
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2011, Article ID 132302, 18 pages
doi:10.1155/2011/132302

Research Article

Flow and Heat Transfer of Two Immiscible Fluids in
the Presence of Uniform Inclined Magnetic Field
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The magnetohydrodynamic (MHD) Couette flow of two immiscible fluids in a horizontal channel
with isothermal walls in the presence of an applied electric and inclined magnetic field has
been investigated in the paper. Both fluids are electrically conducting, while the channel plates
are electrically insulated. The general equations that describe the discussed problem under the
adopted assumptions are reduced to ordinary differential equations, and closed-form solutions
are obtained in both fluid regions of the channel. Separate solutions with appropriate boundary
conditions for each fluid have been obtained, and these solutions have been matched at the
interface using suitable matching conditions. The analytical results for various values of the
Hartmann number, the angle of magnetic field inclination, loading parameter, and the ratio of
fluid heights have been presented graphically to show their effect on the flow and heat transfer
characteristics.

1. Introduction

The flow and heat transfer of electrically conducting fluids in channels and circular
pipes under the effect of a transverse magnetic field occurs in magnetohydrodynamic (MHD)

generators, pumps, accelerators, and flowmeters and have applications in nuclear reactors,
filtration, geothermal systems, and others.

The interest in the outer magnetic field effect on heat-physical processes appeared
seventy years ago. Blum et al. [1] carried out one of the first works in the field of mass
and heat transfer in the presence of a magnetic field. The flow and heat transfer of a
viscous incompressible electrically conducting fluid between two infinite parallel insulating
plates have been studied by many researchers [2–6] due to its important applications in
the further development of MHD technology. Also convective heat transfer in channels has
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been an important research topic for the last few decades because of its applications in solar
technology, safety aspects of gas cooled reactors and crystal growth in liquids, and so forth.

Yang and Yu [7] studied the problem of convective magnetohydrodynamic channel
flow between two parallel plates subjected simultaneously to an axial temperature gradient
and a pressure gradient numerically. The problem of an unsteady two-dimensional flow of
a viscous incompressible and electrically conducting fluid between two parallel plates in the
presence of a uniform transverse magnetic field has been analyzed by Bodosa and Borkakati
[8] for the case of isothermal plates and one isothermal and other adiabatic. The MHD fully
developed flow and heat transfer of an electrically conducting fluid between two parallel
plates with temperature-dependent viscosity is studied in [9, 10]. An analytical solution
to the problem of steady and unsteady hydromagnetic flow of viscous incompressible
electrically conducting fluid under the influence of constant and periodic pressure gradient
in presence of inclined magnetic field has been obtained exactly by Ghosh [11]. Borkakati
and Chakrabarty [12] investigated the unsteady free convection MHD flow between two
heated vertical parallel plates in induced magnetic field. Analytical investigation of laminar
heat convection in a Couette-Poiseuille flow between two parallel plates with a simultaneous
pressure gradient and an axial movement of the upper plate was carried out by Aydin and
Avci [13]. Recently, Singha [14] gave an analytical solution to the problem of MHD free
convective flow of an electrically conducting fluid between two heated parallel plates in the
presence of an induced magnetic field.

All the mentioned studies pertain to a single-fluid model. Most of the problems
relating to the petroleum industry, geophysics, plasma physics, magneto-fluid dynamics, and
so forth involve multifluid flow situations. Hartmann flow of a conducting fluid and a non-
conducting fluid layer contained in a channel has been studied by Shail [15]. His results
predicted that an increase of the order 30% can be achieved in the flow rate for suitable ratios
of heights and viscosities of the two fluids. Lohrasbi and Sahai [16] studied two-phase MHD
flow and heat transfer in a parallel plate channel with the fluid in one phase being conducting.
These studies are expected to be useful in understanding the effect of the presence of a slag
layer on heat transfer characteristics of a coal-fired MHD generator.

