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Abstract. – Experiments on foam drainage have so far only been performed in essentially
one-dimensional flow geometries aligned with the direction of gravity. Here a foam-filled Hele-
Shaw cell is used to examine pulsed drainage, which is the flow of a finite liquid volume,
both along and perpendicular to the direction of gravity. An exact similarity solution to the
generalized foam drainage equation exists, and an asymptotic analysis is presented to elucidate
the nonlinear dynamics of the model. Good qualitative and quantitative agreement between
theory and experiments on aqueous foams made with SDS surfactant is found when the node-
dominated foam drainage model is applied.

Introduction. – Liquid separates the bubbles of foams and forms a continuous intercon-
nected network. In sufficiently dry foams, almost all of the liquid resides in the channels (or
Plateau borders), which are the regions between three touching bubbles, and in nodes (or ver-
tices), which are the junctions of four channels. The liquid volume fraction ε is a macroscopic
quantity, the ratio of liquid volume to total foam volume averaged over several bubbles, and
varies spatially and temporally as liquid flows through the channels and nodes.

The flow of liquid through foams is resisted by viscous drag and driven by surface tension
and (usually) gravity and is often called foam drainage [1] even in the absence of gravity
(e.g., [2]). The simplest model makes an analogy to flow through porous media. In [3] we
propose that foams have a permeability k that depends on ε according to

k(ε) = KχL
2εχ , (1)

where L is the length of a channel in the (monodisperse) foam, and χ and Kχ are dimensionless
numbers that depend on the nature of the foam.

The characteristic exponent χ depends on the boundary condition at the liquid/gas inter-
face [4,5]. In the no-slip model [2,6], Poiseuille-type flow through the channels dominates the
viscous drag and χ = 1. Alternatively, for the node-dominated foam drainage model [3, 7],
the interfaces are mobile, flow through the channels is plug-like, and the dominant viscous
dissipation occurs in the nodes because of the merging and bending of the flows from four
channels entering the node. Here we primarily investigate the case χ = 1/2, and refer the
reader elsewhere [8–10] for the case χ > 1/2.
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Using a continuity equation, the permeability (1), and the Young-Laplace law, we derived
the generalized foam drainage equation for the spatial and temporal dynamics of ε [3],

µ
∂ε

∂t
+KχL

2ρ g · ∇εχ+1 − KχLγδ
1/2
ε

2χ+ 1
∇2εχ+1/2 = 0 , (2)

where µ ≈ 0.01 g s−1cm−1 is the viscosity of the aqueous liquid in the foam, ρ g ≈ 981 g cm−2s−2

is the gravitational force per unit volume, γ ≈ 30 g cm−2 is the surface tension, and δε ≈ 0.171
is a geometric parameter [3]. While some surfactant systems show drainage according to
χ = 1 [5, 11], using SDS (sodium dodecyl sulfate) yields results in good agreement with the
node-dominated limit (χ = 1/2) when performing one-dimensional experiments in vertical
tubes. For foams with bubbles of similar size to the ones used in the present study we obtain
K1/2 ≈ 3.0× 10−3 [3, 7]. Consequently, there are no free parameters in this study.

Foam drainage does not only proceed in the direction of gravity, as capillary forces (isotrop-
ically) drive the liquid from wet to dry parts of the foam. An everyday example is pouring
beer. Where the beer is wet, the liquid volume fraction is high, while away from the spout the
foam is drier, causing an outward flow in addition to the downwards drainage. This super-
position of flows can only be observed when the foam geometry allows for drainage in at least
two dimensions, as studied experimentally in the present work for the first time.

Experimental setup. – We constructed a Hele-Shaw cell made of two plane parallel UV-
transmitting Plexiglas plates, spaced H = 2.54 cm apart, about 1m tall and 65 cm wide.
The foaming liquid contains 10 g/l of SDS in distilled water, which is well above the critical
micelle concentration (CMC) [12]. A small amount of fluorescein salt (0.25 g/l) is added to
the solution, which, when exposed to UV radiation, emits green light. A continuous slow flow
of N2 gas is forced through a porous glass frit inside the soap solution, filling the Hele-Shaw
cell with bubbles of mean edge length L = 0.085 cm with a polydispersity of about 50%. The
foam inside the cell is continuously replenished with fresh foam from below, which rises at
a velocity of about 0.26mm/s and this velocity is accounted for when determining the foam
drainage speed. Thus at a fixed position in space the foam does not age, i.e., coarsening of
bubbles (e.g., [13]) is suppressed, resulting in a uniform foam within the experimental field
of view. For smaller bubbles coarsening proceeds faster, introducing a significant increase of
average bubble size with height and possible coupling of coarsening with drainage [14].

