, X- is longer for condi-
tions with shallower submergence (smaller H/h). As we
discuss below, the dependence on submergence depth
arises because the convective speed of the vortices within
the mixing layer increases as H/h decreases.

[32] The following scaling argument is modified from
Ghisalberti and Nepf [2009]. The mixing layer growth
reflects the vertical diffusion achieved by the vortices in the
layer, and we can define a time scale for this process (7p) by
taking L; as a measure of the mixing layer thickness. We
define a vertical diffusivity D, ~ u-L,, based on observations
and scaling given in Ghisalberti and Nepf [2005]. The time
scale for mixing layer development is then,

LZ L

D. u,’

~

D~

(11)

[33] The vortex convective velocity, U,, translates this
time scale into a length scale,

U, Ly
X, ~ U Ty =—2.
Uy

(12)

[34] In a pure mixing layer, U, = U [Dimotakis et al.,
1981], which is the mean mixing layer velocity calculated
from the lower (U)) and upper (U,) limits of velocity within
the layer, ie., U = (U, + U;)/2. Ghisalberti and Nepf
[2002] measured U, in the mixing layer above a submerged
canopy, and they found that U,/U = 1.3+0.1, with a weak
dependence on depth of submergence, specifically,
U,/U = 0.93 + 0.12(H /h). For simplicity we use the scal-
ing U, ~ U in (12), from which we expect X, ~ UL;/u.
To evaluate this scaling, we normalized the coordinate x by
ULy/u. in Figures 11d-11f. This collapses the different con-
ditions, i.e., in each case the Reynolds stress reaches its max-
imum at the same normalized distance X,u,/ULs = [8=2],
which gives experimental support to the proposed scaling.

[35] We now consider the physical dependences embed-
ded in X, ~ ULg/u.. This scaling suggests that X-
increases as canopy density (a) decreases, i.e., X+ ~ L; ~
a~ !, which is consistent with our observations (Table 1). A
dependence on submergence depth (H/h) emerges through
U, which is our surrogate for the vortex velocity U,. U
(and thus X-+) is inversely proportional to H/h (Table 1).
This dependence arises directly from continuity. Consider
an upstream flow with depth-averaged velocity U,. The
flow in the canopy is decreased from this value by AU,
ie.,, U =U, —AU;. By continuity, the flow above the
canopy must increase by AU,=(AUh)/(H—h), i.e.,
U, = U, + AU,. From the constraints of continuity, U =
1h(Uy+U,) can  be written U = Uy +1hAU;
((h/H — h) — 1). Since AU; is predominantly a function of
a and not H/h, and letting /& be constant for a fixed canopy,
we see from this relation that as A (and thus H/h)
decreases, U (and thus X-) increases. Since this constraint
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Figure 12. Turbulent rms velocity (u,,,s and w,,,,) at the
top of the canopy (z = /%) normalized by u- versus distance
(x) from the leading edge. (a) a=2.3 m'; (b) a=5.1
m ' (¢c) a=19.4 m'. The symbols for u,,,, are: (aster-
isks) H=14 cm; (solid inverted triangles) H=22 cm;
(plus) H=28 cm. The symbols for w,,, are: (filled circles)
H=14 cm; (solid triangles) H=22 cm; (open squares)
H =28 cm. The vertical solid and dashed lines correspond
to the positions for X, and X+, respectively.

arises purely from continuity, it should hold for any aquatic
system.

[36] Finally, we consider the dependence of X- on u-,
which reflects the efficiency with which the vortices mix
vertically (D, ~ u-Ly). In our water channel u- decreases as
H/h increases (Table 1), which would tend to increase X-
with increasing H/h. However, this dependency is not
strong enough to reverse the influence of U = f(H/h)
described above. Further, the dependence of u- on H/h is
complicated by potentially conflicting changes in water
surface slope (S), which are site specific. In our experi-
ments, the depth-averaged velocity is held constant
between cases of different water depth. As H/h decreases,
the relative roughness of the canopy increases, requiring a
greater water slope to drive the same mean velocity,
and so u- (= \/gS(H — h)) increases, even though H-h
decreases. In the field, however, changes in the velocity
and water depth are often positively correlated, i.e., high
flow depths are associated with high velocity, so that u-
increases with increasing H/h, which would reinforce the
inverse dependency of X (~ UL,/u.) on Hh.