There have been some experimental and analytical studies on hydrodynamic aspects
of the two-fluid flow reported in the recent literature. Following the ideas of Alireza and
Sahai [17], Malashetty et al. [18, 19] have studied the two fluid MHD flow and heat transfer
in an inclined channel, and flow in an inclined channel containing porous and fluid layer.
Umavathi et al. [20, 21] have presented analytical solutions of an oscillatory Hartmann
two-fluid flow and heat transfer in a horizontal channel and an unsteady two-fluid flow
and heat transfer in a horizontal channel. Recently, Umavathi et al. [22] have analysed the
magnetohydrodynamic Poiseuille-Couette flow and heat transfer of two immiscible fluids
between inclined parallel plates.

Recent studies show that magnetohydrodynamic (MHD) flows can also be a viable
option for transporting weakly conducting fluids in microscale systems, such as flow inside
the microchannel networks of a lab-on-a-chip device [23, 24]. In microfluidic devices,
multiple fluids may be transported through a channel for various reasons. For example,
increase in mobility of a fluid may be achieved by stratification of a highly mobile fluid or
mixing of two or more fluids in transit may be designed for emulsification or heat and mass
transfer applications. In that regard, magnetic field-driven micropumps are in increasing
demand due to their long-term reliability in generating flow, absence of moving parts, low
power requirement, flow reversibility, feasibility of buffer solution manipulation, and mixing
efficiency [25, 26].
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Figure 1: Physical model and coordinate system.

MHD flows inside channels can be propelled in many different ways, for example,
in electromagnetohydrodynamics (EMHDs) axial flow along a channel is generated by the
interaction between the magnetic field and an electric field acting normal to it. Regardless
of the purpose of a multifluid EMHD flow, it is important to understand the dynamics of
interfaces between the fluids and its effect on the transport characteristics of the system.
Keeping in view the wide area of practical importance of multifluid flows as mentioned
above, it is the objective of the present study to investigate the MHD Couette flow and heat
transfer of two immiscible fluids in a parallel-plate channel in the presence of applied electric
and inclined magnetic fields.

2. Mathematical Model

As mentioned in the introduction, the problem of the EMHD Couette two fluid flow has
been considered in this paper. The fluids in the two regions have been assumed immiscible
and incompressible, and the flow has been steady, one-dimensional, and fully developed.
Furthermore, the two fluids have different kinematic viscosities ν1 and ν2 and densities ρ1 and
ρ2. The transport properties of the two fluids have been taken to be constant. The analytical
solutions for velocities, magnetic field, and temperature distributions have been obtained and
computed for different values of the characteristic parameters. The physical model, shown in
Figure 1, consists of two infinite parallel plates extending in the x and z-direction. The upper
plate moves with constant velocity U0 in longitudinal direction. The region I 0 ≤ y ≤ h1

has been occupied by a fluid of viscosity µ1, electrical conductivity σ1, thermal conductivity
k1, and specific heat capacity cp1, and the region II −h2 ≤ y ≤ 0 has been filled by a layer of
different fluid of viscosity µ2, thermal conductivity k2, specific heat capacity cp2, and electrical
conductivity σ2.

A uniform magnetic field of the strength B0 has been applied in the direction making
an angle θ to the vertical line and due to the fact that the fluid motion magnetic field of the
strength Bx has been induced along the lines of motion.

The fluid velocity, treating the problem as a monodimensional, and the magnetic field
distributions for the case of inclined and induced magnetic field [8, 11, 27, 28] are

v =
(

u
(

y
)

, 0, 0
)

,

B =
(

Bx

(

y
)

+ B0

√

1 − λ2, B0λ, 0
)

,
(2.1)
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where B is magnetic field vector and λ = cos θ. The upper and lower plates have been kept
at the two constant temperatures Tw1 and Tw2, respectively, and the plates are electrically
insulated. The described MHD two fluid flow problem is mathematically presented with a
continuity equation:

∇v = 0, (2.2)

momentum equation:

ρ

{

∂v

∂t
+ (v∇)v

}

= −∇p + µ∇2v + J × B, (2.3)

general magnetic induction equation:

∂B

∂t
− ∇ × (v × B) −

1

σµe
∇2B = 0, (2.4)

and an energy equation:

ρcp

(

∂T

∂t
+ v∇T

)

= k∇2T + µΦ +
J2

σ
, (2.5)

where:

Φ = 2

[

(

∂u

∂x

)2

+

(

∂v

∂y

)2

+

(

∂w

∂z

)2
]

+

(

∂v

∂x
+
∂u

∂y

)2

+

(

∂w

∂y
+
∂v

∂z

)2

+

(

∂u

∂z
+
∂w

∂x

)2

−
2

3
(∇v)2.

