
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

8-2012 

Flow and pressure measurement using phase-contrast MRI : Flow and pressure measurement using phase-contrast MRI : 

experiments in stenotic phantom models. experiments in stenotic phantom models. 

Iman Khodarahmi 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

Recommended Citation Recommended Citation 

Khodarahmi, Iman, "Flow and pressure measurement using phase-contrast MRI : experiments in stenotic 

phantom models." (2012). Electronic Theses and Dissertations. Paper 744. 

https://doi.org/10.18297/etd/744 

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the 
author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/744
mailto:thinkir@louisville.edu


FLOWAND PRESSURE MEASUREMENT USING 

PHASE-CONTRAST MRI: EXPERIMENTS IN 

STENOTIC PHANTOM MODELS 

By 

Iman Khodarahmi 

B.S., University of Tehran, 2006 

M.S., University of Tehran, 2007 

M.D., University of Tehran, 2007 

A Dissertation 

Submitted to the Faculty of the 

J. B. Speed School of Engineering of the University of Louisville 

in Partial Fulfillment of the Requirements 

for the Degree of 

Doctor of Philosophy 

Department of Electrical and Computer Engineering 

University of Louisville 

Louisville, Kentucky 

August 2012 



Copyright 2012 by Iman Khodarahmi 

All rights reserved 



FLOW AND PRESSURE MEASUREMENT USING 

PHASE-CONTRAST MRI: EXPERIMENTS IN 

PHANTOM MODELS 

By 

Iman Khodarahmi Qahnavieh 

B.S., University of Tehran, 2006 

M.S., University of Tehran, 2007 

M.D., University of Tehran, 2007 

A Dissertation Approved on 

May 29,2012 

By the following Dissertation Committee 

Dr. Amir Amini, Co-Director 

Dr. Keith Sharp, Co-Director 

Dr. John Naber 

Dr. Aly Farag 

Dr. Tamer Inane 

Dr. Pamela Woodard 

11 



-- ----------

DEDICATION 

This dissertation is dedicated to my parents, who taught me that even the largest 

task can be accomplished by hard work and perseverance. 

III 



ACKNOWLEDGEMENT 

This dissertation project would not have been possible without the support of many 

people. The author wishes to express his gratitude to his co-advisors, Dr. Amir Amini and 

Dr. Keith Sharp, who were abundantly helpful and offered invaluable assistance, support 

and guidance. Deepest gratitude is also due to the members of my dissertation committee, 

Dr. John Naber, Dr. Aly Farag, Dr. Tamer Inanc, and Dr. Pamela Woodard, without 

whose knowledge and assistance, this study would not have been successful. Special 

thanks also to my friend over the past four years, Dr. Mostafa Shakeri, whose experience 

and expertise was crucial for all steps of this research. 

The author wishes to express his love and gratitude to his beloved family; for their 

understanding and endless love, through the duration of his studies. 

iv 



ABSTRACT 

FLOW AND PRESSURE MEASUREMENT USING PHASE­

CONTRAST MRI: EXPERIMENTS IN STENOTIC PHANTOM 

MODELS 

Iman Khodarahmi 

May 29, 2012 

Peripheral Arterial Disease (PAD) is a progressive atherosclerotic disorder which 

is defined as any pathologic process obstructing the blood flow of the arteries supplying 

the lower extremities. Moderate stenoses mayor may not be hemodynamically 

significant, and intravascular pressure measurements have been recommended to evaluate 

whether these lesions are clinically significant. 

Phase-contrast MRI (PC-MRI) provides a powerful and non-invasive method to 

acquire spatially registered blood velocity. The velocity field, then, can be used to derive 

other clinically useful hemodynamic parameters, such as blood flow and blood pressure 

gradients. Herein, a series of detailed experiments are reported for the validation of MR 

measurements of steady and pulsatile flows with stereoscopic particle image velocimetry 

(SPIV). 
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Agreement between PC-MRI and SPIV was demonstrated for both steady and 

pulsatile flow measurements at the inlet by evaluating the linear regression between the 

two methods, which showed a correlation coefficient of> 0.99 and> 0.96 for steady and 

pulsatile flows, respectively. Experiments revealed that the most accurate measures of 

flow by PC-MRI are found at the throat of the stenosis (error < 5% for both steady and 

pulsatile mean flows). The flow rate error distal to the stenosis was shown to be a 

function of narrowing severity. 

Furthermore, pressure differences across an axisymmetric stenotic phantom 

model were estimated by solving the pressure-Poisson equation (iterative method) and a 

non-iterative method based on harmonics-based orthogonal projection using PC-MRI 

velocity data. Results were compared with the values obtained from other techniques 

including SPIV, computational fluid dynamic (CFD) simulations, and direct pressure 

measurements. 

Using the pressure obtained from CFD as the ground truth and PC-MRI velocity 

data as the input, the relative error in pressure drop for iterative and non-iterative 

techniques were 13.1 % and 12.5% for steady flow, 4.0% and 22.1 % for pulsatile flow at 

peak-systole, and 194.5% and 155.2% at end-diastole, respectively. It was concluded that 

pressure drop calculation using PC-MRI is more promising for steady cases and pulsatile 

cases at peak-systole compared to pulsatile flow cases at end-diastole. 
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1 INTRODUCTION AND MOTIVATION 

In 2000, one in 16 adults aged 40 years and older in the United States was found 

to suffer from peripheral arterial disease (PAD). The age adjusted prevalence of PAD was 

determined to be 4% to 15%, and in the presence of cardiovascular risk factors it 

increases to 30%, totally affecting 5 million adults in the United Stated (Allison, Ho et 

a!., 2007; Kasapis and Gurm, 2009). 

PAD refers to the lipid deposition and the resulting inflammation in the 

endothelium of the arteries outside the heart; mainly the arteries supplying the lower 

extremities. The initiation and progression of atherosclerosis in PAD involves multiple 

factors such as platelet activation, thrombosis, endothelial dysfunction and vascular 

smooth muscle activation (Faxon, Fuster et a!., 2004). Atherosclerotic plaque formation 

causes narrowing of the vessel lumen and blocks the circulation to the leg muscles and 

feet. Although PAD is a systemic process with high morbidity and mortality, the iliac, 

femoral, and popliteal arteries are more commonly affected (Allison, Ho et a!., 2007; 

Kasapis and Gurm, 2009). Less than 20% of patients with PAD have typical symptoms of 

intermittent claudication i.e., leg muscle discomfort on exertion that is relieved by rest, or 

rest pain, ulceration or gangrene (Leng, Lee et a!., 1996; Hirsch, Criqui et a!., 2001), 

whereas another third have atypical exertionalleg complaints (McDermott, Mehta et a!., 

1999). 



Contrast angiography is considered as the gold standard to evaluate patients with 

P AD of lower limbs and provides thorough information about the arterial "anatomy". 

Therefore, it is generally recommended before any revascularization procedure. 

Nonetheless, single-plane angiography and, to some extent, trip lane angiography are 

proved to be inaccurate in evaluating the hemodynamic significance of stenoses (Kinney 

and Rose, 1996). 

Stenoses of 50% to 75% diameter determined by angiography mayor may not be 

hemodynamically significant, and consequently, intravascular pressure measurements 

have been recommended to check whether these lesions are significant and to predict if 

the patient will benefit from a revascularization procedure (Udoff, Barth et aI., 1979; 

Tetteroo, van Engelen et aI., 1996; Kasapis and Gurm, 2009). According to the guidelines 

of the American College of Cardiology (ACC) and American Heart Association (AHA), 

a mean difference of 10 mmHg before or after vasodilators; or a mean difference of 5 

mmHg and peak systolic difference of 10, 15 or 20 mmHg; or a peak systolic pressure 

difference of 15% (of peak systolic pressure) after administration of a vasodilator is 

considered hemodynamically significant (Hirsch, Haskal et aI., 2006). 

Angiography with a concomitant intravascular pressure measurement is an 

invasive procedure requiring arterial puncture, intravenous sedation, and close 

monitoring of the procedure to avoid serious complications, such as hemorrhage, 

infection, atheroembolism, dissection, pseudoaneurysm, hematoma formation, and 

arteriovenous fistula (Khodarahmi, Shakeri et aI., 2010). 

Hence, a non-invasive measurement of relative pressures from velocity-based 

methods, such as phase contrast MRl (PC-MRI) and Doppler ultrasound, has received 
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much attention in the literature. Pressure gradients have been calculated by applying the 

Navier-Stokes equations to the velocity data obtained by PC-MRI and using iterative 

algorithms in both phantom (Yang, Kilner et aI., 1996; Tyszka, Laidlaw et aI., 2000; 

Nasiraei-Moghaddam, Behrens et aI., 2004; Khodarahmi, Shakeri et aI., 2010) and in­

vivo models (Thompson and McVeigh, 2003; Lum, Johnson et aI., 2007). 

In this research, the accuracy of the PC-MRI derived velocity and flow data has 

been evaluated against other experimental and computational techniques in stenotic 

phantom models of the human iliac artery. In addition, pressure gradients have been 

calculated using an iterative method as well as a novel, faster non-iterative method, with 

the results compared against direct pressure measurements. 
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2 FLUID FLOW 

A fluid, gas or liquid, is defined as a substance that has no shape and deforms 

easily under any external force tangential to it. Such a tangential force is called a shear 

force, and the shear stress is defined as the ratio of the so called shear force to the area on 

which it acts (Massey, Ward-Smith et aI., 2006). Several of the more common fluid 

properties are introduced here: 

Compressibility 

Certain fluids under static conditions undergo very little change in density despite 

the existence of large pressures. These fluids are invariably in the liquid state for such 

behavior. Under such circumstances, the fluid is termed incompressible, and it is assumed 

during computations that the density is constant (Shames, 2003). 

Viscosity 

Viscosity is a fluid property which is responsible for the resistance of the fluid 

layers to move over each other. Viscosity is generally of high importance near solid 

boundaries because of the presence of a thin layer of high strain rate which is known as 

boundary layer. The fluid immediately adjacent to the boundary must move at the same 

speed as the boundary, which is called "no-slip" condition in fluid mechanics (Massey, 

Ward-Smith et aI., 2006). 
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Steady vs. unsteady flow 

Steady flow is defined as that in which the various parameters at any point do not 

change with time. In other words, when all the time derivatives of a flow field are zero, 

the flow is considered to be a steady flow. Flow in which a temporal change exists is 

called non-steady or unsteady. In practice, many problems may be simplified and studied 

effectively by assuming that the flow is steady. Such flows are called quasi-steady. By 

definition, turbulent flows are unsteady (Massey, Ward-Smith et aI., 2006). 

Laminar vs. turbulent flow 

The flow of a fluid has been categorized into two different kinds from about 1840: 

laminar and turbulent. In laminar flow which is also called streamline flow, the particles 

of the flow in a straight pipe always follow the same straight lines in fully developed 

flow. The velocity of the particles moving along one line (so-called streamline) is not 

necessarily the same as that along other lines. Such fluid is considered to move in layers, 

or laminae, therefore, is called laminar flow. Compared to turbulent flow, this kind of 

flow occurs at the lower velocities. 

In contrast, in turbulent flow, the paths of fluid particles are no longer straight 

everywhere but are intertwining and crossing one another in an irregular manner and as a 

result a complete mixing of the fluid occurs. From a fluid mechanics perspective, 

irregular, countless and haphazard secondary components are superimposed on the 

principal motion of the fluid in turbulent flow (Massey, Ward-Smith et aI., 2006). 
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Newtonian vs. non-Newtonian fluids 

A fluid is called Newtonian if the shear stress of the fluid is directly proportional 

to the velocity gradient. Many common fluids, such as air, water and oil are Newtonian. 

In contrast, whenever the relationship between shear stress and strain rate is non-linear 

the fluid is called Non-Newtonian. Non-Newtonian fluids usually have a complex 

molecular composition. Examples of non-Newtonian fluids are liquid plastics and blood 

(Potter and Wiggert, 2009). 

Reynolds number 

A dimensionless number, the Reynolds number (Re) is defined as: 

pVO VO 
Re=--=-

11 v 
[2.1 ] 

where V, 0, 11, p, and u show the representative velocity, the characteristic length, the 

dynamic viscosity, the density, and the kinematic viscosity Cu = ~) of the fluid, 
p 

respectively (Potter and Wiggert, 2009). 

In evaluating the Reynolds number of a flow in a channel with circular cross 

section, the characteristic length is conventionally taken as the channel diameter and the 

representative velocity is the mean velocity. Usually for fluid flowing through pipes, a Re 

less than 2000 may be considered laminar and Re greater than 4000 may be regarded as 

turbulent. In the interval between 2000 and 4000, depending upon other factors, such as 

flow uniformity and pipe roughness, both laminar and turbulent flows are possible 

("transitional" flows) (Massey, Ward-Smith et aI., 2006). 
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Womersley number 

The Womersley number is another dimensionless parameter in fluid mechanics 

that is generally considered as the pulsatile version of Reynolds number. It is a 

dimensionless expression of the pulsatile inertia of the flow in relation to viscous effects. 

The Womersley number, a, can be expressed as 

(
WP)1/2 (W)1/2 

a=R- =R-
J..l u 

[2.2] 

where: 

R: a characteristic length scale (radius for a of a pipe), 

W: angular frequency of the oscillations, 

u: kinematic viscosity, 

p: density, 

J..l: dynamic viscosity of the fluid (Gudbjartsson and Patz, 1995). 

Conservation laws and Navier-Stokes equations 

In the range of engineering precision, experiments have proved three basic laws 

for any fluid known as the conservation laws: 

• Conservation of matter (continuity equation) which states that matter is 

indestructible. For the rectangular Cartesian coordinate system, with coordinates x, y, z, 

and corresponding velocity components u, v, w the continuity equation is 

[2.3] 

where p is the fluid density. 
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• Conservation of momentum (Newton's second law) which states that ifno 

external forces are acting on the system, the momentum of a system remains constant. 

The three components of the momentum equation are obtained after applying Newton's 

second law to an infinitesimal volume of fluid. The resulting three equations for the 

Cartesian coordinate system are 

o(pu) o(pu2) o(puv) o (puw) 
--+ + +---ot ox oy oz 

+ ~ [/1 (2 OU _ ~ (OU + ov + OW))] 
ox ox 3 ox oy oz 

o [(OU OV)] 0 [(OW OU)] +- /1 -+- +- /1 -+-oy oy ox oz ox oz 

o(pV) o(puv) O(pV2) o(pvw) 
--+ + +---ot ox oy oz 

+ ~ [/1 (2 OV _ ~ (OU + ov + OW))] 
oy oy 3 ox oy oz 

o [(OV OW)] 0 [(OU OV)] +- /1 -+- +- /1 -+-OZ OZ oy ox oy ox 
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a(pw) a (puw) a (pvw) a(pw2) 
--+ + +---at ax ay az 

ap 
= Ph--

Z az 

a [(aw au)] a [(av aw)] 
+ ax J.l ax + az + ay J.l az + ay 

[2.6] 

where p is the hydrostatic pressure, J.l is the dynamic viscosity, and ix. iy • iz show the 

Cartesian components of external forces. 

