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Xin Chen1, Erika Ábrahám1, and Sriram Sankaranarayanan2,⋆

1 RWTH Aachen University, Germany

{xin.chen,abraham}@cs.rwth-aachen.de
2 University of Colorado, Boulder, CO.

srirams@colorado.edu

Abstract. The tool FLOW* performs Taylor model-based flowpipe construction

for non-linear (polynomial) hybrid systems. FLOW* combines well-known Tay-

lor model arithmetic techniques for guaranteed approximations of the continuous

dynamics in each mode with a combination of approaches for handling mode

invariants and discrete transitions. FLOW* supports a wide variety of optimiza-

tions including adaptive step sizes, adaptive selection of approximation orders

and the heuristic selection of template directions for aggregating flowpipes. This

paper describes FLOW* and demonstrates its performance on a series of non-

linear continuous and hybrid system benchmarks. Our comparisons show that

FLOW* is competitive with other tools.

1 Overview of FLOW*

In this paper, we present the FLOW* tool to generate flowpipes for non-linear hy-

brid systems using Taylor Models (TMs). TMs were originally proposed by Berz and

Makino [1] to represent functions by means of higher-order Taylor polynomial ex-

pansions, bloated by an interval to represent the approximation error. TMs support

functional operations such as addition, multiplication, division, derivation and anti-

derivation. Guaranteed integration techniques can utilize TMs to provide tight flowpipe

over-approximations to non-linear ODEs, with each flowpipe segment represented by a

TM [2]. However, these techniques do not naturally extend to non-linear hybrid systems

consisting of multiple modes and discrete transitions (jumps).

Figure 1 presents a schematic diagram of the major components of FLOW*. FLOW*

accepts (i) A hybrid system model file which describes the modes, the polynomial dy-

namics associated with each mode and the transitions between modes; (ii) A specifica-

tion file includes TM flowpipes with the state space and unsafe set specifications. For a

model file, FLOW* performs a flowpipe construction for a specified time horizon [0, T ]
and a maximum jump depth J such that the flowpipe set is an over-approximation of

the states which can be reached in [0, T ] with at most J jumps. FLOW* also checks

whether the flowpipe intersects the unsafe set and outputs a visualization of the set of

reachable states using polyhedral over-approximations of the computed TM flowpipes.

FLOW* is extensible in quite simple ways. Our TM output can be parsed in by other
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tools, including FLOW* itself to check multiple properties incrementally. This can help

support future advances such as checking for MTL property satisfaction for flowpipes,

finding limit cycles, inferring likely invariants or Lyapunov functions from flowpipes

and extending robustness metric computations for entire flowpipes [3]. The FLOW*

tool with its source code and the set of non-linear benchmarks used in this paper, as

well as our original work [4] are available on-line1.
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Fig. 1. Structure of FLOW*

TM Integrator: The

Taylor model integrator

implements a guaranteed

integration scheme using

higher-order TMs, along

the lines of previous work

described in [1,2,5,6]. Our

implementation includes

numerous enhancements

to the existing TM in-

tegration techniques

including the adaptive ad-

justment of the orders of

the TMs for better control

of integration error and

better handling of flow-

pipe guard intersections.

Image Computation for Discrete Transitions: The implementation of image com-

putation is based on the techniques described in our previous work for approximating

the intersection of TMs with guard sets of the transitions [4]. This approximation is

achieved by two complementary techniques: (a) the domain contraction technique com-

putes a smaller TM by shrinking the initial condition and the time interval for which

an intersection with the guard is possible; (b) the range over-approximation technique

that converts TMs into representations such as template polyhedron or zonotopes over

which guard intersection can be computed efficiently. Range over-approximation also

includes the conversion of the result back to a TM. FLOW* implements a combination

of (a) and (b) to achieve a better accuracy than using either of them.

