
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=batc20

Download by: [University of Nebraska, Lincoln] Date: 17 September 2015, At: 06:59

Critical Reviews in Analytical Chemistry

ISSN: 1040-8347 (Print) 1547-6510 (Online) Journal homepage: http://www.tandfonline.com/loi/batc20

Flow analysis: A novel approach for classification

Christina Vakh, Marina Falkova, Irina Timofeeva, Alexey Moskvin, Leonid
Moskvin & Andrey Bulatov

To cite this article: Christina Vakh, Marina Falkova, Irina Timofeeva, Alexey Moskvin, Leonid
Moskvin & Andrey Bulatov (2015): Flow analysis: A novel approach for classification, Critical
Reviews in Analytical Chemistry, DOI: 10.1080/10408347.2015.1087301

To link to this article:  http://dx.doi.org/10.1080/10408347.2015.1087301

Accepted online: 12 Sep 2015.

Submit your article to this journal 

View related articles 

http://www.tandfonline.com/action/journalInformation?journalCode=batc20
http://www.tandfonline.com/loi/batc20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10408347.2015.1087301
http://dx.doi.org/10.1080/10408347.2015.1087301
http://www.tandfonline.com/action/authorSubmission?journalCode=batc20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=batc20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/10408347.2015.1087301
http://www.tandfonline.com/doi/mlt/10.1080/10408347.2015.1087301


ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
1 

Flow analysis: A novel approach for classification 

Christina Vakh*, Marina Falkova, Irina Timofeeva, Alexey Moskvin, Leonid Moskvin, 

Andrey Bulatov 

Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University 

St.Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg,  

199034 Russia 

Abstract 

We have suggested a novel approach for classification of flow methods according to the 

conditions under which the mass transfer processes and chemical reactions take place in the flow 

mode: dispersion-convection flow methods (1) and forced-convection flow methods (2). The first 

group includes continuous flow analysis, flow injection analysis, all injection analysis, sequential 

injection analysis, sequential injection chromatography, cross injection analysis, 

multicommutated flow analysis, multisyringe flow injection analysis, multi-pumping flow 

systems, loop flow analysis and simultaneous injection effective mixing flow analysis. The 

second group includes segmented flow analysis, zone fluidics, flow batch analysis, sequential 

injection analysis with a mixing chamber, stepwise injection analysis and multicommutated 

stepwise injection analysis. The offered classification allows to systematize a large number of the 

flow methods. Recent development and application of dispersion-convection flow methods and 

forced-convection flow methods are presented. 

* Corresponding author. E–mail address: kristina-fulmes@spbu.ru; kristina-

fulmes@mail.ru; Tel./fax +79112613385 
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Abbreviation 

AIA – All injection analysis  

BI – Bead-injection 

CFA – Continuous flow analysis  

CIA – Cross injection analysis 

DCFM – Dispersion-convection flow methods 

FCFM – Forced-convection flow methods 

FBA – Flow batch analysis 

FIA – Flow injection analysis 

LAV – Lab-at-valve  

LFA – Loop flow analysis 

LOV – Lab-on-valve  

MC – Mixing coil 

MCh – Mixing chamber  

MCFA – Multicommutated flow analysis system  

MСSWIA – Multicommutated stepwise injection analysis 

MPFS – Multi-pumping flow system 

MSFIA – Multisyringe flow injection analysis 

SFA – Segmented flow analysis 
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SIA – Sequential injection analysis 

SIA MCh – Sequential injection analysis with a mixing chamber 

SIC – Sequential injection chromatography  

SIEMA – Simultaneous injection effective mixing flow analysis 

SWIA – Stepwise injection analysis 

ZF – Zone fluidics 
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1. Introduction 

There is a tendency of automation of chemical analysis due to the necessity to carry out a 

large number of analyses of environmental, food, pharmaceuticals and chemical industrial 

samples. Another current tendency is a miniaturization of analytical systems since it allows 

reducing the sample and reagent consumption and waste generation. In this matter the flow 

methods have been recognized as universal tool for automation and miniaturization of various 

analytical procedures.  

Flow methods have been invented in the second half of the 20
th

 century [1-6] and have 

become an attractive field for researchers in automation of chemical analysis. Initially flow 

methods were focused on automation of liquid samples analysis, but later it became possible to 

automate gaseous [7, 8] and solid samples [9]. Herewith, the flow methods allow to automate the 

main stages of chemical analysis: sampling, sample pre-treatment (separation, derivatization et 

al.), measurement of the analytical signal. To automate the chemical analysis the flow systems 

usually include pumps, valves, commutative tubes, mixing/reaction devises and detectors. A 

sequence of all analytical procedures is often controlled by a computer or a microprocessor. 