• Conservation of energy i.e. first law of thermodynamics, which states that the 

total internal energy of an isolated system remains unchanged. 

a(pe) a(pue) a(pve) a(pwe) 
--+ + +--...;... at ax ay az 

a (aT) a (aT) a ( aT) = pq+- k- +- k- +- k-ax ax ay ay az az 

(
au av aw) (au av aw)2 

-p -+-+- -A -+-+-ax ay az ax ay az [2.7] 

+ J.l { 
2 [(~~f + (~~f + (~:fl 

+ (av + au)2 + (aw + av)2 + (au + aW)2} 
ax ay ay az az ax 

where A is the bulk viscosity, e is the internal energy, q is the heat addition per unit mass 

and k is the thermal conductivity. Full derivation of these equations can be found in 

(Shames, 2003; Massey, Ward-Smith et aI., 2006; Potter and Wiggert, 2009). 
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The momentum conservation equations derived by Claude-Louis Navier (1822) 

and George Gabriel Stokes (1842), are referred to as the Navier-Stokes equations. For an 

incompressible Newtonian fluid with hydrostatic pressure p, velocity vector field v, 

density p, dynamic viscosity 11, and body forces f (such as gravity), if temperature effects 

are neglected, continuity and Navier-Stokes equations take the following form (Massey, 

Ward-Smith et aI., 2006): 

V.v= 0 

[2.8] 

10 



3 VELOCITY MEASUREMENT TECHNIQUES 

There are several methods of flow visualization and quantitative velocity 

measurements in experimental fluid dynamics: 

• Tracer methods: Particle tracking is the most common fluid velocity 

measurement technique. It involves inferring the velocity of fluid at a particular 

point and time from measurement of the motion of small particles mixed with 

fluid. A particle tracking measurement system consists of three components, 

namely, an illumination source, tracing particles, and an observation system. 

Assuming that the particles faithfully follow the streamlines of the flow, flow 

velocity could be measured. Laser Doppler Velocimetry (LDV) and Particle 

Image Velocimetry (PIV) are two generic types of tracer methods (Emrich, 1981). 

• Probe methods: Examples of these methods are Pitot probe, propeller and vane 

anemometer and hot-wire and hot-film anemometers. These methods in contrast 

to tracer methods are invasive and less sensitive at low fluid velocities (Emrich, 

1981). 

• Doppler based methods: The principle of the Doppler effect is based upon 

transmitting a ultrasound beam with a certain frequency and a well-known angle 

through a liquid. Solid particles or gas bubbles carried in the liquid reflect a part 

of the ultrasound energy. A frequency shift is observed in the reflective beam due 

to the movement of the particles. This frequency shift corresponds to the velocity 

11 



of the particles. Doppler ultrasound (Niederer, 2010), laser Doppler flowmetry 

(Rajan, Varghese et ai., 2009), optical Doppler tomography (Chen, Milner et ai., 

1997) are examples of such methods. 

• Phase-Contrast Magnetic Resonance Imaging: MRI is very prone to motion 

such that motion artifacts are the most common causes of image degradation. 

Blood and CSF flows are among the involuntary movements, resulting in a 

variety of flow effects. Although methods such as "flow compensation" are used 

to eliminate the flow artifacts, the same concept can be used advantageously to 

develop non-invasive techniques to image the vascular anatomy and/or to measure 

the blood velocity. This technique is called Magnetic Resonance Angiography 

(MRA) and are classified into three major categories: Contrast enhanced 

angiography (anatomy), Time-of-flight (anatomy and flow velocity), and Phase 

contrast MR angiography (PC-MRI) (anatomy and flow velocity) (Hornak, 2008). 

Compared to nuclear medicine and radiographic techniques, MR based flow 

quantification does not involve use of ionizing radiation. Furthermore, contrast 

mechanisms independent of contrast agents are available for MRA. Compared to 

Doppler based methods, on the other hand, MRI can be used to measure the blood 

velocity using arbitrary image plane orientations without restrictions such as 

acoustic windows. More importantly, MR based flow quantification techniques 

can provide all three components of the velocity vector, compared to the single 

component (in the direction ofinsonification) obtained from Doppler ultrasound. 

From the aforementioned techniques, PIV and PC-MRI are chosen for flow measurement 

in this research and will be discussed further. 
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3.1 Particle Image Velocimetry 

Particle Image Velocimetry (PIV) is a noninvasive tracer method for measuring 

flow velocity in a fluid field. In contrast to single point measurement techniques, PIV can 

concurrently acquire two-dimensional velocity information across an entire plane making 

it possible to detect in-plane two-dimensional flow structures with excellent spatial and 

temporal resolution. This makes it particularly valuable for time-dependent flows. The 

liquid is seeded with tracer particles which, because of their small size, are assumed to 

faithfully follow the flow streamlines. The fluid with entrained particles is illuminated 

usually by a laser light source in any desired plane so that particles are visible. The 

displacement of the particles is used to calculate speed and direction of the flow (Adrian, 

2005). 
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3.1.1 Principles of two-component PIV (2C-PIV) 

Based on the definition of velocity which is the first time derivative of position, 

PlY technique measures the displacement of the fluid (or particles which faithfully follow 

the streamlines) over a known time interval to derive the velocity. The displacement of 

the fluid elements is imaged through the light scattered by liquid or solid fluorescent 

particles illuminated by a laser light sheet. Such particles are not usually present in the 

fluid; therefore, the liquid has to be seeded with such tracer particles. These particles 

should be small enough and have the same density of the fluid to follow the local flow 

velocity patterns (Brossard, Monnier et a\. , 2009). Figure 3-1 illustrates a typical standard 

two-component PlY (2C-PIY) system. 

Flo. 

Seeding 

Double pulsed laser 

La er sheet 

C o p ~ right: Imun l\hodtlmhmi 

Figure 3-1 . Standard PlY system. 
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Different components of a standard PIV system are: 

• Light source: Light source is composed of two independent laser cavities (most 

commonly pulsed Nd:YAG laser), but the laser beams should be superimposed in 

both the near and far fields so that the two laser sheets illuminate the exact same 

location. 

• Imaging device: Digital photography is performed via a Charge-Coupled Device 

(CCD) sensor which based on the photoelectric effect converts photons to an electric 

charge. The CCD sensor consists of many individual sensors in a rectangular array 

arrangement. The plane of interest within the flow is illuminated twice by the two 

laser light sheets and the light scattered by the particles is images by the CCD 

camera sensor on two separate frames. 

• Processing: Each digital PIV image is divided in small rectangular areas called 

"interrogation windows". Then using a spatially statistical cross-correlation function, 

the local two component (2C) displacement vector of the particle images between the 

two illuminations is determined for each interrogation mask. Knowing the time 

interval between the two laser pulses and the image magnification obtained from a 

calibration process, the "projection" of the local flow velocity vector onto the plane 

of the light sheet can then be deduced. This projection accounts for the name two­

component in this standard PIV method. Further details of the PIV technique can be 

found in (Brossard, Monnier et aI., 2009). 
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3.1.2 Principles of stereoscopic PIV (3C-PIV) 

Out-of-plane component of the velocity vector, which is the component 

perpendicular to the laser light sheet can measured by adding a second camera to the 

system, and also arranging both cameras at different viewing angles. The resulting system 

is called three-component (3C) or Stereoscopic-PIV (SPIV). SPIV is a well-known 

technique to measure all three-components (3C) of the velocity vector in the plane of the 

laser light sheet. Similar to depth perception in human vision, SPIV uses two cameras 

that look to the laser sheet at different angles, each camera measuring the displacement of 

the seeding particles perpendicular to its viewing angle. These two different projections 

of the velocity, one from each camera, then can be combined to reconstruct the 3C 

velocity vector. This is illustrated in Figure 3-2, where an arbitrary local coordinate 

system is used. Following the notation of van Doome and Westerweel (van Doome and 

Westerweel, 2007), the x- and z- axes lay in the plane defined by the measurement point 

and the two cameras, and the x-axis divides the angle (2u) between the two cameras in 

two equal halves. The Yl- and Y2-axes of cameras 1 and 2 respectively are chosen to be 

parallel to the y-axis of the above defined coordinate system. 
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Figure 3-2. lIIustration of the principle of SPIV. 

If cameras 1 and 2 measure the projected displacements (.1XV.1Yl) and 

(.1xz, .1Yz) respectively, then the real displacement vector (Llx, .1y, .1z) can be calculated 

if the projection angle is known. When the particle displacements are much smaller 

compared to the distance to the camera lenses, (which is called a paraxial approximation), 

the displacement vector (.1x, .1y, ta) reconstructed to be: 

.1Xl - .1xz 
.1x=----

2sina 

.1Yl + .1Yz 
.1Y=----

2 

-.1Xl - .1xz 
.1z=-----

2 cosa 

In practice, first the two-component (2C) vector fields of the particle 

[3.1 ] 

displacements observed by each camera are evaluated by standard PLY cross-correlation 
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methods. Then, for the calculation of the 3C-vector fields, the 2C vector fields must be 

mapped (dewarped) from the image planes onto the real-world plane of the light sheet 

and interpolated on a rectangular grid. Then the displacement vectors from both cameras 

are combined to reconstruct the three components of the particle displacement. The 

dewarping and reconstruction can in principle be based on the exact knowledge of the 

geometry of the setup, but most often they are based on a calibration procedure using a 

calibration target with known geometry. A comprehensive description of the principles of 

SPIV can be found in (Prasad, 2000). 
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3.2 Phase Contrast MRI 

Phase contrast (PC) methods rely on the fact that moving spins experience 

different magnetic field gradients compared to static spins. Consequently, their 

accumulated phase would be different from static spins. As explained below, the phase 

shift is proportional to the product of flow velocity and the first moment of the magnetic 

field gradient in the direction of flow. Phase-based methods are particularly suited to 

applications requiring flow quantification. The velocity field obtained from PC-MRI can 

then be used to derive other clinically useful hemodynamic parameters, such as wall 

shear stress and blood pressure gradient (Nasiraei-Moghaddam, Behrens et aI., 2004; 

Frydrychowicz, Stalder et aI., 2009; Harloff, Nussbaumer et aI., 2010). PC-MRI has been 

applied in several clinical scenarios, such as evaluation of aortic coarctation and 

dissection, valvular heart abnormalities, peripheral arterial diseases and congenital shunt 

lesions, as well as quantification of cardiac function (Szolar, Sakuma et aI., 1996; Srichai, 

Lim et aI., 2009). 

3.2.1 Physical Principles of PC-MRI 

The imaged quantity in MRI is the effective spin density which is proportional to 

transverse magnetization in each voxel. This transverse magnetization due to some 

factors such as field inhomogeneity, and tissue magnetic susceptibility is a complex 

quantity having both magnitude and phase in the rotating frame of reference. MR images 

usually contribute only the magnitude of the magnetization (magnitude image). However, 

phase images can contain information about motion, and it is the phase that provides the 

velocity dependent signal in PC MRI. Detailed desription of PC-MRI can be found in 

(Pelc, Sommer et aI., 1994). 
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For an arbitrary gradient G(t) and position ret) in the direction of 0, the 

frequency offset from the resonance frequency at any moment is yO(t)r(t), and the 

accumulated phase at the echo delay time (TE) is 

TE 

<p = y fa G(t)r(t)dt. [3.2] 

where y is the magnetogyric ratio. In PC-MRI this arbitrary gradient is usually a bipolar 

gradient lobe. The position vector can be described by a Taylor expansion about initial 

position: 

t 2 

ret) = ro + vt + a- + ... 
2 

[3.3] 

If the gradient waveforms are constructed to provide no phase shifts from initial 

position (ro) (which is the case for bipolar lobes) and if phase shifts due to higher order 

terms are small, Eq [3.2] becomes: 

[3.4] 

where M\ represents the first moment of the gradient: 

(E 
Ml = J

o 
G(t)t dt. [3.5] 

Equation [3.4] shows that the motion-induced phase accumulation is proportional 

to velocity and that the proportionality constant is determined by the first moment of the 

gradient waveform. This relationship is the foundation for not only phase contrast 

imaging, but also Fourier velocity encoding method and artifact reduction by first 

moment nulling as well (known as flow compensation). An important assumption in 

deriving this expression is that the velocity is constant during the echo time (TE). 
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As noted before, conventional MRI produces images of the magnitude of the 

effective spin density (transverse magnetization) in each voxel. Equation [3.4] suggests 

that images of the phase of magnetization could provide some information about spin 

velocity. Unfortunately, the phase offset can be altered by many other phenomena, 

including tissue magnetic susceptibility, magnetic field inhomogeneity, and motion in 

directions other than the interested one. Therefore, to precisely extract the effect of 

motion, phase shifts due to these sources have to be eliminated. In PC acquisitions this 

elimination is performed by performing a dual measurement with a different MJ (and 

therefore different velocity-induced phase shifts), but with the same phase effects due to 

other sources, and then subtracting the results. If two complete acquisitions with different 

MJ values are performed, the phase difference in each voxel corresponds to the spin 

velocity as: 

[3.6] 

where l'1MJ is the change in first moment. The image produced by one acquisition is 

taken as phase reference, and is used to correct for undesired phase offsets of the second 

image acquired with modified flow sensitivity (Haacke, 1999). 

Measurement of velocity in each direction requires two pulse sequences with 

different gradient moments in that direction. An example of a PC gradient echo pulse 

sequence is shown in Figure 3-3. 
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Figure 3-3 . Phase-contrast pulse sequence. 

In the above figure , the bipolar lobes (blue) are added to the phase-encoding 

direction to encode velocity in this direction. The same sequence is repeated with the 

reverse bipolar lobes (red), and then the phase offsets are subtracted from each other. To 

measure velocity in other directions, the same procedure should be repeated in other 

directions i.e. slice-selection and read-out directions. 

Figure 3-4 shows the magnitude (a) and phase images (b) at a section through the 

abdomen. In the phase image, the gray intensity of each pixel represents the velocity 

value in that pixel. White values show flow away from the viewer, whereas black values 

show flow toward the viewer (abdominal aorta in this case) (Lotz, Meier et aI. , 2002). 

Sensitivity to flow in all x, y, and z directions requires at least four measurements (Pelc, 

Bernstein et aI. , 1991 ; Haacke, 1999). 
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Figure 3-4. Sample PC-MRJ image. 

An important parameter in PC-MRl is the strength of the flow encoding which is 

determined by the first moment of the gradient used in the pulse sequence (t::.M1 ) and 

controls the amount of phase shift produced by a given velocity. A commonly used 

parameter is the velocity that produces a phase shift of 1t radians (180°). This velocity is 

often referred to as the encoding velocity venc: 

IT 

venc = yt::.Ml' 

and a phase shift of t::.cp is converted to velocity as 

v = t::.<p C~c). 

[3.7] 

[3.8] 

The velocity encoding (venc ) defines the velocity range that is free of aliasing 

(wrap around artifact) and the noise in the velocity measurements. Three dimensional 
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PC-MRl is a natural extension, which requires only adding a spatial phase encoding 

gradient to the slice select axis. 

3.2.2 Challenges in Phase Contrast Imaging 

• Aliasing 

As equation [3.6] shows a phase image is linear mapping between velocity and 

phase shift. However, since phase shifts are to be in the interval of (-180,180), velocities 

higher than Venc that produce phase shifts greater than 180 will be mapped to incorrect 

phases. Thus, for example, a phase change of 21 0° (velocity = 1.3 venc ) is 

indistinguishable from one of -150° (velocity = -0.7 venc ), a phenomenon called velocity 

aliasing. Although, if the multiple of 360° or 2 Venc is known, the effect can be corrected 

at a post-processing step, this is generally not the case. 

Velocity aliasing might be corrected by use of algorithms that use spatial 

continuity to resolve the ambiguity (Moon-Ho Song, Napel et aI., 1995). 