The verification techniques developed for hybrid systems over the last few decades

have resulted in many tools for linear hybrid systems analysis including HyTech, Check-

mate, d/dt, Ariadne, HySAT/iSAT, RealPaver, PHAVer, SpaceEx [7]. However, few

tools exist for non-linear systems. A few notable non-linear analysis tools include KeY-

maera [8], Ariadne [9] and HySAT/iSAT [10].

2 Novel Features in FLOW*

We discuss features of the FLOW* which have not been included in our earlier work [4].

These features improve the efficiency of our overall approach and allow the automatic

1
http://systems.cs.colorado.edu/research/

cyberphysical/taylormodels/

http://systems.cs.colorado.edu/research/cyberphysical/taylormodels/
http://systems.cs.colorado.edu/research/cyberphysical/taylormodels/
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Name Description

Remainder Interval (Ie) Maximum remainder interval Ie for each integration step.

Adapt step sizes and TM orders to ensure error within Ie.

Adaptive Step Sizes Range [α, β] for possible step sizes.

Adaptive TM Orders Change TM orders on-the-fly.

Allow state variables to have different orders.

Preconditioning Change of basis for better flow approximation.

Template Directions Aggregating flowpipe segments by a template polyhedron.

Fig. 2. Basic parameters for controlling FLOW* algorithm

selection of parameters. In our experience, the integration of non-linear systems is of-

ten quite fragile. There are many parameters to adjust, as outlined in Figure 2. It is

necessary to choose them judiciously to ensure that the desired flowpipe accuracy is

maintained without expending too much resources. Automating the choice of some of

these parameters on-the-fly seems to be the only possible solution to this problem. The

new features added to FLOW* automate this to a large extent by allowing the user to

specify a flexible range of parameters and adapting the flowpipe construction on the

fly within this range to trade off precision of the result against the running time and

memory consumption.

Specifying Different Orders over Dimensions. The performance and accuracy of TM

integration depends critically on the order of the TM approximation chosen. However,

existing approaches specify a single fixed order for each state variable. Nevertheless,

it is clear that for a complex system, different state variables grow at varying rates. A

key feature of FLOW* allows us to perform integration while specifying orders for the

TM representation of each state variable independently during the integration process.

For instance, state variables that represent timers can be specified to have order 1 TMs,

whereas fast varying variables can be represented by higher order TMs at the same time.

Adaptive Techniques. FLOW* supports adaptive integration time step and adaptive

TM order selection for each state variable using specially designed schemes.

Adaptive step sizing. Adaptive step sizing is a standard feature in many flowpipe tools

including SpaceEx [7]. A range [α, β] wherein 0 < α ≤ β is specified by the user

for the time step size. The purpose of adaptive step sizing is to choose a step size

δ ∈ [α, β] such that the Picard operator2 on the current flowpipe yields a TM with

remainder interval that is contained in Ie. Our approach starts from δ = β and as long

as the Picard operator fails to yield a remainder inside Ie, it updates δ by δ′ := λδ using

a discount factor λ which is set to 0.5 in our implementation. If δ < α, a diagnostic

message is printed asking the user to either (a) decrease the lower bound on the adaptive

time step α, (b) enlarge the interval Ie or (c) increase the approximation order. Note that

either (a) or (c) slows down the overall computation, but is ultimately unavoidable if the

dynamics are hard to approximate.

2 Given an ODE dx

dt
= F (x, t), the Picard operator on a function g(x0, t) is given by

PF (g)(x0, t) = x0 +
∫

t

0
F (g(x0, s), s) ds . If the Picard operator is contractive on g with

some t, then g is an over-approximation of the flow at time t.
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Adaptive TM orders. Adaptive choice of TM orders also seeks to bound the error within

Ie. Our technique first concentrates on the state variables for which the interval er-

ror estimate is breached. The orders of these state variables are increased by 1. If the

technique fails to achieve the interval Ie, the orders of all the remaining variables are

increased as well. This process continues until the upper limit specified by the user is

breached. On the other hand, if the interval Ie is achieved, our approach starts to de-

crease the TM orders to find the smallest order for which the flowpipe’s remainder is

contained in Ie. If adapting the TM orders fails, the tool prints a diagnostic.