In the two-dimensional pulsed drainage experiment, a volume of the soap solution is injected
within one second near the center of the foam-filled cell. To maintain low liquid volume
fractions (ε <∼ 0.1), where the foam drainage model is applicable, the injection pulses were
limited to Vliq <∼ 1ml. For pulses smaller than Vliq <∼ 0.01ml the fluorescence was too weak to
measure. The point of injection, known with an uncertainty of ±0.2 cm, sets the origin of the
(x, z) coordinate system, where the x-axis is horizontal and the z-axis is directed downwards.
The origin of time is set by the end of the injection process, which is known within ±1 s.

The dynamics of ε(x, z, t) are determined from the fluorescence intensity I recorded by
a CCD camera. In one-dimensional forced-drainage experiments [7] we determined that I is
approximately linearly proportional to ε, which we assume to be valid for the two-dimensional
experiments here as well. The prefactor of the proportionality was determined from the ratio
of the pulse volume to the integrated total intensity. It varies by ∼ 20% between different
experimental runs. This uncertainty can be attributed in part to multiple light scattering
within the plane of the Hele-Shaw cell. Within one experiment, the error in ε is much smaller.

Experimental results for pulsed drainage. – Figure 1 illustrates the dynamics of a pulse,
showing the ε-profiles along the direction of gravity (z) and perpendicular to it (x). As
expected, gravity leads to a general downward movement of the peak in the z-profile, while
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Fig. 1 – (a) Experimentally measured drainage (curves are smoothed with respect to raw data) of a
Vliq = 0.16ml pulse along the vertical z-axis at x = 0, and (b) along the horizontal x-axis at z = 0.
The arrows in (a) indicate the location of the peak, zmax, and the peak liquid volume fraction εmax.

the entire profile broadens along both axes due to capillarity. Within a few seconds of injection
ε is constant across the depth of the Hele-Shaw cell (see (10) below), and afterwards the liquid
volume fraction only changes in the (x, z)-plane of the cell.

We now discuss data from seven experiments using different pulse volumes Vliq ranging
from 0.02ml to 1.32ml. For smaller Vliq <∼ 0.02ml, the fluorescence signal is very weak and
the location zmax and the height εmax of the pulse peak could not be tracked sufficiently long.
Figure 2 shows that the time series are well approximated by power laws, i.e.,

zmax/cm = cz(t/s)dz and εmax = cε(t/s)dε . (3)

Averaging the best fits given by the solid lines in fig. 2 gives dz ≈ 0.58 ± 0.057 and dε ≈
−0.90± 0.045. Note also the systematic increase of the prefactors cz and cε with Vliq.

Discussion. – During the pulsed-drainage experiment, Vliq = H
∫
ε(x, z, t)dxdz is con-

stant. It is convenient to non-dimensionalize this integral constraint, as well as the foam
drainage equation (2), by introducing the dimensionless lengths ξ = x/�0, ζ = z/�0, time
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Fig. 2 – Dynamics of (a) the vertical position zmax and (b) the height εmax of the pulse maximum for
seven pulses with different volumes Vliq. Solid lines are best fits to eq. (3).
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τ = t/t0, and a rescaled volume fraction ε̃ = ε/ε0 . Choosing the scales

�0 =
γ

ρgL
, t0 =

(
2χ+ 1

Kχδ
1/2
ε

) (
µγ2χHχ−1/2

(ρg)2χ+1V
χ−1/2
liq L2χ+2

)
, ε0 =

Vliq

H�20
, (4)

one obtains a dimensionless equation involving the characteristic exponent χ,

∂ε̃

∂τ
+ B∂ε̃χ+1

∂ζ
− ∂2ε̃χ+1/2

∂ζ2
− ∂2ε̃χ+1/2

∂ξ2
= 0 , with

∫
ε̃dξdζ = 1 . (5)

This equation still contains one dimensionless parameter, a Bond number

B ≡
(
2χ+ 1

δ
1/2
ε

)(
V

1/2
liq ρgL

γH1/2

)
=

(
2χ+ 1

δ
1/2
ε

)
ε
1/2
0 , (6)

which gives the ratio of gravitational (ρgVliq) and capillary (V 1/2
liq H1/2γ/L) forces.