The flow methods are well described in quite numerous monographs [10-13] and reviews 

[14-17] where their main fundamental principles and applications are presented. The evolution of 

the flow methods has been discussed from different points of view such as historical aspects 

[18], the commutation concept [19], the effect on analytical methodologies [16] and towards the 

development of Green analytical chemistry [17]. 
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 In the early 21
st
 century, almost simultaneously several groups of scientists have paid 

attention to the possibility of carrying out the analytical procedures in the special mixing 

chambers. The aim of the researchers was to provide the automation of chemical analysis with 

high sensitivity and versatility of the flow manifold.  

At the present time the numerous flow methods have been developed. It has been 

previously suggested to divide flow methods into two groups [20]: flow analysis with continuous 

sampling and flow analysis with intermittent sampling, where sample portions are injected into 

the system from a sampling loop. The main criterion for the classification of these methods is the 

type of sample injection into the flow system. Nevertheless, this classification does not consider 

the processes occurring in the flow manifold. 

We have suggested the classification of the flow methods, which is based on the 

conditions under which the mass transfer processes and chemical reactions take place in the flow 

mode. The offered classification will allow to systematize a large number of the flow methods 

and to discuss their general advantages and disadvantages. 

 

2. Сlassification 

The conditions under which the mass transfer processes and chemical reactions take place 

in the flow mode may be used as the main criteria for dividing of all flow methods into two 

groups (Fig. 1): dispersion-convection flow methods (1) and forced-convection flow methods (2). 

The concept of the first group assumes the delivering of sample zone in the laminar flow 

of a carrier to a detector. The two mass transfer phenomena primarily responsible for the 

transportation of samples through dispersion-convection flow systems are convection and 
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diffusion. They both affect the broadening of the sample zone, which is referred to as sample 

dispersion in analogy with both chromatography and chemical reaction engineering [21]. 

Herewith, on the one hand, the diffusion provides mixing of the sample with reagents, but on the 

other hand, it leads to the dispersion of the sample in the flow of a carrier. It should be pointed 

out, that generally the equilibrium of the chemical reaction, which is usually used in the DCFM, 

is not achieved during the moving of the sample zone in the commutative tubes to the flow 

detector, what causes the reduction of the sensitivity of analysis. In this case, the analytical signal 

is formed by convection under a laminar flow regime and diffusion phenomena. 

The concept of the second group assumes the mixing of the sample and reagents under 

forced convection, which provides high efficiency of the mixing and elimination of the 

dispersion. This flow-batch approach was first used in a flow technique [22] and it is frequently 

called as flow-batch mode. This group of methods is characterized by the involving special MCh 

into the flow manifold, where the solution of samples and reagents are delivered. 

 Moreover, it is possible to achieve the equilibrium of the chemical reaction proceeding in 

the MCh. Unlike DCFM the analytical signal in FCFM is formed by forced convection under a 

turbulent regime. 

The forms of the analytical signals obtained by using the DCFM and FCFM are presented 

in Fig. 1. The analytical signal in case of FCFM is the difference between the detector signals 

corresponding to the sample solution and the background, like the signals measured in manual 

techniques [23]. The analytical signal measured by using DCFM is an asymmetric peak [12], 

which is less than the maximum achieved by FCFM due to the FCFM provide complete mixing 

of sample and reagent solutions in the MCh. 
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Moreover, in case of DCFM the dispersion of the sample depends on several parameters 

such as sample volume, flow rate, length and diameter of the commutative tubes, configuration 

of the mixing coils and detector design [12]. The dispersion of the sample in the DCFM leads to 

the decrease of sensitivity in comparing with manual procedures. However, such reduction of the 

sensitivity is not observed in case of FCFM. This possibility was demonstrated on the 

determination of epinephrine in pharmaceuticals [24]. 

 

3. Dispersion-convection flow methods 

3.1. The concept and capabilities 

The first invented flow method was the continuous flow analysis (Fig. 2 a) [25]. The 

principal concept of CFA assumes the continuous analysis of liquid samples. Mixing of the 

sample with reagents solutions in the CFA is carried out in the reaction/mixing coils under the 

convection and diffusion and the analytical signal of sample is continuously measured. The CFA 

has been widely used in analytical practice for on-line analysis [26, 27]. But its main 

disadvantage is the significant consumption of reagents and respectively large volume of waste 

generation. 

Another flow method which is included to the DCFM is the flow injection analysis (Fig. 