Currently, the techniques of adaptive orders and step sizes operate independently of

each other. The tool fixes the step sizes and performs adaptive TM orders; or fixes the

TM orders and adapts the step sizes. The simultaneous adaptation of both step sizes and

TM orders is not supported. This is also a challenging problem, since many optimal

points of tradeoff may exist. Exploring these choices systematically in a time-efficient

manner will be part of our future work.

FLOW* also provides various options for aggregating flowpipe/guard intersections.

Users are allowed to partially or fully specify a parallelotopic template for the union.

3 Experimental Evaluation

We now provide an experimental evaluation of FLOW*. The evaluation includes a com-

parison against VNODE-LP 3 by Nedialkov et al. [11], a state-of-the art guaranteed

integration tool for continuous systems. Next, we consider the evaluation for hybrid

systems. Our previous work demonstrated a comparison against the Ariadne and the

HySAT/iSAT tool. We have been unable to obtain tools from other papers to enable

a meaningful comparison. Therefore, we restrict ourselves to showcasing performance

on a new class of benchmarks and comparison of our new features against the earlier

prototype. All experiments were performed on a i7-860 2.8GHz CPU with 4GB RAM

running Ubuntu Linux. The benchmarks can be downloaded as a part of our release.

Continuous Systems: Table 1 shows a comparison with the VNODE-LP tool. The

VNODE-LP tool often fails to integrate these benchmarks when the initial set is too

large (“VNODE - LP could not reach t = [T,T]”). Therefore, to ensure a

fair comparison, we subdivide the initial set into smaller intervals and integrate each

separately. The G.S. column denotes the grid sizes used for the initial sets. Our approach

subdivides the initial sets uniformly. We manually find the largest grid size for which

VNODE-LP does not fail. This setting is chosen for the experiments. For experiments

#5, 6, 7, VNODE-LP failed or could not complete within the set time out of an hour.

In contrast, FLOW* performs well on all the benchmark examples, often finishing well

within the one hour timeout interval. The parameters used for FLOW* are provided for

reference in Table 1.

The precision comparisons are quite tricky. FLOW* computes TM flowpipe segments

whereas VNODE-LP computes boxes. Converting TMs into boxes can be quite expen-

sive. Our approach uses a coarse computation using interval arithmetic. Nevertheless,

the comparison in terms of the max. widths of the intervals (i.e, the maximum interval

3
http://www.cas.mcmaster.ca/˜nedialk/Software/VNODE/VNODE.shtml

http://www.cas.mcmaster.ca/~nedialk/Software/VNODE/VNODE.shtml
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Table 1. Comparisons on continuous benchmarks. All times are in seconds. Legends: var: number

of the variables, T: time horizon is [0,T], orders: the adaption range of the TM orders, R.E.:

remainder estimation, R.W.: remainder width, G.S.: grid size, W.S.: width of the solution interval

for x(T ), T.O.: > 1 hour.

FLOW* VNODE-LP

ID Benchmarks var T step orders R.E. time R.W. W.S. G.S. time W.S.