• Eddy currents 

Because of difference schema used in PC MRI, and the fact that most of the 

gradient lobes are common between reference and sensitivity measurements, eddy current 

induced phase shifts are restricted to bipolar lobes. However, they could be sources of 

inaccuracy in velocity measurements. Shielded gradient coils and algorithms to 

compensate eddy current-induced errors has been worked well to decrease this source of 

error (Pelc, Sommer et aI., 1994). 

24 



• Reproducibility 

The reproducibility of in vivo velocity measurements can be restricted by a 

variety of factors. Apart from some errors beyond the control of PC MRI sequence (e.g., 

physiological variation and patient positioning), reproducibility is inversely proportional 

to the variance of the measured velocity. The noise in the measured velocity depends on 

the noise in the phase measurements and on the velocity encoding. The standard 

deviation in the measured velocity, crv , is: 

= (..fi) venc 

(Jv IT SNR 
[3.9] 

where SNR is the signal-to-noise ratio in a single image. Therefore, reproducibility can 

be improved by increasing the SNR and decreasing Venc (Haacke, 1999). 

• Acceleration 

The fundamental relationship between phase shift and velocity in equation [3.4] 

was derived assuming that terms of 2
nd 

order and higher in the Taylor expansion of 

position could be ignored. As a result, significant acceleration, jerk and higher order 

motions could be considered as potential sources of error. For a general case of bipolar 

lobes, equation [3.4] should reflect all of the terms in the Taylor series expansion of 

position and is changed to: 

[3.10] 

where Mb M2 , v, and a are the first moment of the gradient waveform, the second 

moments of the gradient waveform, the velocity and the acceleration, respectively. 
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Assuming no unwanted change in two successive signal acquisitions, with subtracting the 

two measured phases, equation. [3.10] changes to: 

[3.11 ] 

Therefore, the measured velocity is 

A (.1M2) 
V = V + a 2.1Ml + ... [3.12] 

which is equal to the actual velocity only if higher order terms are minute. As shown, 

acceleration appears as a velocity error proportional to the change in second moment 

divided by the change in first moment. Equation [3.12] can be rewritten as: 

v = v + at [3.13] 

where t depends upon the gradient waveform geometry and can be shown to be 

essentially the time interval between RF pulse and flow encoding lobes. Hence, the effect 

of acceleration is similar to the effects due to the fact that slice encoding, phase encoding, 

and frequency encoding gradients are applied at different times in the pulse sequence. In 

fact, since the effective flow encoding time (t) is less than the echo time (TE), it can be 

concluded that the acceleration effect on flow encoding is less than the corresponding 

spatial mismapping between slice selection and frequency encoding gradients (PeIc, 

Sommer et aI., 1994). 

Acceleration in general (Lagrangian description) can be divided into two 

components: 
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dV av 
de = at + ev. V) v [3.14] 

First component eav
) is the rate of change of velocity at a fixed point in space, 

at 

which is called time-dependent acceleration and can be thought of as pulsatility (Eulerian 

description). It has been showed that this acceleration is too small to cause significant 

errors for physiological flow waveforms (Firmin, Nayler et aI., 1990). Furthermore, 

because of periodicity of the flow waveform due to cardiac cycles, the average value of 

the time-dependent acceleration is zero. Consequently, although errors are introduced at 

individual time frame velocities, the error in the measured time-averaged flow is zero. 

The second component eeV. V)V) of acceleration reflects the changing velocity of 

spins as they move through the vasculature and is called convective acceleration. 

Therefore, even for steady flow, convective acceleration can be nonzero. It should be 

emphasized that PC MRI represents a Lagrangian measurement of the velocity map. 

Therefore, the effect of convective acceleration can be prominent as spins move through 

sharp bends or stenoses. This error leads to some underlover estimations in flow 

measurements of stenotic vessels (Siegel, Oshinski et aI., 1996). 

• Partial volume effect 

Partial volume effects are perhaps the most serious limitations to the accuracy of 

PC measurements. Consider a voxel of the image in which half of the spins are static 

while the other half move at a uniform speed. The MR signal measured for this voxel is 

the vector sum of the signals from stationary and moving spins and, as shown in (Pelc, 

Sommer et aI., 1994) is the intermediate between the phase shift of moving spins and 
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zero (the phase shift of the static spins). The exact value of the measured signal depends 

on the relative signal intensities of the static and moving spins. 

If the goal is the measurement of the velocity of the moving spins regardless of 

the presence of static tissue in the voxel, the signal intensity from static tissue should be 

kept as low as possible. This could be possible by applying chemical shift saturation to 

suppress the signal from static lipids. 

However, if the goal is to measure the volume flow, static and moving spins are 

desired to contribute to the measured phase shift in proportion to their volume fraction. If 

the stationary and moving spins generate equal MR signal intensity relative to their 

volume fraction, the situation is the best for flow measurement. However, in practice, low 

signal in the vessel wall and surrounding tissues, and flow-related enhancement causes 

flowing spins to produce a fraction of the total signal that is much greater than their 

volume fraction (Pelc, Sommer et aI., 1994). 

• Pulsatility 

Errors evoked by pulsatility, that is the variable flow throughout the scan, can be 

viewed as being a partial volume effects in time. The reconstructed image at the pixel is 

proportional to the average magnetization at the corresponding voxel throughout the 

entire scan time. The voxel can be considered as containing spins at multiple velocities in 

which each velocity value reflects the velocity of the voxel at a certain time point in the 

pulse sequence. Therefore, the effect of velocity variation during the repetition time (TR) 

is a partial volume effect in the temporal direction. Similar to spatial partial volume 

effects, overestimation of the average velocity may occur if the signal magnitude during 
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periods of high velocity is higher than normal due to flow-related enhancement. On the 

other hand, the average velocity may be underestimated if the high velocity periods are 

associated with signal loss due to intravoxel dephasing (Hangiandreou, Rossman et ai., 

1993; Pelc, Sommer et ai., 1994). 

• Chemical Shift 

If the imaged vessel is surrounded by adipose tissue, the signal from fat can be 

displaced in the frequency-encoded direction because of its chemical shift and overlap the 

vessel lumen. This situation aggravates especially in rapid imaging methods in which 

short slice-selection excitations are applied (Nayak, Hu et ai., 2003). Though physically 

in two different locations, signal from static lipid would contribute to that of flowing 

blood. This chemical shift induced interference leads to some underestimation in the 

measured velocity and flow (Pelc, Sommer et ai., 1994). 
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4 EXPERIMENT AL TECHNIQUES 

4.1 Flow System 

The experiments were carried out in a closed-loop flow system. A schematic 

diagram of the flow apparatus is shown in Figure 4-1. The flow system includes a 

CardioFlow 1000 programmable pump (Shelley Medical Imaging Technologies, London, 

Ontario, Canada) capable of producing flows with a range of waveforms with less than 

1 % variance (Holdsworth, Rickey et ai., 1991; Frayne, Holdsworth et ai., 1992). 

Idealized rigid models of axisymmetric Gaussian shape were machined from 

transparent acrylic, initially specified at 50%, 75%, and 90% area occlusion. Later, the 

exact geometry was measured with high resolution CT scans (see next section) and the 

area occlusions were found to be 50%, 74%, and 87%, respectively. 

The inlet diameter for all three models was 1.000 inch (Figure 4-2). To ensure a fully 

developed laminar flow at the entrance of the model, a 75-cm long straight rigid acrylic 

tube was placed upstream of the test section. To reduce optical refraction mismatches 

between the fluid and acrylic, the stenosis model was contained in an enclosure filled 

with the same index of refraction-matched fluid used inside the flow loop. The water-bath 

enclosure was machined to provide several viewing windows with flat surfaces to reduce 

optical distortion due to phantom curvatures. The experimental system was designed to 

allow easy replacement of the model stenosis with other vascular models of matching 

diameter at entrance and exit inside the water-bath enclosure. 
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A solution of glycerol and water (60:40, w/w) was prepared and then sodium iodide 

was added to match its refractive index with that of acrylic. The viscosity of the final 

solution was measured using a L VT Cone-Plate viscometer (Brookfield Labs., Stoughton, 

MA, USA) to be 0.022 Pa.s at 68°F. The final density of the solution was 1600 kg/m3
. 

These values are to be compared to 1060 kg/m3 and 0.003-0.004 Pa.s for blood 

(Brunette, Mongrain et aI. , 2008). The Tl and T2 values of the final solution were 500 

and 45 ms, respectively at 3 T. 

For steady flows, inlet Reynolds numbers (Re) of 190, 160 and 130 corresponding to 

the range of Reynolds number typically encountered in the human common iliac artery 

(mean ± 20%) were used for both sagittal and axial studies. 

Flow in the human common iliac artery was modeled, since it is one of the most 

common sites for development of atherosclerotic lesions. Furthermore, another steady 

flow with inlet Reynolds number of 550 (mimicking the human renal artery) was used in 

axial studies to study the validity of PC-MRI at high velocities (Table 4-1). 

Waterbath Enclosure 

Stenosis Model Flow Simulator 

Figure 4-1 . Schematic diagram of the flow apparatus. 
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Figure 4-2. Solid model of the 50%, 74%, and 87% stenoses. 

In addition to steady flows, three biphasic pulsatile flows (see results for the 

shape) with the same mean Reynolds numbers (i.e. , 190, 160 and 130) with peak 

Reynolds number of 360, 300 and 250 were also studied (Table 4-1). At a frequency of 60 

beats/min, the Womersley number was 8.6, similar to that in the human common iliac 

artery. By matching both the Reynolds and the Womersley numbers to those of the 

human iliac artery, similarity with physiologic flows is ensured. 
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Table 4-1 

Steady and pulsatile flow cases with the corresponding Reynolds numbers (Re). 

Steady flows Pulsatile flows, Womersley number 8.6 

Steady Flow rate Inlet 
Mean inlet 

flow (mils) Re Pulsatile 
flow rate 

Mean Peak 

flow inlet Re inlet Re 
SF-O 160 550 (mils) 

SF-1 56.3 190 PF-1 56.3 190 360 

SF-2 46.9 160 PF-2 46.9 160 300 

SF-3 37.5 130 PF-3 35 130 250 
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4.2 CT Studies 

To extract the exact geometry of the stenotic models for fluid dynamic 

simulations and also to determine the exact degree of the stenosis of each phantom, 

Computed Tomography (CT) scans of all phantom models were performed on a 64-slice 

multi-detector CT scanner (LightS peed VCT scanner, GE Medical Systems, Mi lwaukee, 

WI, USA). Imaging parameters are summarized in Table 4-2 : 

Table 4-2 

imaging parameters for CT studies. 

Scan option / Spiral pitch 

Slice thickness / Pixel Spacing 

Image size 

Covel-age 

k V p/Exposu re 

Tube current 

Exposure time 

Helical mode I 0.5'2 

0.625 mm I 0.22 mm x 0.22 mm 

512 x 512 

1400 111m 

140/3mAs 

295111A 

730 ms 

The exact stenosis for 50%, 75%, and 90% models are 50.44 ± 5.94%, 74.06 ± 

3.96%, and 87.46 ± 2.56%, respectively . 

Figure 4-3 . A sample CT image of the 90% phantom at the stenosis throat showing the circular cross 

section of the phantom. 
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4.2.1 Uncertainty in CT measurements 

Canny edge detector was used on axial CT images to determine the radius at each 

cross section. The stenosis severity was then calculated using: 

f 2 

s (%) = 100 x (1 - -;.) 
f2 

[4.1 ] 

where f1 and f2 are the radii at the throat and inlet sections, respectively. Propagation of 

uncertainty in radius measurement causes an error in the stenosis measurement according 

to: 

Based on the above calculations, the uncertainty in the measurement of stenosis 

severity is as follows: 50.44 ± 5.94% for 50% model, 74.06 ± 3.96% for 75% model, and 

87.46 ± 2.56% for 90% model. 
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4.3 MRI Studies 

Phase-Contrast MRI measurements were conducted in a 3 T TX MRI scanner 

(Achieva R3.2.1, Philips Healthcare, Best, Netherlands) with a maximum gradient 

strength of80 mT/m and a slew rate of200 T/mls using an eight-channel knee coil. The 

imaging pulse sequence (Figure 4-4) consisted of a slice-selective excitation, phase 

encoding gradients, a bipolar gradient, a Cartesian readout, flow compensation gradients 

for all three directions, and gradient spoiler. ECG output ofthe pump with frequency of 1 

Hz (heart rate of 60 beats/min) was used to retrospectively gate for 40 cardiac phase 

acquisitions, corresponding to a temporal resolution of 25 milliseconds. 
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Figure 4-4. Pulse sequence diagram for phase contrast images. 

Two sets of experiments were performed for axial and sagittal directions: 
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4.3.1 Sagittal imaging 

Sagittal imaging was done for four different zones to cover the whole length of 

the phantom with the same encoding-velocity (Yenc) (Figure 4-5) . Field of View (FOV) 

was 192 by 64 mm in readout and phase-encoding directions, respectively. The linear 

part of the coi I was determined to be 100 mm, therefore, an overlap of about 45 mm was 

chosen between consecutive images. Registration of the images was performed using a 

narrow tube filled with contrast material (gadolinium) rolled around the phantom. Other 

parameters were as follow: 

Echo time (TE) = 3.0 ms, Repetition time (TR) = 5.0 ms, Slice-thickness = 2 mm, 

Flip angle = 20°, Resolution = 1 x 1 mm. Number of signal averages (NSA) was 10 and 2 

for steady and pulsatile flows, respectively. Venc values are summarized in Table 4-3. 

Table 4-3 

Venc values for different flow regimes in sagittal imaging. 

Yene Velie Vellc 
Steady flow 

: Flow rute Read-out Phase-encodino Slice-selection regime e 

direction direction direction 

SF-l 56.3 120 20 20 

SF-2 46.9 120 20 20 

SF-2 37.5 120 20 20 

Venc Venc Venc 
Pulsutile Max flow 

flow reoime rate Read-out Phase-encoding Slice-selection 
b dil'ection direction direction 

PF-l 184 200 35 

PF-2 153 200 35 

PF-3 122 200 35 
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The Venc was chosen to be roughly 10-20% above the expected peak velocity to 

avoid aliasing while providing maximum sensitivity. All PC velocity images were 

corrected for background phase errors resulted from concomitant gradient terms and eddy 

currents. To do this, first degree polynomials were fitted to the no flow images with the 

pump turned off, collected at the same locations with same parameters. Later, the 

resulting polynomial surface fits were subtracted from the corresponding velocity images. 

a Rp.::Hinllt 
~ 

Phase-

1 Ix 1 1 n·!t 't1011 

/ 1 I I 
encoding 

direction 

b y Zone 1 

~ 
Zone 2 

Zone 3 z Zone 4 

Figure 4-5 . Schematic diagram of the sagittal MR imaging. 
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4.3.2 Axial imaging 

A standard 2D phase contrast sequence with Cartesian read-out, through-plane 

velocity encoding, and velocity compensation in all three directions was used to image 

three different sections perpendicular to the long axis of the phantom: 2 diameters 

proximal to the stenosis (inlet), at the stenosis (throat), and 2 diameters distal to the 

stenosis (outlet) (Figure 4-6). The throat of the stenosis was placed at the iso-center of the 

magnet, with the long axis of the phantom parallel to the Bo magnetic field. 

Imaging parameters were as follow: Repetition time (TR) = 4.0 ms, Echo time 

(TE):= 3.0 ms, Slice-thickness:= 4 mm, Flip angle:= 20°, Field of view (FOV):= 64 x 64 

mm, Resolution = 1 x 1 mm. Number of signal averages (NSA) was 10 and 2 for steady 

and pulsatile flows, respectively. Since flow measurement was the purpose of axial 

imaging studies, velocity encoding was performed only in slice-selection direction. Venc 

values are given in Table 4-4. Venc was chosen to be roughly 10-20% above the 

expected peak velocity to avoid aliasing while providing maximum sensitivity. 