2 b) [28, 29]. The principal concept of FIA assumes the periodic injection of discrete portions of 

sample into a continuous laminar and non-segmented flow of carrier by using the valve. Mixing 

of sample and reagents’ zones is occurred in the MC under the influence of diffusion and 

convection. To achieve high reproducibility strictly constant values of flow rate as well as the 

diameter of the coils and commutative tubes are used. Mostly the equilibrium of the reaction is 
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not achieved. It leads to the sensitivity reduction. The stopped-flow mode can be used to increase 

sensitivity especially for kinetic methods [30]. 

The FIA systems exploiting reagent injection in a sample stream allow to reduce the 

volume of reagent solution significantly. This strategy was demonstrated at the molybdenum 

blue method and reagent consumption was reduced by up to 240-fold in comparison to FIA with 

sample injection into a carrier [31].   

Another approach for reducing volumes of reagents was reported in [32]. The authors 

have developed a novel flow injection technique, called as an all injection analysis, where all 

reagent solutions are injected into a reaction coil and all solutions are circulated for a fixed time. 

By this circulating process, the amount of the reagents’ consumption is extremely eliminated. 

Сyclic FIA allows to realize others approaches to minimize reagent consumption. This 

opportunity has been shown in cyclic flow-injection spectrophotometric determination of lead 

(II) based on its reaction with Arsenazo III [33]. A cation-exchange resin AmberliteJRA-120 was 

included after the detection cell for regeneration of Arsenazo III. After analyte determination, the 

lead (II) was retained in the column and the released reagent was directed back to its original 

reservoir. Similar approaches can be used to determine other anions. 

Nevertheless, the common drawback of FIA like as CFA and AIA is the necessity to 

redesign manifold for each analyte analysis.  

The first versatile flow manifold was realized in sequential injection analysis (Fig. 2 с) 

[34]. The SIA manifold includes a multi-way valve, a holding coil, a syringe or/and peristaltic 

pump, a reaction coil and a flow detector. The SIA concept assumes the sequential delivery of 

portions of a carrier, a sample and reagent solution into the holding coil. After switching of the 
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valve and reversing of the pump the sample and reagent solutions are moved through the reaction 

coil to the detector. In this case, a concentration gradient is formed, which leads to the partially 

overlapping of sample and reagent zones, forming an area where the reaction product is 

generated. Efficiency of the sample and reagent zones overlapping influences on the analytical 

signal and depends on the physical parameters of the system (the injected sample volume, the 

flow rate, the length and diameter of tubes in a manifold, the configuration and volume of the 

holding and reaction coils, the detector design) and solution properties (viscosity, molecular 

diffusion coefficients) [35]. SIA compared to CFA and FIA allows to reduce the reagent 

consumption and waste generation significantly. In this respect, the most progressive 

implementation of SIA has become the SIA «Lab-on-valve» (SIA LOV) [36-38], which assumes 

the performing analysis in the channels of multi-way valve. The SIA LOV is attractive from the 

viewpoint of minimizing the sample volumes, especially for the analysis of biological samples 

[39] and expensive reagents consuming [40]. Later a simpler approach, SIA with lab-at-valve 

(LAV) concept, has been proposed [41-48]. It is employed by attaching a device integrating 

sample processing and detection units on a port of a multiposition selection valve. This makes 

the SIA LAV simpler than the SIA LOV. The SIA LAV unit can be built using an ordinary and 

less precise machine tool, to have suitable functions for chemistries of interest and with a nut that 

can plug in a port of the valve in the usual way. 

The sequential injection chromatography [49-52] should be also included to the DCFM. 

The SIC involves the combination of liquid chromatography and sequential injection analysis. 

Sample solution and eluent by means of syringe pump and a switching valve are sequentially 

aspirated through a chromatographic column included into the SIC manifold (Fig. 2 d). The SIC 
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can be realized in reversed-phase mode [53]. The monolithic chromatographic columns with a 

high porosity are used in SIC. They allow providing high efficiency of analytes separation at low 

back pressure (2.5 MPa) which is produced in flow systems. The monolithic columns consist of a 

single piece of high-purity polymeric silica gel rod with a bimodal pore structure: mesopores 

(average size 13 nm) used for separation and macropores (average size 2 µm) used for mobile 

phase flowing. In the above mentioned review [49] capabilities of SIC and high performance 

liquid chromatography were compared. The main advantages of the SIC are the significant 

reduction of the reagents’ consumption and the equipment cost. Furthermore, it becomes possible 

to perform the derivatization in the automated mode. 

The idea of DCFM is also implemented in multicommutated flow analysis system [54-

58], simultaneous injection-effective mixing analysis [59, 60], multi-pumping flow system [61-

64], multisyringe flow injection analysis [65-68], loop flow analysis [69] and cross injection 

analysis [70] methods. These methods are characterized by high reduction of sample and 

reagents consumption in compared with CFA, FIA, AIA and even SIA. 