[37] The evolution of the mixing-layer coherent struc-
tures is further revealed through the turbulent rms veloc-
ities measured at the top of the canopy (Figure 12). The
magnitude of w,,,, is a measure of vortex velocity. The
magnitude of u,,,, reflects the magnitude of the shear and
the vertical scale of the coherent structures. First, note that
the normalized values of both u,.,,, and w,,,, have little sen-
sitivity to flow depth. This is consistent with the fact that
H/h>2 in all cases, because previous studies (discussed
above) have shown that for H/h > 2 the water surface does
not constrain the evolution of the mixing layer. Second,
note that w,,,; develops over a shorter distance than u,,,,
i.e., reaching its final, constant value closer to the leading
edge, which is consistent with observations and modeling
over terrestrial canopies [e.g., Yang et al., 2006]. The de-
velopment length for w,,, is similar to the initial adjust-
ment length (Xp), which is shown in the graphs for
reference (Figure 12). This suggests that the strength of the
coherent structures is set within this zone. This makes
sense, because the velocity difference between the canopy
and overflow that drives the vortex velocity is largely deter-
mined by the diminishment of U;, which occurs over dis-
tance Xp. In contrast, the length scale for development of
Ums 18 closer to X+, also shown in Figure 12. This makes
sense if the magnitude of u,,,; depends on the vortex scale,
L,, which develops over length X- (Figure 9). The differ-
ence in evolution length scales between w,,,,, and u,,,, sug-
gests that the coherent structures reach a fixed rotational
speed (w,,,,s), before they reach a final vertical scale.

[38] After the mixing layer is fully developed (x > X.),
the magnitude of both w,,,; and u,,,, at the top of the can-
opy scale with u-, with no dependence on canopy density.
Specifically, w,,,/u-=0.84+0.07 [standard deviation
(SD)] and u,,,J/u-=2.1 £0.14 (SD). Similar values were
measured at the top of a forest (Morse et al. [2002], w,,,,,/
u-=0.9, u,,u-=1.8) and were reported in Ghisalberti
[2009], who summarized data from a wide range of
obstructed shear flows, finding w,,,,/u- =1.09 £ 0.02 [95%
confidence interval (CI)], and u,,,/u-=1.85*=0.15 (95%
CD).

[39] Quadrant analysis can be used to illustrate the
change in turbulence structure associated with mixing layer
evolution. The instantaneous Reynolds stress u'w' is di-
vided into four quadrants [e.g., Lu and Willmarth, 1973].

[40] Quadrant 1: Outward interaction (z' > 0, w' > 0);

[41] Quadrant 2: Ejection (z' < 0, w' > 0);

[42] Quadrant 3: Inward interaction (' < 0, w' < 0);

[43] Quadrant 4: Sweep (' > 0, w < 0);

[44] A threshold value M is used to progressively high-
light (with increasing M) more extreme events within the
record, i.e., only events with |u'w/| > M|u'w’| are counted.
M =0 means all data are considered. To isolate extreme
events we choose M =3, similar to Poggi et al. [2004b].
The ratio Sy, = Z u'wh, 4/ Y u'w),, is used to quantify
the relative importance of sweeps (Q4) to ejections (Q2).
Here, » u'w),, and » u'w),, are the summation of in-
stantaneous stress events which meet the threshold,
|'w'| > M|u'w|, in the fourth (sweep) and second (ejec-
tion) quadrants, respectively. Ejections dominate (S;, < 1)
above the canopy, and sweeps dominate (S, > 1) within the
canopy (Figure 13). This is consistent with observations
above and within terrestrial canopies [e.g., Raupach et al.,
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Figure 13. Subplots (a)-(d) show the ratio of sweeps to ejections, S,, for cases (Figure 13a) AS
(a=5.1 m™"', H/h~4) with M=0; (Figure 13b) A4 (a=5.1 m', H/h~3) with M=0; (Figure 13c) A8
(a=19.4m" ", H/h~4) with M=0; and (Figure 13d) A5 with M=3. (e) Vertical velocity for AS5.
(f) Reynolds stress —u/w’ for AS. The canopy boundaries are shown with thin black lines at z=7 cm
starting at x = 0 cm. The figures do not extend to the water surface.