Self-similar solution. – Equation (5) has a self-similar solution

ε̃(ξ, ζ, τ) = τ−2/(2χ+1)g(q, s) , with q = τ−1/(2χ+1)ξ , s = τ−1/(2χ+1)ζ , (7)

which reduces (5) to a partial differential equation in similarity coordinates q, s:

− 1
2χ+ 1

(
∂ (qg)
∂q

+
∂ (sg)
∂s

)
+ B∂gχ+1

∂s
−

(
∂2gχ+1/2

∂q2
+

∂2gχ+1/2

∂s2

)
= 0 . (8)

Although this self-similar ansatz works for the foam drainage equation in arbitrary dimension
d, only for d = 2 does the volume remain conserved because

∫
ε̃(ξ, t) ddξ ∝ t(2−d)/(2χ+1),

where ξ is the generalized vector of non-dimensional spatial coordinates in d dimensions.
Both the foam drainage equation (5) and its self-similar version (8) can be solved numer-

ically by an operator-splitting algorithm PDE solver. These calculations assume a perfectly
dry background foam into which the pulse is introduced, so that the boundary conditions are
ε̃ = g = 0 far away from the pulse.

Experimental and theoretical scaling. – Beyond numerical simulations, a number of an-
alytical results can be obtained and compared to experiments. Given the self-similar ansatz
(7), we expect the position and corresponding maximal liquid volume fraction along z to obey

zmax = czt
1/(2χ+1) and εmax = cεt

−2/(2χ+1) . (9)

Previous one-dimensional drainage experiments for aqueous SDS-based foams [3, 7] showed
that the node-dominated theory with χ = 1/2 is a good description of the data. Comparison
of (3) and (9) then predicts dz = 1/2 and dε = −1, in good agreement with the present
two-dimensional experimental results (see fig. 2). The slight discrepancies may be due to
the presence of a non-vanishing background liquid volume fraction εb as the foam into which
the pulse is introduced is not perfectly dry: Due to gravity, εb must increase with z, so the
drainage dynamics is accelerated, as observed experimentally.

The prefactors cz and cε in (3) and (9) depend on Vliq and material parameters. Below,
we present an asymptotic theory for analytical predictions of these prefactors.

No gravity. – If B = 0 and χ = 1/2, (2) reduces to a diffusion equation with a diffusivity

D = K1/2Lγδ1/2
ε /2µ . (10)

For our experiments, D ≈ 0.16 cm2s−1. We thus estimate the time required for a pulse to
spread the thickness H of the Hele-Shaw cell, and so the onset of two-dimensional spread-
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Fig. 3 – Dependence of the peak position (a) and the peak height (b) on the Bond number, plotted
in self-similar coordinates. Experimental data (stars) are compared with numerical simulations (solid
lines) and analytical results for small B <∼ 10 (dashed lines) and large B (dot-dashed lines).

ing, to be approximately 10 s, so the use of data for t >∼ 10 s in fig. 2 should be justified. A
unit-volume solution to (8) with B = 0, χ = 1/2 is the Gaussian g0(q, s)= 1

4π exp
[−(s2 + q2)/4

]
which does not have compact support, unlike gravity-free solutions for χ > 1/2 [8, 9].

Small B. – We now perform a perturbation expansion g(q, s) = g0(r)+Bg1(q, s)+O(B2)
in (8) for small B, i.e., for small Vliq (we have defined r2 = s2 + q2). To first order in B the
ansatz g1(q, s) = s exp

(−3r2/8
)
f1(r) gives the linear ODE

3r
(
1− r2/8

)
f1 + 2

(
r2 − 3

)
∂rf1 − 2r∂2

rf1 = 3r/(16π3/2) . (11)

An examination of the large-r asymptotics of the homogeneous equation reveals that both
solutions are divergent, and therefore unphysical. Thus, the coefficients of the homogeneous
solutions vanish, and we determine the particular solution of (11) by a polynomial expansion
of f1 around r = 0. It converges onto a unique solution, whose zeroth-order (constant) part
is numerically found to be f1,0 = 0.019758 . . . . In order to determine the location smax and
height gmax of the pulse peak, we demand ∂s (g0 + Bg1) = 0 at smax and so find

smax = 8πf1,0B ≈ 0.4966B (B � 1) . (12)

In fig. 3a, we compare the results of this asymptotic formula to simulations of (8), as well
as to the measurements. The simulations reproduce (12) very closely, even up to B <∼ 10.
For consistent display of the data in fig. 3, the fits of fig. 2 were replaced by best fits to
the theoretically predicted behavior zmax ∝ t1/2, εmax ∝ t−1. Although the experimental
data span almost two decades of pulse volume, the corresponding Bond number range is
1.2 ≤ B ≤ 9.8, see (6). In this range, the data compare favorably to the theoretical results.

With the result smax ∝ B from the expansion above, gmax = g0,max+O(B2) follows, so the
peak maximum value stays constant (g0,max = 1/4π) for small B. The dashed line in fig. 3b
represents this prediction, which coincides with the PDE solution (solid line). The rescaled
experimental data for gmax again compare favorably with theory.