The multicommutated flow analysis system (Fig. 3 a) consists of a peristaltic pump and a 

set of solenoid valves, by means of which the required portions of reagents and sample solutions 

are injected into a carrier flow. The location of valves and configuration of all communications 

depend on an automated technique. Elimination of overheating of valves is an important aspect 

in the operation of MCFA. If the valve is switched ON for a long time, the heating takes place 

and deformation of polytetrafluoroethylene channels of the valves is observed. This problem is 

solved by the installation of special protective electronic systems [12]. 
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The simultaneous injection-effective mixing analysis [59, 60] is a hybrid format of FIA, 

SIA and MCFA. Sample and reagent solutions are aspirated into the several holding coils 

through the solenoid valves by a syringe pump (Fig. 3 b), and then the zones are simultaneously 

transferred in a carrier flow into a MC by reversed flow toward a detector. It leads to effective 

mixing and rapid detection.  

The multi-pumping flow system (Fig. 3 c) includes a solenoid piston pumps operating in 

a pulse mode. The sample and reagents are injected into the flow system by means of pumps and 

then are mixed in the mixing coils. The efficiency of the sample and reagents zones mixing 

increases due to the pulsation of the piston pumps in MPFS.  However, dispersion is not 

excluded. The great advantages of MPFS are the high throughput of analysis, flexibility, easy 

configuration, and robustness. 

The multisyringe flow injection analysis manifold (Fig. 4 a) includes special panel 

equipped with four syringes. Each syringe in the top has a three-way valve which directs the 

solution from syringe to the flow system or returns it back to the reagent reservoir to avoid the 

mixing of solutions from other syringe. The main advantages of MSFIA are the high robustness 

of the system due to the absence of pumping tubes; the possibility of using aggressive solvents 

and reagents due to inert materials of syringes; the possibility to commutate the flow system with 

sample pretreatment devices (e.g. filters, sorption columns) with the opportunity to use high 

pressure.  

The loop flow analysis has been introduced for water analysis [69]. The main parts of 

LFA manifold (Fig. 4 b) are the multichannel peristaltic pumps, multi-way rotary valve and 

cross-shaped flow cell. The hermetic closed loop provides full protection against background 
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interference.  Firstly, a sample is introduced into the sample loop using pump. Then, pump is 

kept working and pump is used to propel the reagents solution into the reagent loop and the 

spectrophotometer is set to zero. When the valve is switched, the sample and reagent are mixed 

and both pumps are stopped for the formation of the colored complex, which is monitored by 

using a detector.  The LFA was used for shipboard applications in marine science and in on-line 

environmental monitoring applications. 

The last suggested method of the first group is the cross injection analysis [70]. This 

method assumes that sample and regent solutions are injected perpendicularly into a carrier flow 

in a CIA cell (platform with cylindrical channels) by a peristaltic pump (Fig. 4 c). The mixing of 

the sample and reagent zones is carried out by their movement in a carrier flow from the CIA cell 

to the detector. The use of the CIA cell eliminates the need for valves using. Nevertheless, it does 

not provide the efficient mixing of the sample and reagent zones and the elimination of the 

dispersion. 

3.2. Recent development and application 

Nowadays, the DCFM are focused on the development of new automated sample 

preparation and multi-component methods and coupling of flow and separation methods (Table 

1). 

The liquid-liquid microextraction based on the DCFM has found wide application for 

sample preparation [71-73]. Several approaches have been developed:  microcolumn phase 

separation [74], in-syringe approach [75] coupling with sequential injection system as well as 

magnetic stirring.  The membrane methods of separation and preconcentration on the principles 

of DCFM such as pervaporation [76, 77] and gas diffusion [78-81] are also actively developed. 
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Moreover, the possibility of automation of single-drop headspace microextraction based on the 

SIA concept has been presented [82]. 

The bead-injection (BI) technique based on the principles of DCFM has used for sample 

preparation [83]. BI is the combination of the use of beads with a flowing stream of solution in a 

FIА/SIA system. Beads are utilized as solid surfaces to pre-concentrate or extract the analyte or 

to accommodate a chemical reaction. The flowing stream of solution is used to carry beads 

through the system. There is no need to regenerate the bead surfaces because they are discarded 

after each use and are replaced by fresh ones. It helps to reduce the risk of contamination, 

denaturation, and system clogging, and also, makes it possible to operate BI in the continuous 

flow system. 

To increase the efficiency of SIA it was coupled with FIA [84]. Such coupling was 

implemented for the determination of lead (II) in water. The automated technique included the 

pre-concentration of the analyte in ion-exchange column operating in a sequential injection 

mode. After that, the elution of lead (II) was performed in flow injection mode for its subsequent 

spectrophotometric determination. Using such coupling flow system, it is possible not only to 

increase the sensitivity of lead (II) determination, but also to increase the sample throughput. 

