
ORIGINAL ARTICLE

Flow and heat transfer analysis of Williamson nanofluid

S. Nadeem • S. T. Hussain

Received: 30 August 2013 / Accepted: 1 November 2013 / Published online: 22 November 2013

� The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract In the present paper, we have examined the

two-dimensional flow of Williamson fluid over a stretching

sheet under the effects of nano-sized particle also described

as nano Williamson fluid. The boundary layer equations of

nano Williamson fluid model along with energy and

nanoparticle volume fraction are presented and simplified

with the help of useful transformations. Governing equa-

tions are somewhat different from the ones present in lit-

erature (reason is explained in the introduction section).

The expressions for coefficients of skin friction and Nusselt

number have been computed. The physical features of non-

dimensional Williamson parameter, Lewis number,

Schmidt number and nano particle parameters (diffusivity

ratio and heat capacities ratio) have been discussed by

plotting the graphs of velocity, temperature and nanopar-

ticle volume fraction.

Keywords Nano particles � Williamson fluid model �
Stretching sheet � Heat transfer

Introduction

Nanofluids are colloidal suspension of base fluid and

nanoparticles (1–100 nm). Nowadays these fluids are focus

of research because these small size particles can enhance

the coefficient of heat transfer several times as compared

with base fluid. In some cases researchers have reported

about 40 % increase in thermal conductivity. This feature

makes them very much suitable for cooling and solidifi-

cation systems. In polymer industry solidification is an

important phenomenon during polymers extrusion. Nano-

particles can play an important role in heat transfer during

solidification. Also in extrusion of packaging films clay

nanocomposites (Durmus and Kasgoz 2007) and silicate

nanoparticles can be used, whose incorporation can create

barrier for gases and increases the reliability of packaging

films. Heat transfer enhancement due to these small size

particles was first time reported by Masuda et al. (1993)

This term was first introduced by Choi (1995); he defined

nanofluid a liquid containing dispersed submicronic solid

particles (nanoparticles). Three models have been widely

used to describe the convective transport of nanofluids as

discussed by Buongiorno (2006). As the first two models

had drawbacks see Buongiorno (2006), he presented a third

model and discussed several slip mechanisms and finally

incorporated the effects of Brownian motion and ther-

mophoretic diffusion into the equations. In the present

article we will stick with Buongiorno model. Nield and

Kuznetsov (2009) studied the thermal instability in a por-

ous medium layer saturated by a nanofluid. They intro-

duced the velocity similarity transformations dependent on

thermal diffusivity of the porous medium. In another paper

(Nield and Kuznetsov 2011) they considered the double

diffusion: solute and nanoparticle diffusion in a base fluid.

This time again, they introduced the velocity similarity

transformations dependent on thermal diffusivity of fluid.

Because of these similarity transformations Lewis number

(Le) appears instead of Schmidt number (Sc) in their

nanoparticle volume fraction equations. If we look in Bu-

ongiorno’s paper (Buongiorno 2006), in nanoparticle vol-

ume fraction equation, Schmidt number appears instead of

Lewis number. Later on several authors (Makinde and Aziz
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2011; Khan and Pop 2010; Bachok et al. 2010; Kandas-

amya et al. 2011) citing the work of Nield and Kuzentsov

introduced the Lewis number in nanoparticle volume

fraction equation without considering the fact that their

velocity transformations do not contain thermal diffusivity.

These authors mistakenly reported the Schmidt number as

Lewis number in their articles. If we do not choose velocity

and stream functions dependent on thermal diffusivity then

Lewis number will only appear in heat equation.

Stretching flows study has not lost its appeal yet due to

its wide range of applications in polymer, glass, copper

wire drawing and plastic industry. Sakiadis (1961) was the

first one to study the boundary layer flow over a stretching

sheet. Tsou et al. (1967) discussed the heat transfer effects

on the boundary layer flow over a stretching sheet. Erick-

son et al. (1966) extended the work of Tsou et al. for mass

transfer. Afterwards large numbers of theoretical studies

have been carried out by numerous authors (Liu 2005;

Rosali et al. 2012; Kelson and Farrell 2001; Kumaran and

Ramanaiah 1996; Ali 1995).

Nadeem et al. (2013) were the first ones who developed the

two-dimensional boundary layer equations for the flow of

Williamson fluid past a stretching sheet. In the present article

we are presenting the two-dimensional flow of nano Wil-

liamson fluid (Williamson 1929; Lyubimov and Perminov

2002; Nadeem 2010; Dapra 2007) over a stretching sheet. The

governing boundary layer transport equations are first sim-

plified using the suitable similarity transformations. Resulting

equations are solved using the Homotopy analysis method

(Liao 2003, 2004; Nadeem et al. 2010; Nadeem and Hussain

2009; Ellahi and Riaz 2010; Abbasbandy 2006, 2007; Hayat

and Qasim 2010). To observe the convergence of obtained

solution h-curve and convergence table are drawn. Graphs

have been plotted to observe the impact of various physical

parameters on transport phenomenon. Finally, tables are

drawn to analyse the effects of important parameters on heat

transfer coefficient and nanoparticle volume fraction gradient.