(2.6)

In previous equations and in following boundary conditions, used symbols are common for
the theory ofMHDflows: t-time, cp-specific heat capacity, u-velocity in longitudinal direction,
T -thermodynamic temperature, µe-magnetic permeability and Φ-dissipation function. The
third term on the right hand side of (2.3) is the magnetic body force, and J is the current
density vector due to the magnetic field and electric field defined by

J = σ(E + v × B), (2.7)

where E = (0, 0, Ez) is the vector of the applied electric field.
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Finally the continuity, momentum, and induction equation written in the classic quasi-
static low magnetic Reynolds number approximation [29, 30] takes the following form:

1

ρ
P + ν

d2u

dy2
−
σ

ρ
B0λ(Ez + uB0λ) = 0, (2.8)

B0λ
du

dy
+

1

σµe

d2Bx

dy2
= 0, (2.9)

ρcpu
∂T

∂x
= k

∂2T

∂y2
+ µ

(

∂u

∂y

)2

+ σ(Ez + uB0λ)
2, (2.10)

where

P = −
∂p

∂x
. (2.11)

The fluid and thermal boundary conditions have been unchanged by the addition of
electromagnetic fields. The no-slip conditions require that the fluid velocities are equal to
the plate’s velocities, and boundary conditions on temperature are isothermal conditions.
In addition, the fluid velocity, sheer stress, induced magnetic field, induced magnetic flux
(induced currents at the interface of conductors [29]), temperature, and heat flux must be
continuous across the interface y = 0. Equations which represent these conditions are

u1(h1) = U0, u2(−h2) = 0, (2.12)

u1(0) = u2(0), (2.13)

µ1
du1

dy
= µ2

du2

dy
, y = 0, (2.14)

Bx1(h1) = 0, Bx2(−h2) = 0, (2.15)

Bx1(0) = Bx2(0), (2.16)

1

µe1σ1

dBx1

dy
=

1

µe2σ2

dBx2

dy
for y = 0, (2.17)

T1(h1) = Tw1, T2(−h2) = Tw2, (2.18)

T1(0) = T2(0), (2.19)

k1
dT1
dy

= k2
dT2
dy

; y = 0. (2.20)
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3. Velocity and Magnetic Field Distribution

The governing equation for the velocity ui in regions I and II can be written as:

1

ρi
P + νi

d2ui

dy2
−
σi

ρi
B0λ(Ez + uiB0λ) = 0, (3.1)

where suffix i (i = 1, 2) represents the values for regions I and II, respectively. The equation
for the magnetic field induction in the regions I and II can be written as

B0λ
dui

dy
+

1

σiµei

d2Bxi

dy2
= 0. (3.2)

It is convenient to transform (3.1) and (3.2) to a nondimensional form. The following
transformations have been used:

u∗
i =

ui

U0
, y∗

i =
y

hi
,

α =
µ1

µ2
, β =

h1

h2
, γ =

σ1

σ2
, δ =

µe1

µe2
,

Gi =
P

(

µiU0/h
2
i

) , bi =
Bxi

B0
,

K =
Ez

U0B0
-loading parameter,

Hai = B0hi

√

σi

µi
-Hartmann number,

Rmi = U0hiσiµei-magnetic Reynolds number.

(3.3)

With the above nondimensional quantities, the governing equations become

d2u∗
i

dy∗
i
2
−Ha2

i

(

K + u∗
i λ
)

λ +Gi = 0,

d2bi

dy∗2
i

+ λRmi

du∗
i

dy∗
i

= 0.