The effective implementation in DCFM is the coupling of the MSFIA and MPFS, which 

was applied for the determination of 
226

Ra in water samples [85]. Such flow system allows 

increasing the sample throughput and reducing the reagent consumption.  

To realize multi-component DCFM several approaches have been proposed. The fist one 

means the simultaneous determination of several analytes provided by using of manifolds with 

several pumps, valves or detectors [86]. Additionally, the chemometric [87] and differential-
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kinetic approaches [88] have been proposed and used in the multi-component flow analysis. The 

sample throughput of such systems is several times higher than conventional DCFM. 

Recently attention was focused on coupling of DCFM with mass-spectrometry [89, 90], 

chromatography [91] and capillary electrophoresis [92-94] where the DCFM were used for 

automation of sample pretreatment. It was presented in the overview [94]. The benefits of 

hyphenated methods are high sensitivity and selectivity. 

 

4. Forced convection flow methods  

4.1. The concept and capabilities 

The mixing under forced convection prevents the dispersion, that is common 

phenomenon in the methods of the first proposed group. 

Mixing of the sample and reagents solution under forced convection is observed in the 

segmented flow analysis [95]. In SFA (Fig. 5 a) a continuous flow of the sample generated by a 

peristaltic pump is segmented by a gas bubbles and then mixed with the reagent flow in the 

mixing/reaction coils. The mixed flow is then moved to a flow detector, where the gas bubbles 

were preliminary removed. Sample segmentation by gas bubbles generates a turbulent flow, 

which leads to the homogenization of the reaction mixture. Furthermore, segmentation by the gas 

bubbles partially eliminates dispersion of the sample. SFA can be recognized as an intermediate 

approach between the flow methods of the first and the second groups.  

The idea of forced convection has been better implemented in other FСFМ: zone fluidics 

[96], flow batch analysis [23, 97-100], sequential injection analysis with a mixing chamber 

[101], stepwise injection analysis [102] and multicommutated stepwise injection analysis  [103]. 
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The last mentioned FCFM assume the main unit in the manifolds (Fig. 5 b-d, 6) – mixing 

chamber, where the portions of the samples and reagent solutions are sequentially delivered, 

mixed, thermostated (if necessary) and stored for a certain time to reach equilibrium. 

Zone fluidics (Fig. 5 b) can be considered as a return to a SFA concept, but using the 

experience obtained in the SIA. ZF is defined as the precisely controlled physical, chemical, and 

fluid-dynamic manipulation of zones of miscible and immiscible fluids and suspended solids in 

narrow bore conduits to accomplish sample conditioning and chemical analysis. Fluids are 

propelled and manipulated in the manifold by means of a precise bi-directional flow pump. A 

holding coil between the pump and valve performs a similar role as in SIA. The ports of the 

multi-position valve are coupled to various reservoirs, reactors, unit operators, manifold devices, 

and detectors as indicated [96]. 

The mixing chamber in flow batch analysis is usually combined with a cell of the 

appropriate type of detector (Fig. 5 c). Portions of the sample and reagent solutions are 

sequentially delivered to the MCh by several peristaltic or solenoid pistol pumps. Mixing of the 

reaction solutions is carried out in the MCh with a magnetic stirrer or fishing line connected to 

an electromotor, then pause is kept to complete the reaction and finally the measurement of an 

analytical signal is performed [104]. Nevertheless, the FBA manifold has certain limitations. 

Thus, the involving of special devices for mixing of solutions in the MCh in FBA manifold 

complicates the design of the analyzer. The combination of the MCh with the detector cell limits 

the possibility of varying the sample volume and using of several types of detectors in one flow 

analyzer. The increasing of the optical path length for measuring the analytical signal in 
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spectrophotometric analysis is less possible. In FBA, the optical path length usually does not 

exceed 10 mm due to the limitations of inner volume of the MCh.  

The manifold of sequential injection analysis with a mixing chamber (Fig. 5 d) differs 

from FBА in the conditions of the sample zone formation. Mixing of the sample with the reagent 

solutions is carried out in the MCh, and then the solution of the reaction product is injected into a 

carrier flow and delivered through the reaction coil to a flow detector. This manifold is most 

similar to SIA, but it eliminates the problem associated with an inefficient mixing of the sample 

zone and reagent solutions as it was in SIA. 

The idea of forced convection mixing was implemented in the stepwise injection analysis. 