Similar to sagittal images, here, all axial PC velocity images were corrected for 

background phase errors with no-flow images collected (with same parameters) at the 

same locations. 

To remove flow calculation errors due to variations in the area, regions of interest 

at every slice were defined using a circular mask at phantom contours on the basis of the 

a priori knowledge of the phantom geometry from CT images. The resolution of the 

velocity images was artificially increased by a factor of 10 before fitting the circular 

mask to minimize the partial volume effect, and then pixels with more than 50% of their 

area contained within the contour were included in the mask. 
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Table 4-4 

Venc values for different flow regimes in axial imaging. 

Venc Venc Venc 
Steady 

Flow Slice-selection Slice-selection Slice-selection now 

regime 
rate direction (87%) direction (74%) direction (50%) 

Inletrrhroat/Outlet Inletrrh,"oat/Outlet In letrrh ,"oat/Outlet 

SF-O 160 75/300/300 75/160/150 75/1 00/90 

SF-l 56.3 30/120/120 30/60160 30/30/30 

SF-2 46.9 30/120/120 30160160 30/30/30 

SF-2 37.5 30/120/120 30160160 30/30/30 

Venc Venc Venc 
Pulsatile Max 

now now 
Slice-selection Slice-selection Slice-selection 

regime rate 
direction (87%) direction (74%) di,"ection (50%) 

J nletrrh mat/Outlet In let/Th ,"oat/Outlet In letrrh mat/Outlet 

PF-l 184 50/200/200 50/100/80 50175/60 

PF-2 153 50/200/200 50/100/80 50175/60 

PF-3 122 50/200/200 50/100180 50175160 

Outlet 

Inlet 

z 

C. or) "Mill: KIM~r.""nl & SlllIl.t'ri 

Figure 4-6. Schematic diagram of the ax ial MR imaging. 
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4.3.3 Uncertainty in PC-MRI measurements 

MRI signal is measured through a quadrature receiver coil that reads the real and 

the imaginary signals. It is generally assumed that the noise in each signal has a Gaussian 

distribution with zero mean contaminated by a white noise. In an extensive study by 

Gudbjartsson and Patz, it has been shown that for SNR > 2, noise distribution is nearly 

Gaussian for both magnitude and phase images (Gudbjartsson and Patz, 1995). As shown 

in previous sections, the noise in the measured velocity depends on the noise in the phase 

measurements and on the velocity encoding. Therefore, the standard deviation in the 

measured velocity, (Tv, is: 

= (.fi) V
enc 

(Tv Tr SNR 
[4.3] 

where signal to noise ratio of a magnitude image is represented with SNR. In our studies, 

SNR was calculated using an in-house MATLAB program to be 5.6. Hence, noise in the 

measured velocity, depending on the velocity encoding, can be determined as: 

(Tv = 0.08 venc [4.4] 

41 



4.4 Stereoscopic PIV Technique (joint work with Mostafa Shakeri, 

Ph.D.) 

4.4.1 Sagittal configuration 

A Stereoscopic PIV (SPIV) system (Powerview from TSI Inc., MN, USA) was 

utilized to measure three components of the velocity in the mid-plane of the 

axisymmetric stenosis model. The SPIV system (TSI Inc., MN, USA) consisted of a 

double-pulsed Nd-YAG laser with an energy of 120 ml/pulse and a maximum repetition 

rate of 15 Hz (Khodarahmi, Shakeri et aI., 2010; Shakeri, Khodarahmi et aI. , 2010). A 

number of optical components including three mirrors to redirect the laser beam to the 

imaging site, one concave cylindrical lens to convert the circular laser beam into a laser 

sheet, and two spherical lenses to control the thickness of the laser sheet were used 

(Figure 4-7). 
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Figure 4-7. Stereoscopic PlY system (a) isometric view and (b) end view. 
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The images were recorded using two high-resolution CCD cameras (PowerView 

Plus 4MP) with 2048 x 2048 pixel resolution and 12 bits depth. The cameras allowed 

acquisition of 7.25 image pairs per second and frame straddling allowed a minimum of 

200 ns between frames. Each camera was equipped with a 60-mm Mikro Nikkor lens 

with a minimum aperture of f-2.8. The two cameras looked at an angle of 0° and 45° 

relative to the normal to the light sheet and. This configuration allows for easy detection 

of the actual boundaries of the phantom from the normal looking camera. The phantom 

boundaries are needed for calculation of other hemodynamic parameters such as shear 

stress from the velocity data. More details of the experimental setup have been described 

in (Shakeri, Khodarahmi et aI., 2010). 

To reduce optical refraction mismatches between the fluid and acrylic, the stenosis 

model was contained in an enclosure filled with the same index of refraction-matched 

fluid used inside the flow loop. The water-bath enclosure was machined to provide 

several viewing windows with flat surfaces with sufficient accuracy and smoothness to 

eliminate optical distortion from this source. Neutrally buoyant fluorescent polymeric 

particles (Dantec Dynamics, Denmark) of diameter 1-20 11m (mean diameter 10 11m) 

were used in combination with an orange filter (Me lies Griot Inc., CA, USA) to eliminate 

reflections from the model surface at the laser excitation wavelength (532 nm). 

In these experiments, a 300-1000 IlS time interval separated the two images for each 

acquisition (image pair) from which velocity was estimated. It should be noted that the 

appropriate time interval between image pairs is dependent upon the velocity of the flow. 

Recursive window size was used with the coarse and fine window sizes of 96 x 96 and 24 

x 24, respectively. The pulse separation rates were chosen such that the maximum pixel 
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displacement of the PIV particles corresponded to the dynamic range allowable for the 

coarse interrogation window. To improve accuracy, each spatial velocimetry assessment 

was generated with 40 pairs of images, therefore providing a more robust velocity 

estimation that can overcome potential artifacts like small equipment vibrations, transient 

bubble passages, or slight flow variations. 

The entire study section was 460 mm long. Therefore, to record the images over 

this long distance, a light steering system was used and the cameras were mounted on a 

motorized traversing stage to allow for convenient collection of the images along the 

model. Flow images were collected over the entire flow domain from about 3 diameters 

upstream of the stenosis to about 14 diameters downstream. 

Insight3G software (TSI Inc., MN, USA) was used to control the operation of the 

SPIV system. This software enables the manual or automatic control of the laser pulse 

separation time, independent control of the laser power output by adjusting the Q-switch 

delay time, as well as other selectable parameters such as image acquisition rate, camera 

delay time and the number of frames in a sequence. This software also allows control of 

the three-dimensional traversing system. 

For the calibration purpose, an opaque glass calibration target was fabricated with a 

grid of 150 J.!m diameter dots spaced 400 J.!m apart. Before any set of experiments, the 

calibration target was placed in the plane of the laser light sheet and a picture of the target 

was taken with each camera (Figure 4-8). 

44 



Waterbath Enclosure Water Tank 

Calibration Target 
/. / e-

li '- I ... tr 
I i- L 

II 
// I ko 

I ~ 

I Micro Traverse 
I 

Cameras 

Figure 4-8. Schematic diagram of the calibration process. 

The grid was clamped to one end of a stainless steel rod and the metal rod formed a 

solid support for the grid. To insert the calibration grid into the pipe, an open tank was 

placed behind the test section Figure 4-8. Five sets of images were recorded at different 

locations in the direction normal to the plane of the light sheet. For each set of new 

calibration images, the target was displaced 0.25 mm towards the camera and normal to 

the light sheet. The calibration grid was translated by a mirco-stage with an accuracy of 

10 /lm. These calibration images were then processed and used to transform points in the 

image plane into the physical plane (plane of the laser sheet) (Figure 4-9). Accordingly, 

the spatial resolution of the system was determined to be 14.0 /lm/pixel. 
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Figure 4-9. Images of the calibration target. Right and left images are from the bottom and top cameras, 

respectively. 

Each camera used consecutive images to measure displacement of the seeding 

particles perpendicular to its viewing angle. These two different projections of the 

velocity, one from each camera, can be combined to reconstruct the three components of 

velocities. In practice, the two-component particle displacement fields observed by each 

camera were first evaluated by standard PlY cross-correlation methods. Subsequently, the 

particle displacement fields were mapped (dewarped) from the image planes onto the 

real-world plane of the light sheet and interpolated on a rectangular grid. Finally, the 

displacement vectors from both cameras were combined to reconstruct the three 

components of particle displacements based on the aforementioned calibration procedure. 

The final spatial resolution for velocity data in the mid-sagittal plane was calculated as: 
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W 24 
SRvelocity = ""2 x Spatial resolution = 2 x 0.014 

[4.5] 

= 0.168mm 

where W is the interrogation window size in pixels and SRvelocity is the spatial resolution 

for the velocity data. 
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4.4.2 Axial configuration 

The same PIV system with different configuration was applied for axial 

measurements (Figure 4-10). For this purpose cameras were placed on the two sides of 

the phantom, looking at the laser sheet at 45° angles, making a stereotypic view of the 

flow, to resolve the velocity vector for a cross section of the tube. This configuration is 

suitable for flow measurements through the system. To compensate for the optical 

refractions, two 45° prisms were built from transparent acrylic, filled with the same fluid 

of the water-bath enclosure and placed in front of each camera (Figure 4-10). 

The calibration of cameras was repeated for this configuration. The field of view 

of each camera was approximately 20 mm x 30 mm, yielding a nominal spatial resolution 

of 205 /lm for the velocity data points. 

Here, the time difference between two consecutive image was 300-1200 /lS, 

depending on the flow regime. 

To improve accuracy, each spatial velocimetry assessment was generated with 30 

pairs of images for steady flows and 12 pairs of images for pulsatile flows. The temporal 

resolution of pulsatile flow measurements was 25 milliseconds, corresponding to 40 

measurements per second. 
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Figure 4-\ O. Isometric view (a) and schematic top view (b) of the SPIV apparatus. 
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4.4.3 Uncertainty in SPIV measurements 

Different sources of error contribute to the uncertainty in SPIV measurements: 

errors due to optics and cameras, errors of refractive index mismatch, correlation noise, 

systematic errors including bias and peak-locking, and misregistration errors (van Doome 

and Westerweel, 2007). Signal-to-noise ratio in PIV experiments is generally 100-600 

depending on the laser-pulse delay time and laser thickness. With proper parameter 

selection, as in the proposed experiments, correlation noise is estimated to be 0.1 pixels 

(Huang, Dabiri et aI., 1997; van Doome and Westerweel, 2007). 

Although numerous papers have already discussed the uncertainty in PIV 

measurements, since each of these papers focus on one particular cause of uncertainty, a 

reliable quantification of the uncertainties in PIV is still lacking (Brossard, Monnier et aI., 

2009). Preliminary results of a study by Onera have provided orders of magnitude for the 

relative significance of sources of uncertainty in the case of 2C-PIV: determination of the 

displacement in pixels from raw images (90% of the total uncertainty), camera calibration 

(10% of the total uncertainty), and negligible error from the uncertainty on the time 

interval between the two laser pulses (Brossard, Monnier et aI., 2009). 

Registration errors, resulting from a small misalignment between the laser sheet 

and the calibration target, are the potential predominant errors in SPIV measurements. 

Using direct numerical simulations it has been found that the accuracy of SPIV 

measurements for both laminar and turbulent flows is better than 1 % of the mean axial 

velocity which is sufficient to resolve the secondary flow patterns in transitional pipe 

flow (van Doorne and Westerweel, 2007). 
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4.5 Catheter Assisted Pressure Measurement (joint work with M. 

Shakeri, Ph.D.) 

Two Mikro-tip pressure catheter transducers (SPR-320, Millar Instruments Inc. 

Houston, TX, USA) along with a pressure control unit (pCU-2000, Millar Instruments 

Inc. Houston, TX, USA) were used to measure the pressure proximal and distal to the 

stenosis. Catheters made of polyurethane, were 140 cm in length and 2 French in size. 

The catheters provide accurate high fidelity pressure monitoring with insignificant 

damping. Pressure data was acquired at a sampling rate of 500 Hz, digitized with a data 

acquisition system (model PCI-6052E, National Instruments Inc. , Austin, TX, USA), and 

recorded on a computer using LabView (National Instruments Inc. , Austin, TX, USA) 

software. The pressure control unit was a two-channel, patient-isolated, line-powered 

amplifier/interface unit for connecting two catheters to a pressure monitor and data 

acquisition system (Khodarahmi , Shakeri et aI. , 2010). 

Figure 4-11 . Simultaneous pressure measurement. 
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One of the catheters was placed proximal to the stenosis and the other one distal 

to the stenosis. Keeping the proximal catheter in place, the distal one was pulled back to 

measure the pressure at different locations. The position of the tip of the catheter was 

recorded using a camera attached to a mobile traverse system. Later, images and hence 

position of the tip of the catheters, were registered using the coordinate system of the 

traverse. In order to ensure measuring the correct static pressure, to the extent possible, 

tip of each catheter was placed adjacent to the wall of the phantom. 

Five hundred data points within each cardiac cycle were recorded and this 

procedure was repeated for 10 cardiac cycles to increase the reliability of the pressure 

measurements. This data was compared against relative pressures calculated from the 

iterative and non-iterative pressure calculation method. 

4.5.1 Uncertainty in catheter-assisted pressure measurements 

The sensitivity of the pressure catheter is 5 J.lVNlmmHg « 0.4 Pascal). The 

pressure sensor is sensitive to all components of the pressure including the dynamic 

pressure. The contribution of the dynamic pressure (expressed as! pv 2
) could reach to-

2 

650 Pa at the throat of the stenosis for steady flow and even higher for pulsatile cases. 

Therefore, to measure the correct static pressure, tip of the catheter was placed in a tiny 

cap to minimize the dynamic pressure contribution to the measured value. Also, tip of the 

catheters were always placed as close as possible to the wall of the phantom. 

Furthermore, number of pressure readings at each point was increased to > 7000 for 

steady and> 24 for pulsatile flow regimes. 
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5 PRESSURE CALCULATION 

5.1 CFD Simulation (joint work with Mostafa Shakeri, Ph.D.) 

The flows were numerically simulated for the same flow rates, geometry, and fluid 

properties as for the PC-MRI and SPIV experiments. The geometry of the simulated 

stenosis was set to match scans obtained on a 64-slice multi-detector CT scanner 

(LightSpeed VCT scanner, GE Medical Systems, Milwaukee, WI, USA) with slice 

thickness of 0.625 mm and pixel spacing of 0.22 mm x 0.22 mm. 

The geometry was created in the preprocessor, GAMBIT 2.4.6 (ANSYS, Inc., 

Canonsburg, PA, USA). Explicit grid refinements were performed until negligible 

changes in the final results were observed. The final mesh used in this study had 

1,200,000 pyramid/wedge shaped computational cells. To better resolve the flow near the 

wall and in the neighborhood of the stenosis throat, the computational domain was 

meshed with a successive ratio of 1.2 from the wall towards the centerline of the 

phantom, and with a bell-shaped distribution in the streamwise direction centered at the 

stenosis. The length of the computational domain was 460 mm (Figure 5-1). 

Velocity distribution over the phantom volume was computed by solving the 3D 

Navier-Stokes equations for an incompressible Newtonian fluid, with rigid walls using 

the CFD software package Fluent 12.1 (ANSYS, Inc., Canonsburg, PA, USA) based on a 

finite volume scheme. 
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In order to match the experimental flow conditions, the axial SPIV velocity 

measurements acquired at the phantom inlet was applied as the inlet boundary condition. 