(3.4)
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The nondimensional form of the boundary and interface conditions (2.12) to (2.17) becomes

u∗
1(1) = 1, u∗

2(−1) = 0,

u∗
1(0) = u∗

2(0),

du∗
1

dy∗
1

=
β

α

du∗
2

dy∗
2

for y∗
i = 0; i = 1, 2,

b1(1) = 0, b2(−1) = 0,

b1(0) = b2(0),

db1
dy∗

1

= δβγ
db2
dy∗

2

for y∗
i = 0, i = 1, 2.

(3.5)

The solutions of (3.4)with boundary and interface conditions have the following forms:

u∗
i

(

y∗
i

)

= D1i cosh
(

λHaiy
∗
i

)

+D2i sinh
(

λHaiy
∗
i

)

+ Fi,

bi
(

y∗
i

)

= −
Rmi

Hai

[

D1i sinh
(

λHaiy
∗
i

)

+D2i cosh
(

λHaiy
∗
i

)]

+Q1iy
∗
i +Q2i,

(3.6)

where

Fi =
Gi

λ2Ha2
i

−
K

λ
,

D11 =
(1 − F1)H sinh(λHa2)

W
−
L sinh(λHa1)

W
,

L = F2 + S cosh(λHa2),

W = H cosh(λHa1) sinh(λHa2) + cosh(λHa2) sinh(λHa1),

H =
α

β

Ha1

Ha2
,

S =
1

λ2

(

G1

Ha2
1

−
G2

Ha2
2

)

,

D21 =
(1 − F1) cosh(λHa2)

W
+
L cosh(λHa1)

W
,

D12 = S +D11,
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D22 = HD21,

Q11 = Rm1λD11 + δβγ(Q12 − λRm2D12),

Q21 =
Rm1

Ha1
[D11 sinh(λHa1) +D21 cosh(λHa1)] −Q11,

Q12 =
M1 +M2

1 + δβγ
,

M1 =
Rm1

Ha1
{D11[sinh(λHa1) − λHa1] +D21[cosh(λHa1) − 1]},

M2 =
Rm2

Ha2

{

D12

[

sinh(λHa2) + λδβγHa2

]

+D22[1 − cosh(λHa2)]
}

,

Q22 =
Rm2

Ha2
[D22 cosh(λHa2) −D12 sinh(λHa2)] +Q12.

(3.7)

4. Temperature Distribution

Once the velocity distributions were known, the temperature distributions for the two regions
have been determined by solving the energy equation subject to the appropriate boundary
and interface conditions (2.18)–(2.20). In the present problem, it has been assumed that the
two walls have been maintained at constant temperatures. The term involving ∂T/∂x = 0 in
the energy equation (2.10) drops out for such a condition. The governing equation for the
temperatures T1 and T2 in region I and II is then given by

ki
d2Ti
dy2

+ µi

(

dui

dy

)2

+ σi(Ez + uiB0λ)
2 = 0. (4.1)

In order to nondimensionalize previous equation, the following transformations have been
used beside the already introduced (3.3):

Θi =
Ti − Tw2

Tw1 − Tw2
, ξ =

k1
k2

. (4.2)

With the above, nondimensional quantities (4.1) for regions I and II becomes:

d2Θi

dy∗
i
2
+ PriEci

(

du∗
i

dy∗
i

)2

+Ha2
i PriEci

(

K + u∗
i λ
)2

= 0, (4.3)

where

Pri =
µicpi

ki
, Eci =

U2
0

cpi(Tw1 − Tw2)
. (4.4)
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In the nondimensional form, the boundary conditions for temperature and heat flux at the
interface y = 0 becomes

Θ1(1) = 1, Θ2(−1) = 0,

Θ1(0) = Θ2(0),

dΘ1

dy∗
1

∣

∣

∣

∣

∣

0

=
β

ξ

dΘ2

dy∗
2

∣

∣

∣

∣

0

, y∗
i = 0.