The SWIA manifold (Fig. 6 a) is similar to the FBА manifold. The SWIA manifold includes a 

multi-way valve, a reversible peristaltic pump, a flow detector and a thermostated MCh. But the 

SWIA manifold always includes gas delivering channel to mix the sample with the reagent 

solutions into the MCh by babbling, unlike the FBА manifold, where the solutions are mixed 

using the magnetic stirrer or fishing line connected to an electromotor. MCh can be implemented 

for the dissolution of solid-phase samples or solid-phase extraction of analytes from the sample 

[105-107] as well as for the absorption of gaseous analytes [108, 109]. The concept of SWIA 

assumes that all stages of routine analysis are strictly performed: sampling; sample preparation, 

including analyte pre-concentration (if necessary) or derivatization; analyte absorption into 

solution, when gases are analyzed; the dissolution, when solid samples are analyzed; the addition 

of reagent solutions to the sample solution; mixing solutions by a babbling; thermostating (if 

necessary); a pause for the formation of reaction product; and finally the measurement of the 

analytical signal. 
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The multicommutated stepwise injection analysis was proposed for automation of a 

multicomponent spectrophotometric analysis. The MСSWIA manifold includes two similar 

eight-way solenoid valves and two peristaltic single-channel pumps (Fig. 6 b). The first valve is 

used for sequential injection of samples, reagent solutions and a gas phase into the flow system. 

The gas phase is used for mixing of solutions in the mixing chambers, which are coupled with 

the second valve. The number of MCh is determined by the number of analytes and the 

corresponding number of colour-forming reactions, which are necessary for their determination. 

In turn, the number of MCh is limited by the number of ports of a valve. 

4.2. Recent development and application 

The FCFM have already found applications for the automation of analysis of aqueous 

samples [110-112], biological fluids [113], pharmaceuticals [114], biofuels [115, 116] and other 

samples (Table 2). It should be noted that the benefit of FCFM is the versatility of flow 

manifolds. The involving of the MCh into the flow manifold allows to automate various 

procedures of sample pretreatment (dilution, liquid-liquid extraction, gas absorption, dissolution 

of soluble solid-phase samples as well as the extraction of the analyte from the solid-phase 

samples et al.) rather easily. 

Thus, the liquid-liquid extraction of analytes can be realized directly in the MCh for the 

pre-concentration [117]. In this case, the effective mixing of the aqueous and organic phases, as 

well as the phases separation, are carried out in the glass MCh. Sample, reagents and organic 

solvent are introduced into the MCh by a peristaltic pump using air as a carrier. 

The ZF measurement of octanol-water partition coefficient of drugs [114] was developed. 

In this case, the system is consisted of a syringe pump with a selection valve, a holding column, 
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a silica capillary flow-cell and an in-line spectrophotometer. Exact microliter volumes of 

solvents (octanol and phosphate buffer saline) and a solution of the drug, sandwiched between 

air segments, were sequentially loaded into the vertically aligned holding column. The 

distribution of the drug between the aqueous and octanol phases was occurred by the oscillation 

movement of the syringe pump piston.  

The SWIA has been implemented for the dispersive liquid-liquid microextraction. The 

dispersion of the extractant was also performed directly in the MCh. Such procedure was used 

for the fully automated preconcentration and spectrophotometric determination of antipyrine in 

saliva [118].  

The idea of automation of headspace single-drop micro-extraction has been implemented 

based on SWIA [119]. The most important features of the SWIA with headspace single-drop 

micro-extraction are: automated determination of volatile compounds in complicated matrices 

including suspension; the successful coupling of the continuous operating process of headspace 

single-drop micro-extraction with the UV-VIS technique. The efficiency of the proposed system 

was successfully demonstrated in ammonia determination in concretes. 

In case of gas analysis, the gaseous sample is delivered to the MCh, which is filled with 

the acceptor solution. During the absorption the gaseous analytes are conversed into the 

detectable forms. It was implemented in the SWIA determination of H2S [108] and mercaptans 

[120] in the natural gas; phenols [109] and nitrogen oxides [121] in the atmospheric air. The 

developed techniques do not require the use of standard gas mixtures for the calibration of the 

analyzer. Its calibration is carried out by the standard solutions in the acceptor stream, which are 

delivered to the flow detector. 
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To automate the soluble solid-phase samples analysis the ZF [96] and the SWIA were 

used and applied for the determination of biologically active substances in medicinal herbs [107]. 

The extraction of the biologically active substances from medicinal plants was carried out in the 

MCh under ultrasonication. 

Moreover, FCFMs allow also carrying out the standard addition method [122-124]. 