Mathematical formulation

Let us consider the two-dimensional steady flow of an

incompressible nano Williamson fluid over a stretching

surface. The plate is stretched along x-axis with a velocity

Bx, where B [ 0 is stretching parameter. The fluid velocity,

temperature and nanoparticle concentration near surface

are assumed to be Uw, Tw and Cw, respectively. The gen-

eral transport equations for nanofluid are given by

(Buongiorno 2006)

div V ¼ 0; ð1Þ

q
dV

dt
¼ div S þ qb; ð2Þ

qc
oT

ot
þ V � rT

� �
¼ r � krT þ qpcp

� DBr/ � rT þ DT

rT � rT

T1

� �
;

ð3Þ
oC

ot
þ V � rC ¼ r � DBrC þ DT

rT

T1

� �
; ð4Þ

where V(u(x, y), v(x, y), 0) is the velocity vector, q is

nanofluid density, S is Cauchy stress tensor, b is body force

vector, qc and qpcp are heat capacities of nanofluid and

nanoparticles, respectively, T is temperature, k is nanofluid

thermal conductivity, DB is Brownian diffusion coefficient,

C is nanoparticle volumetric fraction, DT is thermophoretic

diffusion coefficient and T? is the ambient fluid

temperature. For Williamson fluid model Cauchy stress

tensor S is defined in (Dapra 2007) as

S ¼ �pI þ s; ð5Þ

s ¼ l1 þ ðl0 � l1Þ
1 � C _c

� �
A1; ð6Þ

where s is extra stress tensor, l0 is limiting viscosity at zero

shear rate and l? is limiting viscosity at infinite shear rate,

C[ 0 is a time constant, A1 is the first Rivlin–Erickson

tensor and _c is defined as follows:

_c ¼
ffiffiffiffiffiffi
1

2
p

r
;

p ¼ traceðA2
1Þ;

ð7Þ

Here we considered the case for which l? = 0 and

C _c\1. Thus Eq. (6) can be written as

s ¼ l0

1 � C _c

� �
A1; ð8Þ

or by using binomial expansion we get

s ¼ l0½1 þ C _c�A1: ð9Þ

Making use of Eqs. (5) and (9) in Eqs. (1) to (4), the

two-dimensional boundary layer equations governing the

flow are given by

ou

ox
þ ov

oy
¼ 0; ð10Þ

u
ou

ox
þ v

ou

oy
¼ m

o2u

oy2
þ

ffiffiffi
2

p
mC

ou

oy

o2u

oy2
: ð11Þ

u
oT

ox
þ v

oT

oy
¼ a

o2T

oy2
þ

qpcp

qc
DB

oC

oy

oT

oy
þ DT

T1

oT

oy

� �2
 !

;

ð12Þ

u
oC

ox
þ v

oC

oy
¼ DB

o2C

oy2
þ DT

T1

o2T

oy2
; ð13Þ
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where u(x, y) and v(x, y) are horizontal and vertical

components of velocity, m is kinematic viscosity and a is

nanofluid thermal diffusivity. The corresponding boundary

conditions are given by

u ¼ Uw; v ¼ 0; T ¼ Tw; C ¼ Cw at y ¼ 0;

u ! 0; T ¼ T1; C ¼ C1 as y ! 1:
ð14Þ

Since the surface is stretched with velocity Bx, thus

Uw = Bx. Introducing the following transformations in

above equations

u ¼ Bxf 0ðgÞ; v ¼ �
ffiffiffiffiffiffi
Bm

p
f ðgÞ; g ¼

ffiffiffi
B

m

r
y;

h ¼ T � T1
Tw � T1

; / ¼ C � C1
Cw � C1

;