(4.5)

The solution of (4.3) with boundary and interface conditions has the following form:

Θi

(

y∗
i

)

= −
PriEci
4λ

{

λ
(

D2
1i +D2

2i

)

cosh
(

2λHaiy
∗
i

)

+ 8D2iCi sinh
(

λHaiy
∗
i

)

+ 2D1iD2iλ sinh
(

2λHaiy
∗
i

)

+ 8D1iCi cosh
(

λHaiy
∗
i

)

−2λ
(

2D3i + 2D4iy
∗
i −Hai

2C2
i y

∗2
i

)}

,

(4.6)

where

Ci = K + λFi =
Gi

λHa2
i

, i = 1, 2,

D31 =
1

4λ
I1 −D41,

D41 =
1

4λ
(

1 +
(

β/ξ
))

(

β

ξ
I1 −N∗

I2 −
β

ξ
I3 + I4

)

,

D32 =
1

4λN
(I1 − I3) −

1

N
D41,

D42 =
D41

N∗
−

I4

4λN∗
,

I1 = λ
(

D2
11 +D2

21

)

cosh(2λHa1) + 8D21C1 sinh(λHa1)

+2D11D21λ sinh(2λHa1) + 8D11C1 cosh(λHa1) + 2λHa1
2C2

1 +
4λ

Pr1Ec1
,

I2 = λ
(

D2
12 +D2

22

)

cosh(2λHa2) − 8D22C2 sinh(λHa2)

−2D12D22λ sinh(2λHa2) + 8D12C2 cosh(λHa2) + 2λHa2
2C2

2,

I3 = λ
(

D2
11 +D2

21

)

− λN
(

D2
12 +D2

22

)

+ 8D11C1 − 8D12C2N,

I4 = 8λHa1D21C1 + 4λ2D11D21Ha1 − 8λHa2D22C2N
∗ − 4λ2D12D22Ha2N

∗,

N =
Pr2Ec2
Pr1Ec1

, N∗ =
β

ξ
N.

(4.7)
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Figure 2: Velocity profiles for different values of inclination angle (Ha1 = 3; Ha2 = 15; K = 0).

5. Results and Discussion

Recent technological trends show that the use of external fields to generate the flow
inside channels, such as electrohydrodynamic, MHD, and electrokinetic flows, can be more
advantageous in many microscale applications. In order to show the results of the considered
MHD Couette flow problem graphically, two fluids important for technical practice (selected
for the development of MHD pump under the project TR35016) have been chosen, and the
parameters α, ξ and γ take the values of 0.677; 0.0647 and 0.025, respectively. Fluids Prandtl
number is Pr1 = 7.43 and Pr2 = 0.25, while Eckert number is equal to Ec1 = 0.0017 and
Ec2 = 0.005 for all the results given in Figures 2 to 13 and except in Figure 14 where it takes
different values. The part of obtained results has been presented graphically in Figures 2 to
13 to elucidate the significant features of the hydrodynamic and thermal state of the flow.

Figures 2 to 4 show the effect of the magnetic field inclination angle on the distribution
of velocity, temperature, and the ratio of the applied and induced magnetic field.

Figure 2 shows the effect of the angle of inclination on velocity which predicts that
the velocity increases as the inclination angle increases. These results are expected because
the application of a transverse magnetic field normal to the flow direction has a tendency
to create a drag-like Lorentz force which has a decreasing effect on the flow velocity.
Dimensionless temperature in function of angle of inclination of applied magnetic field is
shown in Figure 3. In region II containing higher electrical conductivity fluid, the viscous
heating is less pronounced and the influence of applied magnetic field is more expressed.

It can be seen from Figures 2 and 3 that the magnetic field flattens out the velocity
and temperature profiles and reduces the flow energy transformation as the inclination angle
decreases.

Figure 4 shows that the ratio of an induced and externally imposed magnetic field
increases as the inclination angle of an applied field increases, for negative values of y∗

i . This
ratio has tendency to change the sign while λ decreases and y∗

i have positive values.
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Figure 3: Temperature profiles for different values of inclination angle (Ha1 = 3; Ha2 = 15; K = 0).
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Figure 4: Ratio of an induced and externally imposed magnetic field (Ha1 = 3; Ha2 = 15; K = 0).