For the upstream boundary conditions, measured velocities at the model inlet were 

processed and smoothed before being mapped onto the computational grid inlet. Linear 

interpolation was performed in space and time between the measurement points. 

Pulsatile flow boundary conditions were prescribed at the inlet of the stenosis using the 

Womersley velocity profile (Cebral, Putman et aI. , 2009). For the downstream boundary 

conditions, outflow conditions were assumed. The computations were performed using a 

second-order upwind differencing scheme in space. Three cycles of computation would 

be sufficient to reach a cyclically repeated solution (Marshall, Zhao et aI., 2004). 

Figure 5-1. Mesh close up at the throat. 
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5.2 Iterative Method 

Fluid motion is governed by the Navier-Stokes equations, which for an 

incompressible Newtonian fluid, takes the following form: 

au 
\7P = -Pat - peu· \7)u + ~\72u + pf [5.1 ] 

where P, u, p, ~ and f denote the hydrostatic pressure, velocity vector field, density of the 

fluid, dynamic viscosity, and external body forces, respectively. 

Gradient of pressure for steady flow in axisymmetric coordinates can be written as 

(Nasiraei-Moghaddam, Behrens et aI., 2004; Khodarahmi, Shakeri et aI., 2010): 

[5.2] 

where Pr and Pz denote the rand z components, respectively, of the gradient of pressure 

as calculated from velocity data. Due to the noisy nature of the velocity measurement 

techniques, the vector field (Pr,pz) is not integrable (not curl-free), and as a result it 

cannot be integrated to produce the correct pressure. To find a pressure Pc such that \7Pc is 

the projection of (PnPz) onto the curl-free subspace of integrable vector fields, a scalar 

function is desired such that the final relative error (FRE) is minimized: 
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[5.3] 

where ilF represents the flow domain. Since the denominator of equation [5.3] is constant 

for each measured velocity field, minimization the numerator of equation [5.3] would be 

sufficient. Using the calculus of variations, the well-known Pressure-Poisson equation for 

Pc can be obtained, which is a necessary condition for optimality (Song, Leahy et aI., 

1994; Nasiraei-Moghaddam, Behrens et aI., 2004): 

[5.4] 

At the boundaries, minimization of FRE produces the natural boundary condition: 

[5.5] 

where fi is the unit vector normal to the boundary of the flow domain. The above 

equations were solved over the stenotic region using the Gauss-Seidel iterative method. 

Natural boundary conditions were applied by first fitting a surface to the boundary and 

then finding the normal vector to that surface. The acceptable average error of the 

pressure for each point during each iteration was set to 5e-1O (convergence criteria). 
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5.3 Non-iterative Harmonics-based Orthogonal Projection 

In the case of axisymmetric geometries, following Wang and Amini (Wang and 

Amini, 200S), for the vector field ?r and ?z to be integrable, their integral needs to be the 

path independent or they should be the gradient of a scalar function. So, 

[S.6] 

The projection ofVP(r,z) = (?p?z) onto an integrable subspace translates into 

minimizing the following integral: 

[S.7] 

where (pp pz ) is the projection onto the desired integrable subspace, which minimizes 0 

in equation [S.7]. 

Using some orthogonal integrable basis function <per, z, w), with w as the vector 

(wp wz ) of spatial frequencies, the pressure P could be expanded as: 

Hence, its gradient are given as: 

Pr = I C(w) <Pr(r,z,w) 

Pz = I C(w) <pz(r,z,w) 

S7 

[S.8] 

[S.9] 



acp acp 
where <Pr = ar and <pz = az· 

The measured gradient can also be expanded using same basis functions: 

?r = I C1 (w) <Pr(r,z,w) 

?z = I C2 (w) <pz(r,z,w) 

[5.10] 

Applying the demonstration of Frankot and Chellappa (Frankot and Chellappa, 1988), the 

coefficient of expansion of the projected pressure P in the integrable subspace, is related 

[5.11] 

Therefore, by substituting t( w) from equation [5.11] into Eqs. [5.8] and [5.9], 

integrable pressure gradients will correctly be calculated. Integration of these path-

independent gradients will produce the true pressure. Note that the pressure field is 

calculated in a single calculation with no iterations, using all of the available information 

contained in ?r and ?z. 

Fourier basis functions can be chosen for <pC w ) for convenience of computations 

using the fast implementation of the Discrete Fourier Transform (FFT). The Fourier basis 

functions are expressed as: 

[5.12] 

Using the Fourier basis functions equation [5.11] changes to: 
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[S.13] 

As explained thoroughly in (Wang and Amini, 200S), two kinds of discontinuities 

exist that affect the non-iterative technique. First, because of the non-rectangular 

geometry of the vessel, in addition to the inside area, area outside of the vessel will be 

included in the projection. This discontinuity can be avoided by defining the gradients as: 

rbCz) < r :s; rL 

r :s; rbCz) 

rbCz) < r :s; rL 

r :s; rbCz) 

[S.14] 

where rL is the boundary of the rectangular region. The second discontinuity occurs at 

locations r = 0, r = rL, Z = 0, and Z = ZL since the Discrete Fourier Transfonn applies a 

periodic assumption at the boundaries. The latter discontinuity is avoided by a symmetric 

expansion of the pressure (Wang and Amini, 200S): 

pCr, z) = pCr, -z) = pC -r, z) = pC -r, -z) [S.1S] 
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6 RESULTS 

6.1 Velocity Comparison 

Figure 6-1, Figure 6-2, and Figure 6-3 show the axial velocity contour from PC-

MRl, SPIV and CFD for steady flow cases SF-I, SF-2, and SF-3, respectively. Figure 6-4 

through Figure 6-9 show the axial velocity contours from PC-MRJ and CFD for pulsatile 

flows PF-l , PF-2, and PF-3 at peak-systole (t = 400 ms on flow waveform curve in 

Figure 6- I 0), and end-diastole (t = 275 ms on flow waveform curve in Figure 6-10). 
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Figure 6-\. Axial velocity contours for steady flow SF-I from PC-MRJ (top), SPIV (middle), and CFD 

(bottom). 

60 



10 
0 

0 ~ 

-10 
C/) --.., 

0 ~ 

-40 -20 0 20 40 U 
"-" 

10 .0 
0 

o .-u 
0 

-10 Q) 

0 > 
-40 -20 20 40 ~ 

,,-..., 10 x 

~ -< 
0 

'-' 

»-10 

-40 -20 0 20 40 
z(mm) 

Figure 6-2. Axial velocity contours for steady flow SF-2 from PC-MRl (top), SPIV (middle), and CFD 

(bottom). 
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Figure 6-3 . Axial velocity contours for steady flow SF-3 from PC-MRl (top), SPIV (middle), and CFD 

(bottom). 
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Figure 6-4. Axial velocity contours for pulsatile flow PF-I at peak systole (t = 400 ms on flow wavefonn 

curve in Figure 6-10) from PC-MRI (top) and CFD (bottom). 
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Figure 6-5. Axial velocity contours for pulsatile flow PF-I at end diastole (t = 275 ms on flow wavefonn 

curve in Figure 6-10) from PC-MRI (top) and CFD (bottom). 
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Figure 6-7. Axial velocity contours for pulsatile flow PF-2 at end diastole (t = 275 ms on flow waveform 

curve in Figure 6-10) from PC-MRl (top) and CFD (bottom). 
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curve in Figure 6-10) from PC-MRJ (top) and CFD (bottom). 
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Figure 6-9 . Axial velocity contours for pulsatile flow PF-3 at end diastole (t = 275 ms on flow waveform 

curve in Figure 6-10) from PC-MRJ (top) and CFD (bottom). 
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6.2 Flow Measurement 

6.2.1 SPIV Reproducibility 

SPIV provided a robust measurement of flow for both steady and pulsatile cases. 

In repeat experiments the coefficient of variation, defined as the standard deviation 

divided by the mean, was less than 0.5% for steady flows and less than 1.5% for every 

time-point measurement in pulsatile flows determined over multiple cardiac cycles. In 

pulsatile flows, the programmed and measured flow waveforms differed significantly due 

to the damping caused by the elastic tube connections. This leads to a delay and 

smoothing of the input waveform at the inlet of the phantom (Figure 6-10). However, the 

total actual flow per cycle per minute remained unchanged. 
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Figure 6-10. Programmed and measured flow waveforms. Dashed curves are applied by the computer 

controlled pump and solid curves are the measured flow using SPIV, each curve with 40 point 

measurements. Error bars on the measured flow waveforms show the standard deviation of the SPIV 

measurements. 
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6.2.2 Correlation of SPIV and PC-MRJ Measurements at Inlet 

Comparison of the flow measured by PC-MRI and SPIV at the inlet of three 

phantoms, where flow was fully developed, gives an estimate of the validity of PC-MRI 

for laminar flows. Results show good agreement between the two methods. The 

regression line approaches the line of identity with fMRJ = 1.01 fsPlv - 2.26 (R> 0.99) for 

steady flows (Figure 6-11a). In pulsatile flows (Figure 6-11b), this correlation can be 

expressed as: fMRI = 0.87 fs Plv + 2.37 (R> 0.96) (with 40 samples per waveform). 
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Figure 6-11 . Scatter diagrams comparing PC-MRI with SPIV flow measurements. Data for all flow regimes 

at the inlet of the three phantoms are combined in this plot a: Steady flow (N = (2). b: Pulsatile flow (N = 

360). 
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6.2.3 Steady PC-MRI Measurement at Three Sections 

Errors in mean flow for steady flow measurements using PC-MRI are reported in 

Table 6-1. All comparisons are based on SPIV as ground truth. For SF -0 and SF -1 flows 

(see Table 4-1 for definition), which benefit from suitable Venc selection, the error at the 

inlet is less than 5%. Higher errors in SF-2 and SF-3 show the importance of choosing a 

proper Vene (Gudbjartsson and Patz, 1995; Nasiraei-Moghaddam, Behrens et aI., 2004) . 

Flow rate errors show that for the 87% and 74% stenoses, PC-MRI 

underestimated flow at the outlet. For the same phantoms, flow measurements at both the 

inlet and throat show very good agreement between the two methods. Through-plane 

velocity contours and profiles at the inlet for the 87% area occlusion phantom for flow 

SF -1 are shown in Figure 6-12a. Both contour plots and velocity profiles show good 

agreement between the two methods. 
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Table 6-1 

Errors of the steady flow as measured with PC-MRI compared to SPIV. 

Steady flow rate error (%) 

SF-O SF-l SF-2 SF-3 

Inlet -1.6 -4.7 -7.6 -11.6 

87% 

stenosis 
Throat -0.8 1.0 2.0 0.7 

Outlet -4.6 -16.5 -22.2 -30.6 

Inlet -0.4 -2.8 -6.0 -7.8 

74% 

stenosis 
Throat 4.9 4.5 3.7 3.3 

Outlet -3.4 -7.7 -10.0 -13.1 

Inlet 1.4 1.8 2.4 1.2 

50% 

stenosis 
Throat 3.8 3.2 3.3 2.1 

Outlet 1.4 1.5 1.5 -1.3 
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Figure 6-12. Through-plane velocity contours and profiles for steady and pulsatile flows at the inlet in the 

87% area occlusion phantom: a: SF-I , b: PF-l (t = 400 ms; maximum flow), c: PF-l (t = 275 ms; minimum 

flow) . Profiles are depicted for the cross line x = O. 
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6.2.4 Pulsatile PC-MRI Measurement at Three Sections 

Flow rate error relative to SPIV measurements was calculated for each of the 

three phantom locations. Normalized root mean square error (NRMSE) was calculated 

according to 

NRMSE = 

wherefis the flow measurement by either method and the summation is performed over 

different time points (40 measurements for pulsatile flows). 

Flow waveforms measured by SPIV and PC-MRI at three sections for 50%, 74% 

and 87% phantoms and flows PF-l, PF-2 and PF-3 are shown in Figure 6-l3. The 

corresponding mean and peak flow errors as well as NRMSE are summarized in 

Table 6-2. While the mean flow measurement for 50% stenosis phantom was relatively 

accurate at all three sections, for the other two phantoms the best accuracy was obtained 

at the throat. Also, PC-MRI generally detected mean flow better than peak flow as 

evidenced by the smaller errors. 
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columns show pulsatile flows PF-\, PF-2 and PF-3, respectively. 
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Table 6-2 

Errors of the mean and peak flow measurements with PC-MRJ for all pulsatile flows. Flow rates are compared against 

SPIV as the gold standard. Normalized root mean squared errors (NRMSE) are also reported. 

Mean flow rate Peak flow rate 
Normalized root 

error (%) error (%) 
mean square error 

Stenosis 
(%) 

PF-l PF-2 PF-3 PF-l PF-2 PF-3 PF-l PF-2 PF-3 

Inlet -10.4 -14.1 -19.2 -9.1 -21.7 -7.0 11.9 23.5 17.3 

87% Throat 2.3 1.16 1.5 -4.1 -6.7 -0.6 11.7 17.2 8.3 

Outlet -10.8 -15.3 -15.3 -6.5 -0.2 -7.3 21.9 15.8 14.8 

Inlet -6.0 -11.4 -13.4 -12.7 -18.0 -11.3 11.5 16.5 14.3 

74% Throat 0.42 -0.8 -1.0 -6.9 -13.8 -6.8 11.4 14.5 8.8 

Outlet -8.8 -11.4 -15.5 -11.7 -21.0 -12.4 11.4 20.2 15.8 

Inlet 0.3 -0.6 -0.9 -7.5 -15 .7 -2.8 9.3 16.1 8.8 

50% Throat 0.9 -1.6 -1.4 -8.3 -24.3 -2.9 13.8 25.4 8.0 

Outlet -1.6 -2.2 -2.9 -11.0 -19.5 -15 .8 15.7 22.7 17.8 
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Through-plane velocity contours and profiles of pulsatile flow PF-l for two time 

points t = 400 ms (corresponding to the maximum flow rate) and t = 275 ms 

(corresponding to the minimum flow rate) at the inlet are shown in Figure 6-12 (b and c) 

for the 87% area occlusion phantom. Both contour plots and velocity profiles show good 

agreement between the methods. However, the near-wall velocity at t = 275 ms 

(Figure 6-12c) was noisy, because Venc is set for the maximum flow rate. 

As evidenced by the contour plots and profiles in Figure 6-12, near-wall velocity 

at cardiac phases with low flow rates (e.g., t = 275 ms), is noisy, leading to 

underestimation of the flow for those cardiac phases. This occurred because in pulsatile 

studies, Venc is generally set corresponding to the peak flow rate and is constant over 

cardiac phases. MR sequences with the capability to automatically optimize Venc for 

individual heart phases in pulsatile flow could potentially prevent this underestimation 

(Ringgaard, Oyre et aI., 2004). 

Scatter diagrams comparing pulsatile PC-MRl with SPIV flow measurements at 

three different sections for three different phantoms are shown in Figure 6-14. Data for 

all flows PF-l, PF-2 and PF-3 are combined for each section/phantom to evaluate the 

accuracy of flow measurement as a function of imaging section. Correlation coefficients, 

slopes, and intercepts are summarized in Table 6-3, showing good agreement between 

MRI and gold standard flow from SPIV. Normalized root mean square error (NRMSE) 

for all phantoms, flows and sections were higher compared to errors in mean flow 

measurement of the corresponding values in all cases. This may suggest decreased ability 

ofPC-MRl to detect the high frequency components of the flow waveform, because of 

the averaging that occurs during data collection for different k-space lines in PC-MRl. 
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Table 6-3 

Linear regression of the flow measured by PC-MRJ against SPIV. 