1 Brusselator 2 10 0.02 3∼5 [-1e-4,1e-4] 8.2 <1e-5 3e-2 2e-2 1.9 3.3e-2

2 Lorentz 3 1 0.01 3∼6 [-1e-4,1e-4] 15 <5e-4 1.08 1e-2 64 1.06

3 Rössler 3 5 0.02 4∼6 [-5e-4,5e-4] 30 <5e-4 2.60 2e-2 50 1.95

4 6-D sys. [12] 6 1 0.01 3∼6 [-1e-2,1e-2] 102 <1e-3 0.37 2.5e-2 180 0.40

5 6-D sys. [12] 6 2 0.01 3∼6 [-1e-2,1e-2] 213 <1e-3 0.37 1.5e-2 T.O. -

6 Reaction [13] 7 1e-3 2e-6 3∼5 [-1e-2,1e-2] 469 <1e-1 15.91 2e-2 Fail -

7 Phosphorelay [14] 7 2 2e-3 3∼5 [-1e-3,1e-3] 882 <1e-4 0.17 1.5e-3 Fail -

8 Phosphorelay [14] 7 3 2e-3 3∼5 [-1e-3,1e-3] 836 <1e-6 3e-2 1e-3 3156 3.5e-2

9 Bio [15] 9 0.1 1e-3 3∼5 [-1e-2,1e-2] 121 <1e-1 1.42 1e-2 318 1.58

10 Bio [15] 9 0.1 1e-3 3∼5 [-1e-2,1e-2] 153 <1e-1 2.11 1e-2 T.O. -

width along any of the dimensions) is quite similar. Overall when successful, VNODE-

LP’s flowpipe was quite similar to that of FLOW*. We are investigating better box and

octagon approximation schemes for TMs to enable a better comparison.

Hybrid Systems: We demonstrate our approach on a series of non-linear navigation

benchmarks representing a vessel moving through a fluid. We assume a velocity depen-

dent drag force along each direction Fx : −k · v3x and Fy : −k · v3y to the velocities

vx, vy in each cell with k = 0.1. The other parameters are the almost the same as

the linear benchmarks [16] with a few exceptions: the initial values for vx in NAV05

lie in the range [0.8, 0.1], and for NAV09, x(0) ∈ [3.1, 3.5], vy(0) ∈ [−0.8,−0.5].
Table 2 summarizes the performance on a set of hybrid system benchmarks, comparing

Table 2. Hybrid benchmarks. Legends: var: # of variables, loc: # of locations, T: time horizon

[0,T], jps: max jump depth, δ: step sizes, t: time cost (s), MUL: multiple TM orders. The safety

properties are all proved.

fixed steps&orders adaptive steps adaptive orders

benchmarks var loc T jps δ order t δ order t δ order t

n.-l. NAV04 4 7 30 8 0.01 3 138 [0.01,0.1] 3 57 0.05 3∼6 32

n.-l. NAV05 4 7 30 8 0.02 4 168 [0.01,0.1] 4 69 0.05 3∼6 38

n.-l. NAV06 4 7 30 8 0.01 3 162 [0.01,0.1] 3 70 0.05 3∼6 40

n.-l. NAV07 4 14 30 10 0.01 4 567 [0.01,0.1] 4 117 0.05 3∼6 61

n.-l. NAV08 4 14 30 10 0.01 4 545 [0.01,0.1] 4 122 0.05 3∼6 60

n.-l. NAV09 4 14 30 10 0.01 4 222 [0.01,0.02] 4 117 0.02 3∼6 47

Diabetic 1 4 9 360 6 0.02 4 1655 [0.01,0.1] 4 382 0.04 MUL 212

Diabetic 2 4 6 360 4 0.02 4 1023 [0.01,0.1] 4 229 0.04 MUL 142

Diabetic 3 5 9 360 6 0.02 4 852 [0.01,0.1] 4 191 0.04 MUL 102

Diabetic 4 5 6 360 4 0.02 4 502 [0.01,0.1] 4 106 0.04 MUL 77

Water tank 5 2 300 10 0.02 3 828 [0.01,0.1] 3 255 0.05 MUL 218
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the effect of adaptive step sizes and adaptive orders. Interestingly, our results indicate

that adapting the orders is more advantageous than step sizes. Adapting the TM orders

seems to have a pronounced effect on the efficiency of the flowpipe guard intersection

procedure. We also include the artificial pancreas (AP) models described in [4] with

modified safety specifications. We created new benchmarks instances Diabetic 3 & 4

by adding timing delays between controller mode changes in Diabetic 1 & 2.
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