1996], and dense, submerged canopies (ah>0.1, Poggi
et al. [2004D]), but it is in contrast to boundary layer flow
(e.g., upstream of the canopy), for which ejections dominate
to the bed, S4, < 1 [Keirsbulck et al., 2002]. The dominance
of sweeps is a key feature of canopy flow, for canopies of
sufficient density. However, within sparse canopies
(ah < 0.06), the dominance reverses, Sy, <1, as the flow
behavior approaches that of a boundary layer [Poggi et al.,
2004b, Figure 4]. For ah>0.06, as the canopy density
increases, the magnitude of Ssp(> 1) in the canopy
increases. Poggi et al. [2004b] considered canopy density up
to ah=0.5, and for all cases they observed sweep penetra-
tion to the bed. In contrast, we consider a higher density
(ah =14, case A8, Figure 13c), for which the sweeps do not
penetrate to the bed. The trends with canopy density are
illustrated by comparing case A5 (Figure. 13a, a=5.1m ',
ah=0.36) to case A8 (Figure 13¢c, a=19.4 m ', ah=14).
Specifically, the denser canopy (AS8) experienced higher
magnitudes of S;, (maximum of 2.1), but the sweep events
did not penetrate to the bed (S4, < 1 at the bed). The sparser
canopy (AS) experienced smaller magnitudes in Sy, (maxi-
mum of 1.7), but S4, remains greater than 1 (sweep domi-
nated) over the entire canopy. Changes in water depth did

not significantly alter the sweep-ejection dynamics, e.g.,
compare Figure 13a (A5, a=5.1 m~', H/h=4) to Figure
13b (A4, a=5.1 m™ ', H/h=3). The lack of dependence on
H/h is expected, since we have only considered depth ratios
H/h>2, as discussed above.

[45] Finally, increasing the threshold value (M) isolates
the largest events. For M =3 (Figure 13d) S4 is both larger
within the canopy (reaching a maximum value of 2.8) and
smaller above the canopy (minimum value of 0.3) than it is
when all event are considered (M =0, Figure 13a). This
indicates that the extreme events favor sweeps within the
canopy and ejections above the canopy to a greater degree
than the average event. The shift from sweep to ejection
dominated conditions at the top of the canopy is consistent
with a mixing layer, for which sweeps dominate on the
low-velocity side and ejections on the high-velocity side
[e.g., Raupach et al., 1996].

[46] Starting from the leading edge of the canopy, the
onset of sweep dominance within the canopy (a shift from
blue to green to red shades) is observed only after the
region of strong vertical velocity (e.g., compare Figures
13d and 13e for A5, a=5.1 m™"). The transition occurs
first near the top of the canopy, and penetrates downward
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into the canopy as the mixing layer grows. For example,
fora=5.1m"~ (Figures 13a, 13c, and 13e), Sy, > 1 is first
observed at x=30 cm and the sweeps penetrate to their
maximum depth between x=100 and 140 cm. For the
densest canopy (A8, a=19.4 m~!, Figure 13¢c) the adjust-
ment begins (S4, > 1) at x=10 cm and the sweeps pene-
trate to their maximum depth near x =70 cm. As expected,
the contour map of Reynolds stress is similar to that for Sy »
(e.g., compare Figures 13d and 13f, A5, a=5.1 cm™ ).
However, the Reynolds stress more clearly reveals the fol-
lowing features. First, the Reynolds stress at the top of the
canopy increases from the leading edge, but eventually
reaches a constant value, which marks the fully develop-
ment mixing layer. For A5, this occurs at x =X- =160 cm
(Figure 13f). However, even after the mixing layer is fully
developed, the shear above the canopy continues to de-
velop. This is evident by the continued change in Reynolds
stress profiles above the canopy. This progression shows
distinctly that the establishment of the mixing layer occurs
over a shorter distance than the establishment of the full ve-
locity profile, which includes the boundary layer above the
canopy.