Linear correlation for 

all flows and (p-values) 

Stenosis 

Slope Intercept R 

0.88 -0.71 > 0.96 
Inlet 

« 0.01) (0.52) «0.01) 

0.87 6.39 > 0.96 
87% Throat 

«0.01) « 0.01) « 0.01) 

0.86 0.32 > 0.95 
Outlet 

« 0.01) (0.80) « 0.01) 

0.87 1.52 > 0.97 
Inlet 

« 0.01) (0.09) «0.01) 

0.86 6.41 > 0.97 
74% Throat 

« 0.01) « 0.01) « 0.01) 

0.86 1.36 > 0.97 
Outlet 

« 0.01) (0.17) « 0.01) 

0.86 6.3 1 > 0.97 
Inlet 

« 0.01) « 0.01) « 0.01) 

0.74 11.50 > 0.94 
50% Throat 

«0.01) «0.01) « 0.01) 

0.68 13.50 > 0.95 
Outlet 

«0.01) « 0.01) « 0.01) 
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6.3 Pressure Measurement 

6.3.1 Comparison of the iterative and non-iterative techniques 

Iterative and non-iterative techniques are compared with each other by applying 

both methods to the noise-free velocity data obtained from CFD simulations on ideal 

stenoses for steady flow SF-2. In order to do this, velocity data were first calculated by 

CFD simulations, and were then regridded to rectangular meshes with different 

resolutions. Mesh sizes of 1.88, 1.57, 1.25,0.94,0.63,0.31,0.15, and 0.l0 mm were 

tested. These values correspond to 7.4%, 6.2%, 4.9%, 3.7%, 2.5%, 1.2%,0.6%, and 0.4% 

of the inlet diameter, respectively. Pressure gradients were calculated using second order 

central differencing scheme in the fluid domain and forward/backward differencing 

scheme at the boundaries. 

After regridding, both iterative and non-iterative methods were applied to the 

regridded velocity data (Figure 6-15 through Figure 6-22). Results of the two methods 

were compared in terms of the CPU usage time and normalized root mean square error 

(NRMSE) over the entire volume. The normalized root mean square error (NRMSE) was 

calculated according to 

NRMSE = 
II(pc - Pf )2r dr dz 

2 
II(pf ) r dr dz 

where Pf is the pressure calculated by Fluent software, and Pc is the pressure calculated 

by either iterative or non-iterative methods. Results are represented in Table 6-4. 
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Figure 6-15 . Pressure contour plot (top) and pressure profile along the centerline (bottom) obtained directly 

from CFD simulations, and calculated using iterative method and non-iterative methods on the velocity 

data regridded to a rectangular mesh at resolution 1.88 mm. 
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Figure 6-16. Pressure contour plot (top) and pressure profile along the centerline (bottom) obtained directly 

from CFO simulations, and calculated using iterative method and non-iterative methods on the velocity 

data regridded to a rectangular mesh at resolution 1.57 mm. 
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Figure 6-17. Pressure contour plot (top) and pressure profile along the centerline (bottom) obtained directly 

from CFD simulations, and calculated using iterative method and non-iterative methods on the velocity 

data regridded to a rectangular mesh at resolution 1.25 mm. 
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Figure 6-18. Pressure contour plot (top) and pressure profile along the centerline (bottom) obtained directly 
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Figure 6-19. Pressure contour plot (top) and pressure profile along the centerline (bottom) obtained directly 

from CFD simulations, and calculated using iterative method and non-iterative methods on the velocity 

data regridded to a rectangular mesh at resolution 0.63 mm. 
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Figure 6-20. Pressure contour plot (top) and pressure profile along the centerline (bottom) obtained directly 

from CFD simulations, and calculated using iterative method and non-iterative methods on the velocity 

data regridded to a rectangular mesh at resolution 0.31 mm. 
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Figure 6-21. Pressure contour plot (top) and pressure profile along the centerl ine (bottom) obtained directly 

from CFD simulations, and calculated using iterative method and non-iterative methods on the velocity 

data regridded to a rectangular mesh at resolution 0.15 mm. 
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Figure 6-22. Pressure contour plot (top) and pressure profile along the centerline (bottom) obtained directly 

from CFD simulations, and calculated using iterative method and non-iterative methods on the velocity 
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Table 6-4 

Normalized root mean square error (NRMSE) and CPU time usage of the pressure calculation using iterative and non-

iterative techniques using CFO simulation as the basis for comparison. 

Resolution NRMSE(%) CPU time (sec) 

(mm) 
Iterative Non-iterative Iterative Non-iterative 

1.88 16.6 7.3 3.78 0.l1 

1.57 19.7 27.5 4.82 0.14 

1.25 20.0 7.4 8.31 0.19 

0.94 19.6 0.9 18.31 0.23 

0.63 20.1 2.4 53.69 0.67 

0.31 19.5 29.5 234.98 2.17 

0.15 18.7 42.6 1318.37 12.09 

0.10 18.3 50.0 10852.18 34.68 
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6.3.2 Catheter Assisted Pressure Measurement 

Pressure drop along the centerline of the phantom measured directly using 

pressure catheters are depicted in Figure 6-23-Figure 6-25. Here, the inlet pressure at 8 

cm upstream of the stenosis throat was chosen as the reference point and set to zero for 

all measurements. Figure 6-23 shows the mean and standard deviation (SO) of the direct 

pressure (catheter) for N > 7000 readings at several axial locations for steady flows SF-I , 

SF-2 and SF-3 . Figure 6-24 and Figure 6-25 show the mean and SO of the direct pressure 

measurement for N > 24 readings at several locations for pulsatile flows PF-1 , PF-2 and 

PF-3 at end-diastole (Figure 6-10, t = 275 ms) and peak-systole (Figure 6-10, t = 400 ms), 

respectively. 

-0.1 
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0.. 
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-800 

--SF-l SF-2 ---SF-3 

0.4 

Z (m) 

Figure 6-23. Pressure profile along the centerline of the 87% area stenosis phantom with steady flow rates 

of SF-l (56.3 mils), SF-\ (46.9 mils), and SF-3 (37.5mlls). Error bars show the standard deviation of the 

measured pressure for N > 7000 readings. 
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Figure 6-24. Pressure profile along the centerline of the 87% area stenosis phantom with pulsatile flow 

rates of PF-I (184 mIls), PF-I (153 mIl s) , and PF-3 (122 mils) at end-diastole (t = 275 ms on flow 

waveform curve). Error bars show the standard deviation of the measured pressure for N > 24 readings. 
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Figure 6-25. Pressure profile along the centerline of the 87% area stenosis phantom with pulsatile flow 

rates ofPF-1 (184 mIl s), PF-l (153 mIls), and PF-3 (122 mils) at peak-systole (t = 400 ms on flow 

waveform curve). Error bars show the standard deviation of the measured pressure for N > 24 readings. 
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6.3.3 CFD simulation 

Pressure drop along the centerline of the phantom was obtained directly from 

CFO simulations for steady flows (Figure 6-26), fo r pulsatile flows at end-diastole 

(Figure 6-27), and for pulsatile flows at peak-systole (Figure 6-28). The inlet pressure at 

8 cm upstream of the stenosis throat was chosen as the reference point and set to zero for 

all measurements. 
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Figure 6-26. Pressure profile along the centerline of the 87% area stenosis phantom witb steady flow rates 

of SF-I (56.3 mIl s), SF-I (46.9 mils), and SF-3 (37.5ml /s) obtained directly from CFD simulation. 
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Figure 6-27. Pressure profile along the centerline of the 87% area stenosis phantom with pulsatile flow 

rates ofPF-1 (184 mils), PF-l (153 mils), and PF-3 (122 mils) at end-diastole (t = 275 ms on flow 

waveform curve) obtained directly from CFO simulation obtained directly from CFO simulation. 
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Figure 6-28. Pressure profile along the centerline of the 87% area stenosis phantom with pulsatile flow 

rates ofPF-1 (184 mils), PF-l (153 mils), and PF-3 (122 mils) at peak-systole (t = 400 ms on flow 

waveform curve) obtained directly from CFO simulation obtained directly from CFO simulation. 
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6.3.4 CFD velocity data using iterative method 

Pressure drop along the centerline of the phantom was calculated from CFD 

velocity data using iterative method for steady flows (Figure 6-29), for pulsatile flows at 

end-diastole (Figure 6-30), and for pulsatile flows at peak-systole (Figure 6-31). The inlet 

pressure at 8 cm upstream of the stenosis throat was chosen as the reference point and set 

to zero for all measurements. 
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Figure 6-29. Pressure profile along the centerline of the 87% area stenosis phantom with steady flow rates 

of SF-l (56.3 ml!s), SF- I (46.9 mils), and SF-3 (3 7.5 m lls) calculated from CFO velocity data using 

iterative method. 
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Figure 6-30. Pressure profile along the centerline of the 87% area stenosis phantom with steady flow rates 

of PF-I (184 mils), PF-I (153 mils), and PF-3 ( J 22 mils) at end-diastole (t = 275 ms on flow waveform 

curve) calculated from CFD velocity data using iterative method . 
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Figure 6-31 . Pressure profile along the centerline of the 87% area stenosis phantom with steady flow rates 

of PF-I (184 mIl s), PF-I (153 mils) , and PF-3 (122 mIl s) at peak-systole (t = 400 ms on flow waveform 

curve) calculated from CFD velocity data using iterative method. 
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6.3.5 CFD velocity data using non-iterative method 

Pressure drop along the centerline of the phantom was calculated from CFD 

velocity data using non-iterative method for steady flows (Figure 6-32), for pulsatile 

flows at end-diastole (Figure 6-33), and for pulsatile flows at peak-systole (Figure 6-34). 

The inlet pressure at 8 cm upstream of the stenosis throat was chosen as the reference 

point and set to zero for all measurements. 
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Figure 6-32. Pressure profile along the centerline of the 87% area stenosis phantom with steady flow rates 

of SF-I (56.3 mils), SF-\ (46.9 mils), and SF-3 (37.5mlls) calculated from CFO velocity data using non-

iterative method. 
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Figure 6-33. Pressure profile along the centerline of the 87% area stenosis phantom with steady flow rates 

of PF-l (184 mIls), PF-l (153 mils), and PF-3 (122 mils) at end-diastole (t = 275 ms on flow waveform 
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curve) calculated from CFO velocity data using non-iterative method . 
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Figure 6-34. Pressure profile along the centerline of the 87% area stenosis phantom with steady flow rates 

ofPF-1 (184 mils), PF-l (153 mils), and PF-3 (122 mils) at peak-systole (t = 400 ms on flow waveform 

curve) calculated from CFO velocity data using non-iterative method. 
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Results of the two iterative (previous section) and non-iterative methods applied 

on the CFD velocity data were compared in terms of CPU usage time and normalized 

root mean square error (NRMSE) over the entire volume. Normalized root mean square 

error (NRMSE) was calculated, as discussed before. Results are represented in Table 6-5. 

Table 6-5 

Nonnalized root mean square error (NRMSE) and CPU time usage of the pressure calculation using iterative and non­

iterative techniques applied on the CFO velocity data using CFO simulated pressures as the basis for comparison 

(Resolution = I mm). 

NRMSE(%) CPU time (sec) 
Flow case 

Iterative Non-iterative Iterative Non-iterative 

SF-I 13 .69 9.53 681.35 10.80 

SF-2 9.96 9.68 628.13 10.28 

SF-3 11.36 6.28 678.03 9.61 

PF-I (peak-systole) 24.43 6.68 162.10 0.69 

PF-2 (peak-systole) 20.38 10.35 67.65 0.25 

PF-3 (peak-systole) 19.14 11.69 45.38 0.39 

PF-l (end-diastole) 264.98 177.70 13.14 0.28 

PF-2 (end-diastole) 257.24 175.50 10.08 0.25 

PF-3 (end-diastole) 50.19 20.75 3.13 0.55 
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6.3.6 PC-MRI velocity data using iterative method 

Pressure drop along the centerline of the phantom was calculated from PC-MRI 

velocity data using iterative method for steady flows (Figure 6-35), for pulsatile flows at 

end-diastole (Figure 6-36), and for pulsatile flows at peak-systole (Figure 6-37). The inlet 

pressure at 8 cm upstream of the stenosis throat was chosen as the reference point and set 

to zero for all measurements. 
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Figure 6-35 . Pressure profile along the centerline of the 87% area stenosis phantom with steady flow rates 

of SF-I (56.3 mils) , SF-I (46.9 mils) , and SF-3 (37.5mlls) calculated from PC-MRJ velocity data using 

iterative method. 
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Figure 6-36. Pressure profile along the centerline of the 87% area stenosis phantom with steady flow rates 

of PF-I (184 mils), PF-l (153 mils), and PF-3 ( 122 mils) at end-diastole (t = 275 ms on flow waveform 

curve) calculated from PC-MRJ velocity data using iterative method. 
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Figure 6-37. Pressure profile along the centerline of the 87% area stenosis phantom with steady flow rates 

of PF-I (184 mils), PF-I (153 mils), and PF-3 (122 mils) at peak-systole (t = 400 ms on flow waveform 

curve) calculated from PC-MRJ velocity data using iterative method. 
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6.3.7 PC-MRI velocity data using non-iterative method 

Pressure drop along the centerline of the phantom was calculated from PC-MRl 

velocity data using non-iterative method for steady flows (Figure 6-38), for pulsatile 

flows at end-diastole (Figure 6-39), and for pulsatile flows at peak-systole (Figure 6-40) . 

The inlet pressure at 8 cm upstream of the stenosis throat was chosen as the reference 

point and set to zero for all measurements. 

- SF-l SF-2 -SF-3 

100 

·0.1 0.1 0.2 0.3 0.4 

nl 
a.. 

~ 
:J 
Vl 
Vl 

OJ -500 '-
a.. 

-600 

-700 

-800 

-900 
Z(m) 

Figure 6-38. Pressure profile along the centerline of the 87% area stenosis phantom with steady flow rates 

of SF-l (56.3 mils), SF-l (46.9 mils), and SF-3 (37.5mlls) calculated from PC-MRl velocity data using 

non-iterative method. 
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Figure 6-39. Pressure profile along the centerline of the 87% area stenosis phantom with steady flow rates 

of PF-I (184 mils), PF-I (153 mils), and PF-3 (122 mils) at end-diastole (t = 275 ms on flow waveform 

curve) calculated from PC-MRJ velocity data using non-iterative method. 
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Figure 6-40 . Pressure profile along the centerline of the 87% area stenosis phantom with steady flow rates 

of PF-I (I 84 mils), PF-I (153 mils), and PF-3 ( 122 mils) at peak-systo le (t = 400 ms on flow waveform 

curve) calculated from PC-MRl velocity data using non-iterative method. 
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Results of the two iterative (previous section) and non-iterative methods applied 

on the PC-MRJ velocity data were compared in terms of CPU usage time. Results are 

represented in Table 6-6. 

Table 6-6 

CPU time usage of the pressure calculation using iterative and non-iterative 

techniques app lied on the PC-MRI velocity data. 