Figures 5 to 7 depict the effect of the Hartmann number, while the electric loading
factor K is equal to zero (so-called short-circuited case). The influence of the Hartmann
number on the velocity profiles was more pronounced in the channel region II containing
the fluid with greater electrical conductivity. Figure 5 illustrates the effect of the Hartmann
number on the velocity field. It was found that for large values of Hartmann number, flow can
be almost completely stopped in the region II, while in region I velocity decrease is significant.

The effect of increasing the Hartmann number on temperature profiles (Figure 6) in
both of the parallel-plate channel regions was in equalizing the fluid temperatures.
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The influence of the Hartmann number had quite similar effect on the ratio of induced
and externally applied magnetic field as shown in Figure 7.

The influence of the induced magnetic field in the considered case is not so important,
but in similar flow problems where the transversal component velocity is present, the
knowledge of the imposed and induced field ratio can have great significance.

Of particular significance is the analysis when the loading factor K is different from
zero (value of loading factorK defines the system as generator, flowmeter, or pump). Figure 8
illustrates that with the increase in the absolute value of loading factor K the temperature in
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Figure 8: Temperature profiles for different values of loading factor (Ha1 = 2; Ha2 = 10; λ = 0.75).

both regions increases. In region I, viscous heating decreases while Joule heating increases,
and, in region II, viscous heating increases near the lower plate and towards the middle of
the channel Joule heating is more pronounced.

Figure 9 shows the effect of the loading factor on velocity, which predicts the
possibility to change the flow direction. For negative K values, the flow rate increases.
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Figure 10: Ratio of an induced and externally imposed magnetic field for different values of loading factor
(Ha1 = 2; Ha2 = 10; λ = 0.75).

The obtained results show that different values of the inclination angle, the Hartmann
number, and the loading factor are a convenient control method for heat and mass transfer
processes.

The ratio of an induced and externally imposed magnetic field had a considerable
change when the loading parameter was different from zero, especially in region II.
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Figure 11: Velocity profiles for different values of height ratio β (Ha1 = 1; Ha2 = 5; λ = 1).
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Figure 12: Temperature profiles for different values of height ratio β (Ha1 = 1; Ha2 = 5; λ = 1).

Figure 10 also shows a direction change of the induced field in some areas of regions
I and II. This property can be used together with the change of parameters λ, Hai, and K in
order to obtain a precise flow and heat transfer process control.

The effect of the ratio of heights of the two regions on the velocity field is shown in
Figure 11. It is interesting to note that decreasing of β flattens out velocity profiles and for
small values, even change curves shape.
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Figure 13: Ratio of an induced and externally imposed magnetic field for different values of height ratio
β (Ha1 = 1; Ha2 = 5; λ = 1).
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Figure 14: Temperature profiles for different values of Eckert number (Ha1 = 2; Ha2 = 10; λ = 1).

The effect of ratio of the heights of the two regions on temperature field is same as its
effect on velocity field, which is evident from Figure 12. It is found that the effect of decreasing
β is to decrease the temperature field. It is also interesting to note that for small β, the ratio of
induced and externally imposed magnetic field become negligible small.
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Figure 14 demonstrates the temperature distribution for different values of Eckert
number Ec. It is observed that increasing values of Eckert number is to increase the
temperature distribution in the flow region. Increase in Eckert number enhances the
temperature because the heat energy is stored in the liquid due to the frictional heating.
Temperature change is more pronounced in the region 1, while in region 2 a linear change
is observed.

6. Conclusion

The problem of MHD Couette flow and heat transfer of two immiscible fluids in a
horizontal parallel-plate channel in the presence of applied electric and inclined magnetic
fields was investigated analytically. Both fluids were assumed to be Newtonian, electrically
conducting, and have constant physical properties. Separate closed form solutions for
velocity, temperature, and magnetic induction of each fluid were obtained taking into
consideration suitable interface matching conditions and boundary conditions. The results
were numerically evaluated and presented graphically for two fluids important for technical
practice. Only part of the results are presented for various values of the magnetic field
inclination angle, Hartmann number, loading parameter, and ratio of fluid heights in region
I and II.