6. Two Layer Model: Evolution From the
Leading Edge

[47] Several researchers have suggested two-layer mod-
els for fully developed flow over a submerged canopy [e.g.,
Murphy et al., 2007 ; Huthoff et al., 2007; Konings et al.,
2012; Luhar and Nepf, 2013]. In these models the flow is
separated into a canopy layer (0 <z <h) with vertically
uniform velocity U; and the overflow layer (h<z<H)
with vertically uniform velocity U, (Figure 1). The layers
are connected through the turbulent stress at the top of the
canopy, 7, = —pu'w'|,_, which has been parameterized
using aspects of the vortex structure within the mixing
layer [e.g., Huthoff et al., 2007 ; Konings et al., 2012]. Both
u' and w' are expected to scale on the velocity difference
between the layers (U, — Uy), so that

= pC(Uy — Up)*. (13)

[48] The coefficient C describes the efficiency of mo-
mentum exchange between the two layers, and it should
depend on the scale of the vortices at the top of the canopy.
Konings et al. [2012] suggests that the relevant vortex scale
is the penetration length scale, 6., defined by Nepf et al.
[2007], which is the distance the mixing-layer vortices pen-
etrate into the canopy, measured from the top of the can-
opy. This length scale is defined by the point at which the
Reynolds stress within the canopy decays to a value 10%
of its value at the top of the canopy [Nepf and Vivoni,
2000]. Like the vortex scale (L, discussed above) the pene-
tration length scale also depends on both the canopy den-
sity and water depth. Specifically, ¢, is reduced when the
vortex is constrained by water depth, which occurs for
H/h<2 [Nepf and Vivoni, 2000]. For H/h>2,
8.=0.23(Cpa)~" [Nepf et al., 2007]. For HIh<2, we
assume that ¢, decreases linearly to zero at H/h =1, which
is the emergent condition. Therefore, 8, can be written,

023

=2 H/h>2 14

=02 (14
023 (H

so=—(Z_1) H/m<2 15
() mme (15)

[49] Using scaling arguments from Gioia and Bombar-
delli [2002], both Huthoff et al. [2007] and Konings et al.
[2012] suggest the following form for the coefficient C in

equation (13),
5.\
C=K (ﬁ)

where K. is an empirical factor. Substituting (16) into (13),
we can get

(16)

ée 1/3 5
Th:pKC(E) (Uz—Ul) . (17)
[s0] Some previous experimental data [Murphy et al.,
2007; Ghisalberti and Nepf, 2004; Poggi et al., 2004b;
Nepf and Vivoni, 2000; Dunn et al., 1996] and our own ex-
perimental data have been used to fit (17) and quantify the
factor K.. For Cpah <0.2, penetration depth calculated
from (14) is larger than 4, and these cases are excluded.
Based on reported values of U, U,, a, Cp and 7, for each
case, the best fit from (17) is K. = 0.07£0.02 (SD).

[51] Using the relation for stress developed above, we
can now write the continuity and layer-averaged momen-
tum equations in the fully developed region.

[52] Continuity equation:

Urh(1 — ¢) + Uy (H — h) = Us H (18)

[53] Overflow layer momentum equation:

OH 5
H—h)— = pC(U, — U
pg( )ax pC(U, 1)

[54] Canopy layer momentum equation:

OH

Peh = pCpahly® = pC(U = Ur)*  (20)

o

2(1-¢)
[55] Combining (18) to (20), we solve for the canopy-

layer velocity, Uy, in the fully developed region (x > X-).

U 1

= 3 @)
0 Cpah —
> 1=fo+\/achts B

[56] Next, we extend this model to describe the evolution
from the leading edge. As described earlier, velocity inside
the canopy decays exponentially. Using (21) to define the
final, velocity in the canopy layer (U)), the evolution of the
canopy-average velocity (U,) from the leading edge can be
described as

Uc(x) = Uy + (Up — Uy)exp(—x/Xy) (22)
U, is the canopy-averaged velocity at the leading edge
(x=0). The prediction of U, as a function of ah and H/h is
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Figure 14. Relation between canopy-averaged velocity at
the leading edge (U,) and canopy density a and depth ratio
Hih.

beyond the scope of this paper, and we simply use the
measured U, (Figure 14).