ð15Þ

with the help of above transformations, Eq. (10) is

identically satisfied and Eqs. (11) to (13) along with

boundary conditions (14) take the following form:

f 000 � f 02 þ ff 00 þ kf 00 f 000 ¼ 0; ð16Þ

h00 þ Pr f h0 þ Nc

Le
/0h0 þ Nc

Le � Nbt

h02 ¼ 0; ð17Þ

/00 þ Scf /0 þ 1

Nbt

h00 ¼ 0; ð18Þ

where f, h and / are functions of g and prime denotes

derivatives w.r.t g. The corresponding boundary conditions

are

f ¼ 0; f 0 ¼ 1; h ¼ 1; / ¼ 1 at g ¼ 0;

f 0 ¼ 0; h ¼ 0; / ¼ 0 as g ! 1:
ð19Þ

In above transformed equations the following non-

dimensional parameters are introduced:

k ¼Cx

ffiffiffiffiffiffiffiffi
2B3

m

r
ðNon Newtonian Williamson parameter),

Pr ¼ t
a
ðPrandtl number = momentum diffusivity=

nanofluid thermal diffusivityÞ;

Le ¼ a
DB

ðLewis number = nanofluid thermal diffusivity

=Brownian diffusivityÞ;

Sc ¼ t
DB

ðSchmidt number = momentum diffusivity

=Brownian diffusivity):

Nc ¼
qpcp

qc
ðCw � C1Þ (Heat capacities ratio = nano

particles heat capacity/nanofluid heat capacity),

Nbt ¼
DBT1ðCw � C1Þ

DTðTw � T1Þ (Diffusivity ratio = Brownian

diffusivity/thermophoretic diffusivity):

If we put k = 0, our problem reduces to the one for

Newtonian nano and for DB = DT = 0 in Eq. (12) our heat

equation reduces to the classical boundary layer heat

equation in the absence of viscous dissipation. Physical

quantities of interest are Local skin friction coefficient cf,

Local Nusselt number Nu and Local Sherwood number Sh.

cf ¼
sw

qU2
w

; Nu ¼ �x

Tw � T1

oT

oy

����
y¼0

;

Sh ¼ �x

Cw � C1

oC

oy

����
y¼0

;

ð20Þ

or by introducing the transformations (15), we have

ffiffiffiffiffiffi
Re

p
cf ¼ f 00 þ k

2
f 00 2

� �� �
g¼0

;
Nuffiffiffiffiffiffi
Re

p ¼ �h0ð0Þ;

Shffiffiffiffiffiffi
Re

p ¼ �/0ð0Þ;
ð21Þ

where Re = Bx2/m is local Reynolds number. Physical

parameters of interest will be discussed later in the results

section.

Solution technique

Solutions of Eqs. (16–18) are obtained with the help of

well-known Homotopy analysis technique (HAM). HAM is

a strong analytic technique to solve linear and non-linear,

ordinary and partial differential equations. HAM was

developed by Liao in 1992. HAM can be equally applied to

weak and strong nonlinear problems because it is inde-

pendent of small physical parameter restriction. It also

provides a way to check and adjust the convergence of

obtained solution with the help of auxiliary parameters and

base functions. The initial guess and operators are taken as

f0ðgÞ ¼ 1 � expð�gÞ;
h0ðgÞ ¼ expð�gÞ;
/0ðgÞ ¼ expð�gÞ;

ð22Þ

Lfðf Þ ¼
d3f

dg3
� df

dg
;

LhðhÞ ¼
d2h
dg2

þ dh
dg

;

L/ð/Þ ¼
d2/
dg2

þ d/
dg

:

ð23Þ

The convergence of Homotopy analysis solution greatly

depends on the choice of auxiliary parameter hf, hh, h/.

Results and discussion

In order to check the convergence of obtained solutions,

combine h-curve is plotted. It can be observed from Fig. 1
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that the admissible range for hf, hh, h/ is �1:9� hf �
�0:3;�0:9� hh � � 0:3;�1:0� h/ � � 0:3: Conver-

gence table has been drawn for f 00ð0Þ;/0ð0Þ; h0ð0Þ when

h ¼ hf ¼ hh ¼ h/ ¼ �0:7: It is found that the convergence

is achieved at 10th order of approximation (Table 1). All

the tables and graphs are plotted at 22nd order of

approximation.

From Fig. 2 it is observed that for a nanofluid the

velocity as well as the boundary layer thickness decreases

with the increase in non-Newtonian parameter k. With

increase in Prandtl number Pr, temperature as well as

thermal boundary layer thickness decreases, see Fig. 3. It is

also noted that the temperature and thermal boundary layer

thickness decrease with increase in lewis number Le and

Nbt (Figs. 4, 5). Since Nbt is the ratio of Brownian to

thermophoretic diffusivities, increase in Nbt means greater

activity of nanofluid particles. While they increase with

increase in k and Nc (see Figs. 6, 7). To observe the effects

of different parameters on nanoparticle volume fraction,

graphs have been plotted against k, Sc and Nbt. Nanopar-

ticle volume fraction decreases with increase in Schmidt

number Sc and Nbt, while it decrease with increase in k.