Furthermore, it was concluded that the flow and heat transfer aspects of two
immiscible fluids in a horizontal channel with insulating walls can be controlled by
considering different fluids having different viscosities and conductivities and also by
varying the heights of regions. The obtained results show also that different values of the
inclination angle, the Hartmann number, and the loading factor are a convenient control
method for heat and mass transfer processes.

Acknowledgments

This paper is supported by the Serbian Ministry of Sciences and Technological development
(Project no. TR 35016; Research of MHD flow in the channels, around the bodies and
application in the development of the MHD pump). The authors wish to thank the reviewer
for his careful, unbiased, and constructive suggestions that significantly improved the quality
of this paper.

References

[1] E. L. Blum, M. V. Zaks, U. I. Ivanov, and Y. A. Mikhailov, Heat Exchange and Mass Exchange in
Magnetic Field. Zinatne, Riga 223, 1967.

[2] K. R. Cramer and S. I. Pai, Magnetofluid Dynamics for Engineers and Applied Physicists, McGraw-Hill,
New York, NY, USA, 1973.

[3] I. Tani, “Steady flow of conducting fluids in channels under transverse magnetic fields, with
consideration of Hall effect,” Journal of Aerospace Science, vol. 29, pp. 287–396, 1962.

[4] V. M. Soundalgekar, N. V. Vighnesam, and H. S. Takhar, “Hall and ion slip effects in MHD Couette
flow with heat transfer,” IEEE Transactions on Plasma Science, vol. PS-7, no. 3, pp. 178–182, 1979.

[5] V. M. Soundalgekar and A. G. Uplekar, “Hall effects in MHD Couette flow with heat transfer,” IEEE
Transactions on Plasma Science, vol. PS-14, no. 4, pp. 579–583, 1986.

[6] H. A. Attia, “Hall current effects on the velocity and temperature fields of an unsteady Hartmann
flow,” Canadian Journal of Physics, vol. 76, no. 9, pp. 739–746, 1998.



18 Mathematical Problems in Engineering

[7] H. K. Yang and C. P. Yu, “Combined forced and free convection MHD channel flow in entrance
region,” International Journal of Heat and Mass Transfer, vol. 17, no. 6, pp. 681–691, 1974.

[8] G. Bodosa and A. K. Borkakati, “MHD Couette flowwith heat transfer between two horizontal plates
in the presence of a uniform transverse magnetic field,” Journal Of Theoretical And Applied Mechanics,
vol. 30, no. 1, pp. 1–9, 2003.

[9] H. A. Attia and N. A. Kotb, “MHD flow between two parallel plates with heat transfer,” Acta
Mechanica, vol. 117, p. 215, 1996.

[10] H. A. Attia, “Transient MHD flow and heat transfer between two parallel plates with temperature
dependent viscosity,”Mechanics Research Communications, vol. 26, no. 1, pp. 115–121, 1999.

[11] S. K. Ghosh, “A note on steady and unsteady hydromagnetic flow in a rotating channel in the presence
of inclined magnetic field,” International Journal of Engineering Science, vol. 29, no. 8, pp. 1013–1016,
1991.

[12] A. K. Borkakati and S. Chakrabarty, “Unsteady free convection MHD flow between two heated
vertical parallel plates in induced magnetic field,” Indian Journal of Theoretical Physics, vol. 47, pp.
143–160, 1999.

[13] O. Aydin and M. Avci, “Laminar forced convection with viscous dissipation in a Couette-Poiseuille
flow between parallel plates,” Applied Energy, vol. 83, no. 8, pp. 856–867, 2006.

[14] K. G. Singha, “Analytical solution to the problem of MHD free convective flow of an electrically
conducting fluid between two heated parallel plates in the presence of an induced magnetic field,”
International Journal of Applied Mathematics and Computation, vol. 1, no. 4, pp. 183–193, 2009.