Standard addition method was implemented in the flow-batch procedure for iron determination 

by atomic absorption spectroscopy in the hydrated ethanol fuel [125]. In the developed FB 

procedure the MCh was coupled with a nebulizer of the flame atomic absorption spectrometer by 

means of the valve. In this procedure the portions of a fuel sample, a standard solution of the iron 

(III) and deionized water were mixed in the MCh. Then, the mixed solution from the MCh by the 

valve was delivered into the nebulizer of the flame atomic absorption spectrometer. The injected 

amount of iron into the fuel sample was regulated by the ratio of standard solution and solvent.  

5. Conclusion 

The proposed overview has been presented a critical discussion of the possibility to 

classify the flow methods into two groups according to the conditions under which the mass 

transfer processes and chemical reactions take place in the flow mode: dispersion-convection 

flow methods and forced-convection flow methods.  

All methods of the first group are characterized by a high throughput due to the reactions 

generally do not achieve the chemical equilibrium. The mass transfer processes and chemical 

reactions are carried out under the influence of the convection and diffusion. Nevertheless, the 

strict order of reagents and sample injection into the flow system allows to achieve the excellent 

repeatability. In general, the sensitivity in dispersion-convection flow methods is lower in 
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comparison with manual procedures. This decreasing of sensitivity is caused by two factors. In 

case of kinetically slow chemical reactions, continuous flow of carrier does not allow to optimize 

the condition of reaction products’ formation (optimal time and the temperature of reaction 

media).  Analysis in a stopped-flow mode only partially solves the first problem, since in this 

case the dispersion of the sample is increased. 

The forced-convection flow methods provide highly sensitive measurements due to the 

physical and chemical equilibriums of the analytical process are achieved and the dispersion of 

the sample is excluded. Moreover, another benefit of forced-convection flow methods is the 

versatility of the flow manifolds. The involving of the mixing chambers in the flow manifolds 

makes it easy to automate such operations as dilution, standard additions injection, liquid-liquid 

extraction, gas absorption and dissolution of solid-phase samples. The main drawback of forced-

convection flow methods is a low throughput due to time-consuming procedures of sequential 

aspiration of reagent and sample solution and their mixing in mixing chamber to achieve 

equilibrium. 
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Tables caption 

 

Table 1. Applications of the dispersion-convection flow methods. 

Flow 

method 

Detection 

technique 
Matrix Analyte 

On-line pre-

treatment of 

sample 

LOD 

Sample 

throughput, 

h
−1

 

Ref. 

CFA ASPM 
river 

water 

Zn
2+

, Cd
2+

, 

Fe
2+

, Cu
2+

, 

Ni
2+

, Co
2+

, 

Cr(VI) 

- 

0.176-

4.01 

nM 

- 27 

FIA FAAS water Cu 

solidified 

floating organic 

drop 

microextraction 

0.58 ng 

L
−1

 
3 126 

FIA CL food SO3
2- 

pervaporation 
0.2 mg 

L
−1

 
30 127 

FIA UV-Vis saliva acetaldehyde gas-diffusion 
12.3 μg 

L
−1

 
9 128 

FIA 
HPLS-

UV 
urine 

opiate 

alkaloids 

biogenic 

amines 

derivatization 
0.2-5 

10
-7

 М 
- 129 

MCFA UV-Vis honey glucose 

derivatization 

(immobilized 

glucose oxidase 

reactor) 

0.073 g 

L
−1

 
20 130 

MCFA UV-Vis water NH4
+
, PO4

3- 
- 

7 μg 
L

−
1 

NH4
+ 

17 μg 
L

−1
 

PO4
3-

 

56 131 
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MPFS UV-Vis water Fe oxidation 
0.15 mg 

L
−1

 
180 132 

MSFIA UV-Vis water 
anionic 

surfactants 

magnetic 

stirring-assisted 

dispersive 

liquid–liquid 

microextraction 

7 µg 

L
−1

 
10 133 

SIA UV-Vis saliva SCN
–
 

dispersive 

liquid-liquid 

microextraction 

0.017 

mg L
−1

 
- 134 

SIA ETAAS water Cu, Cd 

dispersive 

liquid-liquid 

microextraction 

10 ngFe 

L
−1

 

2 ngCd 

L
−1

 

10 135 

SIA ETAAS water Cd 

single-drop 

micro-

extraction 

 

 

0.01 μg 
L

−1
 

6 82 

SIA 

UV-Vis 

and BP-

ANN 

water 
carbamate 

pesticides 
- 

0.2-0.4 

mg L
−1

 
18 136 

SIA 
Q-ICP-

MS 
urine Rh, Pd, Pt 

pre-

concentration 

(MetalfixTM
 

Chelamine
TM

 

resin) 

 