(See Figs. 8, 9, 10). It can also be observed from Fig. 11

that nanoparticle volume fraction (close to the boundary)

increases with increase in Pr. The behaviour shift of graph

away from wall greatly depends on the values of Nbt. Since

Eq. (18) is a second-order differential equation in both h
and /, here the only thing which can make difference is the

value of Nbt. Also if the value of Nbt is very large then /
hardly depends on h. Therefore, effects of Prandtl number

almost diminish for very large values of Nbt. It can also be

observed from the graphs of velocity, temperature and

Nanoparticle volume fraction that nanoparticle volume

fraction and temperature boundary layers survive longer as

compared with the velocity boundary layer. The impor-

tance of nanofluid study is because of heat transfer

enhancement. To observe the effects of effective parame-

ters on heat transfer closed to the wall, we plotted the

graphs for -h0(g). It can be observed from Figs. 12 and 13

that the heat transfer in fluid increases with the increase in

Nbt and Le; this enhancement is very significant in the

region very close to the wall but the parameter effect is

almost negligible on heat transfer away from the wall.

Table 2 is drawn to compare our results for the viscous

case in the absence of nanoparticles. These results are

Fig. 1 Combine plot for h curves

Table 1 Convergence of HAM solution for different order of

approximation when Pr = 0.5, Nc = 0.5, Nbt = 2, Le = 4,

Sc = 2, k = 0.2 and h = hf = hh = h/ = -0.7

Order of approximation -f00(0) -h0(0) -/0(0)

1 1.047 0.409 0.650

5 1.076 0.302 0.835

10 1.076 0.308 0.824

18 1.076 0.308 0.824

25 1.076 0.308 0.824

30 1.076 0.308 0.824

Fig. 2 Velocity variation against different values of k

Fig. 3 Temperature variation against different values of Pr

1008 Appl Nanosci (2014) 4:1005–1012

123



found to be in good agreement. Tables 3 and 4 show wall

temperature gradient and wall nanoparticle volume fraction

gradient respectively. It is observed that the wall temper-

ature gradient decreases with the increase in k and Nc. Here

Le and Nbt are important heat transfer parameters for

nanofluids; it is observed that the heat transfer increases

with the increase in both parameters. Also wall temperature

gradient increases with the increase in Prandtl number.

From Table 4, it can be observed that wall nano particle

volume fraction gradient decreases with the increase in k
and Le while it increases with the increase in Nbt and Sc.

Fig. 4 Temperature variation against different values of Le

Fig. 5 Temperature graph for different values of Nbt

Fig. 6 Temperature variation against different values of k

Fig. 7 Temperature variation against different values of Nc

Fig. 8 Nanoparticles volume fraction variation against different

values of Sc

Fig. 9 Nanoparticle volume fraction against different values of Nbt
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Concluding remarks

In the present paper we tried to analyse the nano particle

effect on boundary layer flow of Williamson fluid over a

stretching surface. The governing non-linear equations are

solved analytically using HAM. The important findings of

the paper are as follows:

• Lewis number will appear in nano particle volume

fraction equation for the case when velocity

Fig. 10 Nanoparticle volume fraction variation against different

values of k

Fig. 11 Nanoparticle volume fraction against different values of Pr

Fig. 12 Heat transfer in fluid against different values of Nbt

Fig. 13 Heat transfer in fluid against different values of Le

Table 2 Comparison table for viscous case (-h0(0))

Pr Present

results

Khan and Pop

(2010)

Wang

(1989)

Golra and Sidawi

(1994)

0.07 0.066 0.066 0.066 0.066

0.20 0.169 0.169 0.169 0.169

0.70 0.454 0.454 0.454 0.454

2.0 0.911 0.911 0.911 0.911

Table 3 Values of wall temperature gradient -h0(0), when h = -0.7

k Le Nbt Nc Pr -h0(0)

0.0 4.0 2.0 0.5 0.5 0.314

0.2 0.309

0.4 0.302

0.2 4.0 2.0 0.5 0.5 0.309

10 0.332

20 0.340

0.2 4.0 0.5 0.5 0.5 0.286

1.0 0.301

2.0 0.309

0.2 4.0 2.0 0.5 0.5 0.309

1.0 0.273

2.0 0.213

0.2 4.0 2.0 0.5 0.2 0.144

0.6 0.355

1.2 0.588

1010 Appl Nanosci (2014) 4:1005–1012

123



transformation depends on thermal diffusivity; other-

wise, Schmidt number will appear.

• The parameters have strong impact on heat transfer

very close to the wall and are almost negligible slightly

away from wall.

• Wall temperature gradient increases with increase in Le

and Nbt.

• Wall nano particle fraction gradient increases with Nbt

and Sc and decreases with Le.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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