Large B. – For B � 1 (large Vliq), the advection term dominates the drainage process
along the s-axis, and we can neglect the terms ∂2

ζ ε̃ and ∂2
sg in (5) and (8), respectively. This

truncation introduces an error of O(1/s2), which is small, because most of the liquid resides
at large s (the pulse asymmetry is large). The ansatz g(q, s) = sαF (q) (i.e., a separation of
variables) in the truncated version of (8) yields α = 2 and the ODE



340 EUROPHYSICS LETTERS

-6 -4 -2 0 2 4 6 8

s=(z / l0)/(t /t0)
1/2

0.00

0.02

0.04

0.06

0.08

g=
(

ε/
ε 0)

 (
t /

t 0
)

t=8s
t=16s
t=32s
t=66s
t=90s
theory

a

-6 -4 -2 0 2 4 6

q=(x/ l0)/(t /t0)
1/2

0.00

0.02

0.04

0.06

0.08

g=
(

ε/
ε 0)

 (
t /

t 0)

t=8s
t=16s
t=32s
t=66s
t=90s
theory

b

Fig. 4 – Collapse of the vertical (a) and horizontal (b) profiles from fig. 1 when rescaled according to
(7). A PDE simulation with the corresponding Bond number B = 3.37 is shown as a heavy line.

−2F − 1
2
q∂qF + 3BF 3/2 − ∂2

qF = 0 . (13)

For symmetry reasons, F (q) must be an even function, which we expand for small q, F (q) ≈
F0 + F2q

2 + F4q
4 + . . . . We thus approximate the actual pulse shape by a surface in (g, q, s)

space with a s2 profile at q = 0 and a quartic profile laterally. Solving for the leading-
order coefficients of the expansion in q2, one obtains F0 = 16/(81B2), F2 = −16/(243B2),
F4 = −4/(729B2). To calculate the coordinate smax of the pulse maximum (which also gives
the finite length of the pulse along s), we use the condition of volume conservation, namely
1 =

∫ smax

0

∫ +q0(s)

−q0(s)
g(q, s)dqds , with ±q0(s) fulfilling g(±q0(s), s) = 0. We eventually find

smax =
311/6

4
√
2

(√
2− 1

)1/6
(

5
4−√

2

)1/3

B2/3 ≈ 1.9116B2/3 (B � 1) . (14)

Figure 3a shows that simulations for large B are in excellent agreement with (14). Note that the
maximum experimental injection volumes (B <∼ 10) are too small to reach this scaling regime.
Figure 3b shows the pulse height in rescaled coordinates, which consequently becomes

gmax = F0s
2
max ≈ 0.7218B−2/3 (B � 1) . (15)

Rescaled profiles. – Apart from reproducing the pulse peak dynamics, the self-similar
rescaling (7) should collapse the entire profile for a given B onto one master curve. Figure 4
displays this collapse for the experimental pulse data from fig. 1 (Vliq = 0.16ml) in (g, q, s)
space. Unlike 1D pulsed drainage, the spreading of the 2D pulse is diffusive, and both the
horizontal and vertical pulse widths scale with t1/2. A simulation of (8) for the corresponding
Bond number B = 3.37 yields theoretical curves in good agreement with the data (note that the
theory has no free parameters once χ is specified). We attribute the remaining discrepancies
to uncertainties in the intensity calibration and/or small deviations from χ = 1/2.

Conclusions. – While we know of one earlier numerical study of 2D drainage [15], our
work provides the first comparison of experimental and theoretical results for drainage in
more than one dimension. Quantitative measurements of 2D pulsed-drainage dynamics are
performed for hundreds of seconds and agree with the predictions of the node-dominated
drainage model. The spreading of the pulse in both directions is diffusive and scales with
t1/2. In one-dimensional pulsed drainage, the pulse also spreads with t1/2 for the channel-
dominated model (χ = 1) whereas for the node-dominated model (χ = 1/2) the pulse spreads
with t2/3 [3, 9].
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For the two-dimensional generalized foam drainage equation (2) there is an exact volume-
conserving self-similar ansatz governed by one parameter, the Bond number B, which deter-
mines the degree of asymmetry of the pulse shape. This property is unique to 2D: in other
dimensions, self-similar solutions to the PDE do not preserve the pulse’s liquid content [3,9].
In the absence of coarsening, any pulse of liquid in this 2D geometry eventually evolves in the
manner described here; however initial distributions in ε very different from the self-similar
shape take longer to show scaling behavior.

The generalization of the present analysis to three dimensions is straightforward. In order
to obtain liquid volume fraction data for 3D foam drainage, X-ray scattering (CAT scan) could
provide fast data acquisition and would supplement studies using MRI [16]. The present work
is valuable for the study of the dynamics of localized perturbations in the liquid content of an
otherwise uniform foam, which move and spread much like the pulses investigated here.
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