0.4-1.2 

ng L
−1

 
9 89 

SIA CE-CD water 

NH4
+
, K

+
, 

Ca
2+

, Na
+
, 

Mg
2+

, Mn
2+

, 

Zn
2+

, Cd
2+

, 

Ba
2+

, Cl
-
, 

S2O3
2-

, NO3
-
, 

SO4
2-

, NO2
-
 

- 
0.3-2 

μM 
- 137 

SIA UV-Vis drugs 
Fe (II),  

ascorbic acid 
- 

0.2 mg 

L
−1

 Fe 

(II), 

0.2 mg 

L
−1

 

ascorbic 

acid 

41 138 

SIC UV-Vis milk melamine dilution of the 0.6 mg 9 139 
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sample with 

sodiumdodecyl 

sulfate using a 

multiposition 

valve 

L
−1

 

UV–Vis – spectrophotometry, ETAAS – electrothermal atomic absorption spectrometry, FAAS 

– Flame atomic absorption spectrometry, CL –  chemiluminescence, BP-ANN – back-

propagation-artificial neural network algorithms for multivariate quantitative analysis, Q-ICP-

MS – quadrupole-inductively coupled plasma-mass spectrometry, CE-CD – capillary 

electrophoresis with contactless conductivity detection, HPLS-UV – High-performance liquid 

chromatography with UV-detection, ASPM – adsorptive stripping potentiometry. 
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Table 2. Applications of the forced-convection flow methods. 

Flow 

method 

Detectio

n 

techniqu

e 

Matrix Analyte 

On-line pre-

treatment of 

sample 

LO

D 

Sample 

throughput

, h
−1

 

Ref

. 

SFA UV-Vis 

water and 

wastewate

r  

PO4
3- 

- 
4 μg 
L

−1
 

40 140 

FB FAAS 

hydrated 

ethanol 

fuel 

Fe 

standard-

addition 

method 

0.04 

mg 

L
−1

 

10 122 

FB UV-Vis water Cu
2+ liquid-liquid 

extraction 

5 μg 
L

−1
 

14 117 

FB UV-Vis biodiesel glycerol derivatization 

0.03

6 mg 

L
−1

 

14 115 

MCSWI

A 
UV-Vis biodiesel 

Al
3+

, Fe
3+

, Si, 

P 
- 

 0.3 

mg 

kg
-1 

Al
3+ 

0.6 

mg 

kg
-1  

Fe
3+

, 

Si, P 

6 116 

SIA-MC PM milk Cl
- pseudo-

titration 

0.1 

mM 
17 141 

SIA-MC UV-Vis water PO4
3- 

standard-

addition 

method 

0.02

4 

mgP 

L
−1

 

 

324 124 

SIA-MC UV-Vis oil Fe
3+ 

dilution 
0.31 

mg 
20 142 
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L
−1

 

SWIA UV-Vis urine PO4
3-

 

standard-

addition 

method 

0.6 

mg 

L
−1

 

10 123 

SWIA UV-Vis saliva antipyrine 

derivatization, 

dispersive 

liquid-liquid 

microextractio

n 

1 

μM 
5 118 

SWIA UV-Vis 
natural 

gas 

hydrogen 

sulfide 
absorption 

20 

μg 

m
-3

 

20 
108 

 

SWIA UV-Vis 
medicinal 

plants 

anthraquinone

s 

ultrasound-

assisted 

surfactant-

mediated 

extraction 

4 mg 

L
−1

 
6 106 

SWIA UV-Vis concretes NH4
+ 

headspace 

single-drop 

micro-

extraction 

30 

µg 

kg
-1

 

4 119 

ZF UV-Vis drugs 
partition 

coefficient 

liquid-liquid 

extraction 
- - 114 

UV–Vis – spectrophotometry, FAAS – Flame atomic absorption spectrometry, PM – 

potentiometry. 
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Figures caption 

 

Fig. 1. Classification of the flow analytical methods based on the conditions under which the 

mass transfer processes and chemical reactions take place in the flow mode. 
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Fig. 2. The dispersion-convection flow methods: (a) CFA, (b) FIA, (c) SIA, (d) SIC 
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Fig. 3. The dispersion-convection flow methods: (a) MCFIA, (b) SIEMA, (c) MPFS. 
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Fig. 4. The dispersion-convection flow methods: (a) MSFIA, (b) LFA, (c) CIA. 
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Fig. 5. The forced-convection flow methods: (a) SFA, (b) ZF, (c) FBA, (d) SIA MC. 

  

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
N

eb
ra

sk
a,

 L
in

co
ln

] 
at

 0
6
:5

9
 1

7
 S

ep
te

m
b
er

 2
0
1
5
 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
49 

 

Fig. 6. The forced-convection flow methods: (a) SWIA, (b) MСSWIA. 
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