[15] R. Shail, “On laminar two-phase flows inmagnetohydrodynamics,” International Journal of Engineering
Science, vol. 11, no. 10, pp. 1103–1108, 1973.

[16] J. Lohrasbi and V. Sahai, “Magnetohydrodynamic heat transfer in two-phase flow between parallel
plates,” Applied Scientific Research, vol. 45, no. 1, pp. 53–66, 1988.

[17] S. Alireza and V. Sahai, “Heat transfer in developing magnetohydrodynamic Poiseuille flow and
variable transport properties,” International Journal of Heat and Mass Transfer, vol. 33, no. 8, pp. 1711–
1720, 1990.

[18] M. S. Malashetty, J. C. Umavathi, and J. P. Kumar, “Convective magnetohydrodynamic two fluid flow
and heat transfer in an inclined channel,” Heat and Mass Transfer, vol. 37, no. 2-3, pp. 259–264, 2001.

[19] M. S. Malashetty, J. C. Umavathi, and J. P. Kumar, “Two fluid flow and heat transfer in an inclined
channel containing porous and fluid layer,” Heat and Mass Transfer, vol. 40, no. 11, pp. 871–876, 2004.

[20] J. C. Umavathi, A. Mateen, A. J. Chamkha, and A. A. Mudhaf, “Oscillatory Hartmann two-fluid flow
and heat transfer in a horizontal channel,” International Journal of Applied Mechanics and Engineering,
vol. 11, no. 1, pp. 155–178, 2006.

[21] J. C. Umavathi, A. J. Chamkha, A. Mateen, and A. Al-Mudhaf, “Unsteady two-fluid flow and heat
transfer in a horizontal channel,” Heat and Mass Transfer, vol. 42, no. 2, pp. 81–90, 2005.

[22] J. C. Umavathi, I. C. Liu, and J. Prathap Kumar, “Magnetohydrodynamic Poiseuille-Couette flow and
heat transfer in an inclined channel,” Journal of Mechanics, vol. 26, no. 4, pp. 525–532, 2010.

[23] H. B. Haim, Z. Jianzhong, Q. Shizhi, and X. Yu, “A magneto-hydrodynamically controlled fluidic
network,” Sensors and Actuators B, vol. 88, no. 2, pp. 205–216, 2003.

[24] S. K. Hussameddine, J. M. Martin, and W. J. Sang, “Analytical prediction of flow field in
magnetohydrodynamic-based microfluidic devices,” Journal of Fluids Engineering, vol. 130, no. 9, p.
6, 2008.

[25] M. Yi, S. Qian, and H. Bau, “A magnetohydrodynamic chaotic stirrer,” Journal of Fluid Mechanics, vol.
468, pp. 153–177, 2002.

[26] M. C. Weston, M. D. Gerner, and I. Fritsch, “Magnetic fields for fluid motion,” Analytical Chemistry,
vol. 82, no. 9, pp. 3411–3418, 2010.

[27] S. K. Ghosh, “Effects of Hall current on MHD Couette flow in a rotating system with arbitrary
magnetic field,” Czechoslovak Journal of Physics, vol. 52, no. 1, pp. 51–63, 2002.

[28] G. S. Seth, R. Nandkeolyar, N. Mahto, and S. K. Singh, “MHD couette flow in a rotating system in the
presence of an inclined magnetic field,” Applied Mathematical Sciences, vol. 3, no. 57–60, pp. 2919–2932,
2009.

[29] S. Smolentsev, S. Cuevas, and A. Beltrán, “Induced electric current-based formulation in compu-
tations of low magnetic Reynolds number magnetohydrodynamic flows,” Journal of Computational
Physics, vol. 229, no. 5, pp. 1558–1572, 2010.

[30] P. J. Bhuyan and K. S. Goswami, “Effect of magnetic field on MHD pressure drop inside a rectangular
conducting duct,” IEEE Transactions on Plasma Science, vol. 36, no. 4, pp. 1955–1959, 2008.



Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