CPU time (sec) 
Flow case 

Iterative N on-iterative 

SF-l 189.23 0.90 

SF-2 114.70 1.59 

SF-3 302.59 1.81 

PF-l (peak-systole) 850.35 0.81 

PF-2 (peak-systole) 637.63 1.03 

PF-3 (peak-systole) 318.64 0.95 

PF-l (end-diastole) 203.53 1.09 

PF-2 (end-diastole) 139.92 0.97 

PF-3 (end-diastole) 119.01 1.05 

PF -1 (whole cardiac cycle) -22K 43.1 

PF-2 (whole cardiac cycle) -17K 47.9 

PF-3 (whole cardiac cycle) -10K 53.8 
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6.3.8 SPIV velocity data using iterative method 

Pressure drop along the centerline of the phantom was calculated from SPIV 

velocity data using iterative method for steady flows (Figure 6-41). The inlet pressure at 

8 cm upstream of the stenosis throat was chosen as the reference point and set to zero for 

all measurements. 
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Figure 6-41. Pressure profile along the centerline of the 87% area stenosis phantom with steady flow rates 

ofSF-\ (56.3 mIls), SF-\ (46.9 mils), and SF-3 (37.5mlls) calculated from SPIV velocity data using 

iterative method. 
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6.3.9 SPIV velocity data using non-iterative method 

Pressure drop along the centerline of the phantom was calculated from SPIV 

velocity data using non-iterative method for steady flows (Figure 6-42). The inlet 

pressure at 8 cm upstream of the stenosis throat was chosen as the reference point and set 

to zero for all measurements. 
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Figure 6-42. Pressure profile along the centerline of the 87% area stenosis phantom with steady flow rates 

of SF-l (56.3 mUs), SF-l (46.9 mils), and SF-3 (37.5mlls) calculated from SPIV velocity data using non-

iterat ive method. 
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Results of the two iterative (previous section) and non-iterative methods applied 

on the SPIV velocity data were compared in terms of CPU usage time. Results are 

represented in Table 6-7. 

Table 6-7 

CPU time usage of the pressure calculation using iterative and non­

iterative techniques applied on the SPIV ve locity data. 

CPU time (sec) 
Flow case 

Iterative Non-iterative 

SF-l 25872.26 10.83 

SF-2 7959.46 10.76 

SF-3 3953.21 10.08 
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6.3.10 Multimodality comparison 

The pressure drop along the centerline of the phantom is shown in Figure 6-43 for 

steady flow SF-2 with different methods. Here, the pressure 8 cm upstream of the 

stenosis throat was chosen as the reference point (Pref) and set to zero for the pressure 

calculated from other techniques, including PC-MRI, SPIV, CFD, Fluent, and Catheter. 
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Figure 6-43. Pressure profile along the centerline of the phantom obtained from different methods for 

steady flow SF-2. Error bars show the standard deviation of the measured pressure for N > 7000 readings. 

The inlet pressure at 8 cm upstream of the stenosis was set to the same value for all methods. 

The pressure drop for each method was calculated using the reference point 

as: PO = P - Pref. The relative error in the pressure drop was then defined as IlpO j -

POpuentl / IlpOpuentl for each modality and/or technique, where summation ("i") is over 

all data points along the centerline of the phantom for each method. Fluent pressure was 
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chosen as the basis for comparison since it showed better results compared to that of the 

catheter at end-diastole (compare Figure 6-24 with Figure 6-27). The relative error in 

pressure drop for catheter, PC-MRl (iterative), PC-MRl (non-iterative), CFO (iterative), 

CFO (non-iterative), SPIV (iterative), and SPIV (non-iterative) methods were 13.1 %, 

12.5%, 7.8%, 9.3%, 9.0%, 20.5%, and 20.1%, respectively. 

Figure 6-44 shows the pressure drop along the centerline of the phantom for 

pulsatile flow PF-2 at peak-systole (t = 400 ms on flow waveform curve) with different 

methods. Using the Fluent pressure as the ground truth, the relative error in pressure drop 

for catheter, PC-MRJ (iterative), PC-MRI (non-iterative), CFO (iterative), and CFO (non-

iterative) methods were 20.3%, 4.0%, 22.1%, 19.8%, and 10.7%, respectively. 
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Figure 6-44. Pressure profile along the centerline ofthe phantom obtained from different methods at peak-

systole (t = 400 ms on flow waveform curve) for pulsatile flow PF-2. Error bars show the standard 

deviation of the measured pressure for N > 24 readings. The inlet pressure at 8 cm upstream of the stenosis 

was set to the same value for all methods. 
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Figure 6-45 shows the pressure drop along the centerline of the phantom for 

pulsatile flow PF-2 at end-diastole (t = 275 ms on flow waveform curve) with different 

methods . Using the pressure obtained from Fluent as the ground truth, the relative error in 

pressure drop for catheter, PC-MRJ (iterative), PC-MRl (non-iterative), CFO (iterative), 

and CFO (non-iterative) methods were 44.1 %, 194.5%, 155.2%, 245.2%, and 162.8%, 

respectively. 
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Figure 6-45 . Pressure profile along the centerline of the phantom obtained from different methods at end-

diastole (t = 275 ms on flow waveform curve) for pulsatile flow PF-2. Error bars show the standard 

deviation of the measured pressure for N > 24 readings. The inlet pressure at 8 cm upstream of the stenosis 

was set to the same value for all methods. 
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7 DISCUSSION 

7.1 Flow measurement 

To avoid long scan time and low signal-to-noise ratio, phase contrast 

measurements are usually performed at relatively low resolutions (around 1 mm3
). This 

leads to a loss of flow information because of averaging of the velocity in a voxel, 

increased intravoxel dephasing, signal loss near vessel edges and inaccurate vessel wall 

definition as a result of partial volume effects. Furthermore, the phase velocity mapping 

technique assumes that velocity is constant over the measurement time, which introduces 

other sources of error to the measurements. Taking all these challenges into account 

before any clinical application, the accuracy ofPC-MRI measurements, needs to be 

evaluated in phantom models for different pathologic conditions. 

This research provides an assessment of the accuracy ofPC-MRI flow 

measurements using an independent modality in a stenotic phantom of common iliac 

artery under both steady and pulsatile flow conditions, and presents a quantitative 

comparison between the two modalities. In this study, we have shown that good 

qualitative and quantitative agreement exists between PC-MRI and SPIV measurements 

of flow patterns in phantom models of common iliac artery stenosis. Agreement was 

demonstrated for both steady and pulsatile measurements by evaluating the linear 

regression between the two methods, which showed a correlation coefficient of> 0.99 

and> 0.96 for steady and pulsatile flows, respectively. 
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The difference between SPIV and PC-MRI measurements for steady flows with 

proper Venc selection (SF-O and SF-I) was less than 5% for both inlet and throat and 

showed good agreement in all cases. The agreement, however, was weaker at the outlet 

especially for the 87% stenosis. CFD simulations in Figure 7-1 have been used to 

spatially localize the source of error for steady flow SF-I. Comparison of the velocity 

contours at the outlet section fails to show any particular pattern explaining the errors 

associated with the higher flow rate. However, PC-MRI velocity contours at the outlet are 

noisier compared to the other two sections. This may be explained by the fact that flow 

distal to the stenosis can be unsteady even in the constant flow cases (see for example 

(Griffith, Leweke et ai., 2008)). Flow measurement by each method assumes constant 

velocity over a short period of time. In the case of SF -1, this time period was 200 IlS for 

SPIV (time difference between two consecutive images) and 256 ms for PC-MRI (time to 

collect data for the whole k-space). This longer time duration in PC-MRI leads to a signal 

dephasing due to more incoherent spin motion in the unsteady regions. 

The same mechanism leads to errors in flow measurements of increasing 

magnitude in the distal section of more severe stenoses where flow unsteadiness is 

accentuated. Previous studies have shown an overestimation of flow by over 100% 

immediately upstream and downstream of the stenosis throat (Siegel, Oshinski et ai., 

1996). However, compared to those studies, a shorter echo time was used here to 

alleviate some of the problems associated with flow unsteadiness. 

The steady flow errors for the SF-2 and SF-3 followed a similar pattern, though 

the errors were generally larger than for SF -0 and SF-I. This originated from the well­

known fact that velocity-to-noise ratio is proportional to Venc (Gudbjartsson and Patz, 
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1995; Nasiraei-Moghaddam, Behrens et aI. , 2004) and proper Venc selection in in-vivo 

studies plays a crucial role in the accuracy of the measurements. 
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Figure 7-1. Through-plane velocity contours at three sections: a: lnlet, b: Throat and c: Outlet for steady 

flow SF-I. 
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The mean and peak flow rate errors, and NRMSE for all pulsatile flow regimes 

are reported in Table 6-2. For pulsatile flows, mean and peak flow rate errors were lowest 

at the throat section. This pattern, though less evident, was also observed in NRMSE. 

NRMSE was higher than error in the mean flow rate. Also, NRMSE for all phantoms, 

flow regimes and sections was found to be higher compared to steady flow in all cases, 

suggesting the decreased ability of PC-MRI to detect high frequency components of the 

flow waveform. 

As evidenced by the contour plots and profiles in Fig.5b and c, near-wall velocity 

at cardiac phases with low flow rates (e.g., t = 275 ms), is noisy, leading to 

underestimation of the flow for those cardiac phases. This occurred because in pulsatile 

studies, Yenc is generally set corresponding to the peak flow rate and is constant over 

cardiac phases. MR sequences with the capability to automatically optimize Yenc for 

individual heart phases in pulsatile flow could potentially prevent this underestimation 

(Ringgaard, Oyre et ai., 2004). 
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7.2 Pressure measurement 

Understanding and predicting the hemodynamics of the stenosis has the potential 

to aid in efficient and safe treatment by offering crucial information for therapeutic 

decision-making and patient management. Intravascular catheterization is an invasive 

procedure which provides at best a one-dimensional pressure measurement. 

In clinical applications, a modification ofBemoulli's equation is commonly used 

to estimate the pressure difference across a vessel stenosis or a restricted valve orifice. 

Despite its wide clinical applications, this estimate depends upon many assumptions 

about the nature of the flow in stenosis and provides no information about the temporal or 

spatial variation of the pressure. These limitations produce the motivation to approach the 

problem through the Navier-Stokes equations, which completely define the behavior of 

simple fluids. 

In this research, two separate methods for integrating the noisy pressure gradients 

obtained from Navier-Stokes equations are presented. The results of these two methods, 

i.e. iterative and non-iterative methods, are compared with each other and with other 

independent methods of pressure measurement. 

To better compare the results of iterative and non-iterative methods, these 

methods have been applied on simulated velocity data (Figure 7-2). Based on the results 

on steady flow SF-2, the iterative method as shown in Figure 7-2(a) and Table 6-4, 

produces robust results with a relatively constant accuracy when applied to velocity fields 

with different resolutions. Some studies such as (Nasiraei-Moghaddam, Behrens et aI., 

2004) state that resolution is a significant determinant of accuracy for the iterative 

technique. However, this discrepancy could be due to the different input source that they 
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have used for pressure calculation. While here the "ideal" CFD velocity data has been 

used to calculate the pressure, those studies have used the in-vitro PC-MRI data to solve 

the pressure-Poisson equation. Since the signal-to-noise ratio in PC-MRI is a function of 

the resolution, their results expressed a mixed effect of both resolution and signal-to­

noise ratio rather than the pure effect of the resolution. 

On the other hand, based on the results on steady flow SF-2, the accuracy of the 

non-iterative method depends on the resolution of the velocity field (Figure 7-2 (b) and 

Table 6-4). As explained in the previous chapters, to avoid the discontinuity at the vessel 

boundaries, the gradients at the boundaries were extended to a rectangular area outside 

the vessel. During discretization and digitalization of the boundaries at each resolution, 

the calculated pressure gradients become noisy. This noise is spread to the whole 

computational domain after extending the pressure gradients to the area outside the 

vessel. This resolution-dependency could be the most limiting factor in potential clinical 

applications for the non-iterative technique. 

Further simulations on different flow regimes may be needed to draw a general 

conclusion regarding the sensitivity of the aforementioned methods to the grid 

resolutions. 
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Figure 7-2. Effect of grid resolution on the accuracy of the estimated pressure profile along the centerline 

for flow regime SF-2. Grid resolution was normalized by the inlet diameter = 25.73 mm . a: Iterative 

technique. b: Non-iterative technique. 
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Time wise, as shown in Table 6-4, the non-iterative method, depending on the 

resolution, is more than one to two orders of magnitude faster than the iterative method, 

which makes it favorable for clinical usage. Applying the iterative method on three­

dimensional, time-resolved (4D) patient velocity data at clinical resolutions of about 1 

mm would be on the order of hours, which makes it less interesting for clinical 

applications. 

In the multimodality comparison, a relatively good agreement was found between 

pressures calculated from different methods. For steady flow, using the pressure obtained 

from Fluent as the ground truth, the relative error in pressure drop for catheter, PC-MRI 

(iterative), PC-MRI (non-iterative), CFD (iterative), CFD (non-iterative), SPIV 

(iterative), and SPIV (non-iterative) methods were 13.1%, 12.5%,7.8%,9.3%,9.0%, 

20.5%, and 20.1 %, respectively. 

For pulsating flow at peak-systole, the relative error in pressure drop for catheter, 

PC-MRI (iterative), PC-MRI (non-iterative), CFD (iterative), and CFD (non-iterative) 

methods were 20.3%, 4.0%, 22.1 %, 19.8%, and 10.7%, respectively. At end-diastole, the 

relative error in pressure drop for catheter, PC-MRI (iterative), PC-MRI (non-iterative), 

CFD (iterative), and CFD (non-iterative) methods were 44.1 %, 194.5%, 155.2%,245.2%, 

and 162.8%, respectively. 

The difference between the pressure from Fluent, on one hand, and iterative/non­

iterative techniques on the other hand, could be because of three main factors: First, due 

to the uniform distribution of the regular grid in iterative/non-iterative techniques, it is 

not possible to increase the resolution selectively at the stenosis throat. Computationally, 

it is extremely costly to increase the grid resolution of the entire flow domain to a level 
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comparable to that of Fluent at the throat. Second, unlike Fluent, which uses a finite 

volume scheme to solve the Navier-Stokes equation, we employed a finite difference 

algorithm to compute the pressure. Finally, unlike Fluent, which solves the flow 

equations in 3D space, other computational methods have been solved in 20 axi­

symmetric coordinate systems. Although the phantom model was fabricated with much 

effort to be axi-symmetric, a minimal deviation from axi-symmetry could cause 

significant changes in flow behavior. 

Another point is that the boundary condition for pressure on CFO, PC-MRI and 

SPIV images is not well defined. However, this issue is not seen when using 

computational simulation to solve the pressure field since the boundaries are precisely 

defined (Fujisawa, Tanahashi et ai., 2005; Murai, Nakada et ai., 2007). 

Immediately after the throat of the stenosis, a negative spike could be observed in 

the pressure calculated by SPIV and CFO data (Figure 6-43). This negative spike, 

however, was not observed in the pressure profile calculated from PC-MRI data. As 

shown in Figure 7-2 the pressure profile calculated from CFO data regridded to a coarse 

mesh fails to detect this negative spike. Likewise, the inability of the PC-MRI to reveal 

this spike in Figure 6-43 could be due to its lower resolution when compared to SPIV and 

CFO. 

A practical issue in direct pressure measurements is that the pressure measured by 

catheter suffers from some degree of deviation from the true pressure; this is because 

first, the catheter disturbs the flow and second, putting the catheter sensor in a cap, which 

is necessary to minimize dynamic pressure contribution, may disturb the true reading by 

prolonging the response time of the catheter. This deviation was higher in the pulsatile 
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flow when compared to steady flows. This could be due to the relatively long response 

time of the catheter (when placed in the cap) in pulsatile flows where the catheter 

experiences a wide range of pressure over the cardiac cycle. 