[57] Equation (22) does a reasonable job describing the
initial deceleration and the final velocity (Figure 15). How-
ever, it does not capture the minimum in velocity observed
near 110 cm in upper figure and near 60 cm in the lower
figure. This minimum occurs at the end of the initial adjust-
ment region (x =Xp), and it arises because the impact of
drag, which decelerates the flow, occurs over a different
length scale (Xp) than the development of the shear (X-),
which accelerates the flow. That is, the increase in Reyn-
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Figure 15. Measured depth-averaged velocity in the can-
opy layer (U,) for (a) a=5.1 m™', and (b) a=19.4 m~".
The solid line, gray line and dotted line correspond to pre-
dicted U, for A3, A4, AS, and A6, A7, AS, respectively.
The two short vertical lines indicate the highest and lowest
value of Xp.
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Figure 16. Streamwise velocity at midheight in the can-
opy and Reynolds stress at the top of the canopy for Bl,
B2, and B3. For all cases a=5.1 m ', H/h~3, and
X- =180 cm is expected, based on B3. For B1 and B2 the
canopy length L < X-. The vertical dashed lines indicate the
end of these two canopies.

olds stress beyond the initial adjustment (x > Xp) causes
flow reacceleration. A reacceleration after a local minimum
was also observed near the leading edge of emergent but fi-
nite width canopies, as discussed in Rominger and Nepf
[2011].

[s8] For the densest canopies, a =19.4 m™ ', (22) overes-
timates the measured canopy layer velocity, U; (Figure
15b). This likely occurs because the assumed drag coeffi-
cient is too small. Recall that the drag coefficient Cp=1.6
is estimated from the Reynolds number at the leading edge,
i.e., Rey= Uyd/v =~ 300. However, for this dense canopy,
the velocity decreases to U; << Uy, so that the local Re,
also decreases along the canopy, and in this range of Re,,
Cp increases with decreasing Re,. If we estimate Cp, based
on Ui, then Cp=2.4 and the predicted U;/U,, would be
0.24, 0.16, and 0.14, respectively, which have better agree-
ment with the measured values (Figure 15b). Therefore, to
correct for the under estimation of Cp (and over estimation
of U;), we would need to implement an iterative solution
between U; and Cp=f(U,d/v).

[59] So far we have only considered canopies with length
(L) long enough for U to reach the fully developed regime
(L > X+). However, in the field, the canopy length L may be
less than that needed to reach the fully developed in-
canopy flow (L <X:). We conducted additional experi-
ments to examine the impact of canopy length on flow
adjustment for the canopy density a=35.1 m~' and water
depth H/h=3, for which X*=1.8 m (Figure 16, and
B1-B3; Table 1). For canopy lengths L =60 cm (circle),
180 cm (inverted triangle) and 300 cm (cross), the meas-
ured velocity (Figure 16a) collapses onto the same line,
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within uncertainty, indicating that the initial adjustment
(Xp) is the same for all three canopy lengths. The Reynolds
stresses also collapse within uncertainty (Figure 16b),
which implies that the mixing layer develops similarly
along all three canopies. These results suggest that canopy
length is not an important factor in flow adjustment, and
(22) can be used for canopies that never reach a fully devel-
oped state (i.e., L < X+), even though the end condition (U;)
within (22) is defined for fully developed conditions.

7. Conclusions

[60] Flow adjustment at the leading edge of a submerged
canopy was investigated using ADV and PIV measure-
ments. The rapid flow deceleration at the leading edge can
be described by a balance of flow inertia, canopy drag, and
pressure, from which we show that the length of the initial
adjustment scales with the nondimensional canopy drag,
i.e., Xp ~ Cpah. The region x < Xp is marked by strong
vertical advection out of the canopy, a necessary comple-
ment to the strong deceleration in streamwise velocity. The
development of the mixing layer occurs over a length
X- > Xp. The adjustment length for the mixing layer scales
with ULg/u., which leads to dependencies on both canopy
density (X- ~ a~') and depth ratio (X- ~ (H/h)~"). Quad-
rant analysis reveals the transition from ejection-dominated
flow upstream of the canopy to sweep-dominated flow
within the canopy. As the scale of the coherent vortices
(Ly) grows from the leading edge, the sweeps penetrate fur-
ther into the canopy, and reach a final, maximum penetra-
tion at distance X-. Finally, a two-box model is used to
predict the evolution of the velocity in the canopy and
overflow, and measurements suggest that the canopy length
(L) does not impact flow adjustment near the leading edge,
i.e., the velocity within canopies shorter than X- can be pre-
dicted from the fully developed flow equations.
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