Finally, it should be noted that although CFD produces more accurate relative 

pressures in comparison with the iterative and non-iterative solution of PPE on velocity 

data, it requires larger CPU times (one order of magnitude longer than the iterative 

technique and three orders of magnitude longer than the non-iterative technique for two­

dimensional steady flows). In clinical practice, where the blood flow is pulsatile and 

three-dimensional, the difference in CPU times is even larger, making CFD less practical. 
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8 CONCLUSION AND RECOMMENDATIONS 

In conclusion, SPIV is a robust and accurate in-vitro method for three­

dimensional velocity and flow measurement with the ability to serve as the ground truth 

for PC-MRI velocity measurements. In particular, the approach taken here could serve as 

the basis for validation and optimization of new and established MR velocimetry 

techniques. As shown by measurements and statistical analyses, the flow measurements 

at different sites in the stenotic model and at different time instants show a good 

correspondence between standard spin-warp PC-MRI and the reference SPIV method. 

The results further support the use ofPC-MRI in validating hemodynamic information 

for numerical simulations to diagnose stenotic flow behavior and assist in treatment 

planning. 

The pressure Poisson equation was solved based on an iterative method to 

estimate the pressure gradient across a stenosis. In general, the noise in the calculated 

pressure from all velocity-based pressure measurement techniques such as SPIV or PC­

MRI is amplified since the pressure Poisson equation contains terms that have spatial 

derivatives. However, this drawback can be partially overcome by smoothing the data 

before rendering any pressure calculation algorithm. 

In another approach, the Navier-Stokes equation was integrated based on an 

optimization technique proposed by (Frankot and Chellappa, 1988) and results were 

compared against previous methods. 
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The results of this non-iterative technique were in good agreement with other 

methods (relative error of < 22% for steady flow and pulsatile flow at peak-systole), 

though the accuracy of this method depended on the resolution of the data. However, 

being extremely time efficient, this method, if optimized, has the potential to serve in 

clinical applications. 

The current work proposed in this research can be considered as an initial start of 

a multimodality approach to stenotic flow behavior. Future directions for research 

include: 

1- Using larger coils in PC-MRI experiments to eliminate the errors caused by image 

registration. 

2- Performing 40 PC-MRI imaging to increase the signal-to-noise ratio and using 

SENSE to reduce the imaging time. 

3- Study of the flow at the throat and distal to the stenosis using stereoscopic particle 

image velocimetry to accurately localize the sources of error in PC-MRI flow 

measurements. 

4- Study of the flow measurement on non-axisymmetric geometries where 

turbulence distal to the stenosis causes high over/underestimation of the flow. 

5- Three dimensional study of the stenotic flow in both SPIV and PC-MRI studies to 

evaluate the role of possible out of plane components of the velocity which are 

neglected in this study. 

6- Performing a similar study in more severe stenoses and in non-axisymmetric 

geometries to evaluate the accuracy of the proposed pressure calculation 

techniques. 
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7- Simulations of different flow regimes to draw a general conclusion regarding the 

sensitivity of the iterative and non-iterative techniques to the grid resolutions. 
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APPENDICES 

Appendix A: C++ code for iterative technique 

?/*************************************~****************************************** 

II Pressure_Poisson.cpp : Defines the entry point for the console application. 
II Developed by Iman Khodarahmi in C++/Windows environment from 2008-2012 
//******************************************************************************** 

#include "stdafx.h" 
#include <iostream> 
#include <fstream> 
#include <cstring> 
#include <cmath> 
#include <iomanip> 
#include <sstream> 
#include <string> 
#include <windows.h> 
#include <conio.h> 
using namespace std; 
II--------constant (Physical or mathematical) parameters --------- --------­
const double PI = 3.141592653589793238; 
const double RHO = 1600; 
const double INITPRES = 300; 
const double MU 0.02; 
const double fr = 0; 
const double fz = 0; 
II --- - - -- Problem specific constants 
const int MAXSLICE = 4400; 11270; 

const int RESOLUTION = 1300; 
const int MAXPOINTS = 9000; 11550 

const int ponum = 8; 
const double SIGMA2 = 1.0; II used i.n covariance calculation. 
const int HUGEIG = 100000; II more than any probable eigenvalue 
const int NR_END = 1; 
const double PointEr = 5e-10; 
const double epsilon = 0.0001; 
const double hugdis = 10000; 
dimensions 
#define FREE ARG char* 
#define sqr(k) «k) * (k» 
template <class Any> 
inline void SWAP (Any &a, Any &b) 
{ 

Any temp = a; 
a = b; 
b =temp;} 

II acceptable Average Error in each point. 
II this value should be less than RCMS and RCMZ 
II this value should be greater than system 
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struct point 
{ 

double rj 
double Zj}j 

//--------------------GLOBAL VARIABLES--------------------------------------------

point vfilt[RESOLUTION][MAXSLICE]j 
point v[RESOLUTION][MAXSLICE]j 
point v_bak[RESOLUTION][MAXSLICE]j 
point v_bakl[RESOLUTION][MAXSLICE]j 
unsigned short bound[RESOLUTION][MAXSLICE]j 
point contour[MAXPOINTS]j 
point n[RESOLUTION][MAXSLICE]j 
double vdiv[RESOLUTION][MAXSLICE]j 
point vdelv[RESOLUTION][MAXSLICE]j 
point lapv[RESOLUTION][MAXSLICE]j 
point Pgr[RESOLUTION][MAXSLICE]j 
double dpn[RESOLUTION] [MAXSLICE]j 
double Pc[RESOLUTION][MAXSLICE]j 
double Plap[RESOLUTION][MAXSLICE]j 
point Pcgr[RESOLUTION][MAXSLICE]j 
//--------------------------------------------------------------------------------

void tecread(int* j00,int* imax, const char* filename, int* nslice, double RCMS, 
double ZCMS)j 
double gasdev(int*)j 
void nrerror(char error_text[])j 
int 
find_nclosest(point[],int,int,int,double[],int,double[],int,double,double,int)j 
void Fitlane(double*,double*,double[],int,double[],int,int) j 

double distance(double,double,double,double)j 
double innerprod(double,double,double,double,double,double)j 
int findxmaller(double[],int)j 
void filter(point[] [MAXSLICE],int,int,double,double,double, double)j 
void diver(point[][MAXSLICE], double[][MAXSLICE],int,int,double,double)j 
void cal_lapv(int i,int j,int nslice, double RCMS, double ZCMS)j 
void cal_vdelv(int i,int j,int nslice, double RCMS, double ZCMS)j 
void gradientns(int i,int j)j 
void estim_b_gradient(int,int,int,double*,double*)j 
double inner_prod(point[][MAXSLICE],point[][MAXSLICE],int,int) j 

void ludcmp(double[][7],int,int*,double*)j 
void lubksb(double[][7],int, int*, double[])j 
void gradient(double [][MAXSLICE], point [][MAXSLICE],int,int,double,double)j 
//---------------------------------------------------------------------
int main(int argc,char **argv) 
{ 

ifstream finj 
of stream foutj 
double 

RCMS,ZCMS,Vencr,Vencz,phasenoise,gsigr,gsigz,gsigvdvz,nOisPowz,noisPowr,noise,a,b, 
r[MAXSLICE],z[MAXSLICE],flow[MAXSLICE]j 

double 
sigl,sig2,tErr,Err,tErz,Erz,temp,cnt,gradmag,Lambdal,Lambda2,ar,az,lError,FError,E 
rror,lFError,newPc,oml,om2j 

int i,j,j00,imax,nslice,length,nupo,ii,jj,cntl,loop,jl,j2j 
double Pgrinit[MAXSLICE],third,gz,gr,meanPc,temp2j 
string str, fname, pathj 
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fname = argv[l]; 
const char* ffname = fname.c_str(); 
RCMS = atof(argv[2]); 
ZCMS = atof(argv[3]); 
Vencr = atof(argv[4]); 
Vencz = atof(argv[5]); 
phasenoise = atof(argv[6]); 
gsigr = atof(argv[7]); 
gsigz = atof(argv[8]); 
gsigvdvz = atof(argv[9]); 
if (phasenoise > B.2 I phasenoise < B.B) 
{ 

phasenoise = B; 
cout« "\n phasenoise can't be out of [B B.2]. It is zero now \nPress 

any key to continue";} 
if (gsigr > B.1B I gsigr < B.BB1) 
{ 

gsigr B.BB1; 
cout«"\ngsigr can't be out of [B.BB1 B.1]. It is B.BB1 now \nPress any 

key to continue";} 
if (gsigz > B.4 I gsigz < B.BB1) 
{ 

gsigz B.BB1; 
cout«"\n gsigz can't be out of [B.BB1 B.4]. It is B.BBl now \nPress 

any key to continue";} 
if (gsigvdvz > B.2 I gsigvdvz < B.BB1) 
{ 

gsigvdvz B.BB1; 
cout«"\n gsigvdvz can't be out of [B.BB1 B.2]. It is B.BB1 now \npress 

any key to continue";} 
tecread(&jBB, &imax, ffname, &nslice, RCMS, ZCMS); 
noisPowz = Vencz*phasenoise/PI; 
noisPowr = Vencr*phasenoise/PI; 

for(i=B; i< imax +l;i++) 
{ 

bound[i][B] = bound[i][l]; 
v[i][B].r = B; 
v[i][B].z = v[i][l].z; 
bound[i][nslice+1] = bound[i][nslice]; 
v[i][nslice+1].r = B; 
v[i][nslice+1].z = v[i][nslice].z;} 

int neg_intz -5BBB; II/ negative integer input to gasdev funtion for z 
direction 

int neg_intr -2BBB; III negative integer input to gasdev funtion for r 
direction 

for (j=B; j<nslice+2 ;j++) 
{ 

for (i =B; i < imax+1; ++i) 
{ 

v_bak[i][j].r = v[i][j].r; 
v_bak[i][j].z = v[i][j].z; 
noise=noisPowz*gasdev(&neg_intz); 
v[i][j].z +=noise; 
v[i][j].r += nOisPowr*gasdev(&neg_intr);} 

v[B][j].r = -v[2][j].r; 
v[B][j].z = v[2][j].z; 
v[l][j].r = B; 
bound[B][j] = bound[2][j]; 
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bound[1][j] = 0j} 
length=0j 

for (j =1j j < nslice+1j ++j){ 
if (bound[imax][j]==1 && bound[imax-1][j]==0){ 

cout«"\nwarning for small imax j=" «jj 
cin.get()j 
for (i =2j i < imaxj ++i){ 

if (bound[i][j]==0 &&( bound[i-1][j]==1 
bound[i+1][j]==1 I bound[i][j-1]==1 I bound[i][j+1]==1»{ 

bound[i][j] = 2j 
length++j 

else { 

contour[length].r = (i - 1) * RCMSj 
contour[length].z = j * ZCMSj}}} 

for (i =1j i < imaxj ++i){ 
if (bound[i][j]==0 &&( bound[i-1][j]==1 

bound[i+1][j]==1 I bound[i][j-1]==1 I bound[i][j+1]==1»{ 
bound[i][j] = 2j 
length++j 
contour[length].r = (i - 1) * RCMSj //WHY i 1? 
contour[length].z = j * ZCMSj}}}} 

for (i = 1j i < length+1j ++i){ 
nupo = find_nclosest(contour,MAXPOINTS ,nslice 

,i,r,MAXPOINTS,z,MAXPOINTS,RCMS,ZCMS,length)j 

it? 
ii = (int)(floor)(0.5 + contour[i].r / RCMS) +1j//WHY now correcting 

jj = (int)(floor)(0.5 + contour[i].z / ZCMS)j 
Fitlane(&a,&b,r,MAXPOINTS,z,MAXPOINTS,nupo)j 
if(bound[ii+(int)(2*a)][jj+(int)(2*b)]== 0 ) 

//////////////////////////// This 2 is completely dependent upon geometry 
I!!!!!!!!! 

{a = -aj b= -bj} 
n[ii][jj].r = (double)(a)j n[ii][jj].z = (double)(b)j} 

for (i =0j i <= imaxj ++i) { 
n[i][0].r = n[i][1].rj 
n[i][0].z = n[i][1].zj 
n[i][nslice+1].r = n[i][nslice].rj 
n[i][nslice+1].z = n[i][nslice].zj} 

for (i =1j i < imaxj ++i){ 
if (bound[i][0]==0 &&( bound[i-1][0]+bound[i+1][0]==1 » 

bound[i][0] = 2j 
if (bound[i][nslice+1]==0 &&( bound[i-

1][nslice+1]+bound[i+1][nslice+1]==1» bound[i][nslice+1] = 2j} 
for (j =0j j < nslice+2j ++j){ 

v[0][j].rj 

v[0][j].z = .5*(v[0][j].z+v[2][j].z)j v[2][j].z = v[0][j].zj 
v[1][j].r = 0jv[0][j].r = .5*(v[0][j].r-v[2][j].r)j v[2][j].r = -

bound[0][j] = bound[2][j]j 
n[0][j].r = -n[2][j].rj 
n[0][j].z = n[2][j].zj} 

for (j=0j j< nslice+1jj++){ 
flow[j] = v[1][j].z*sqr(RCMS)*PI/4j //for a srip with width RCMS 

around row i, velocity is considered v[iJ, i=1 being the symmetry axis. 
for (i=2ji< imax+1ji++){ 

flow[j] += v[i][j].z*2*PI*(i-1)*sqr(RCMS)j }} 
for (j=0j j<nslice+2 jj++) 
{for (i =0j i < imax+1j ++i){ 

v_bak1[i][j].r=v[iJ[j].rj 
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v_bak1[i][j].z=v[i][j].Zj}} 
sig1 = gsigrj sig2 = gsigzj 
filter(v,nslice,imax, sig1,sig2,RCMS,ZCMS)j 
diver(v,vdiv,nslice,imax,RCMS,ZCMS)j 

cnt1 = 0j 
for(j = 1j j < nslice+1j ++j) { 

for (i = 1j i < imax+1j ++i){ 
if (bound[i][j] == 0) { 

cal_vdelv(i,j,nslice,RCMS,ZCMS)j 
cal_lapv(i,j,nslice,RCMS,ZCMS)j}} 

vdelv[0][j].r = -vdelv[2][j].rj 
vdelv[0][j].z = vdelv[2][j].zj 
lapv[0][j].r = -lapv[2][j].rj 
lapv[0][j].z = lapv[2][j].zj} 

sig1 = 0.0j Ilgsigrj 
sig2 = gsigvdvzj 
filter(vdelv,nslice,imax, sig1,sig2,RCMS,ZCMS)j 
for(j = 1j j < nslice+1j ++j) II calculated values for first and last 

slices can NOT be accurate. to be calculated later. 
{ for (i = 1j i < imax+1j ++i){ 

if (bound[i][j] == 0){ 
if(j>l & j< nslice)cnt1++j 
gradientns(i,j)j}} 

Pgr[0][j].r = -pgr[2][j].rj 
Pgr[0][j].z = Pgr[2][j].zj} 

tErr = 0j tErz = 0j cnt1 = 0j 
for(j = 2j j < nslicej ++j) 
{ for (i =lj i < imax+1j ++i) 

{if (bound[i][j] == 2){ 
cnt1++j 
estim_b_gradient(i,j,nslice,&Err,&Erz)j 
tErr += Errj tErz += Erzj 
dpn[i][j] = inner_prod(pgr,n,i,j)j}} 

Pgr[0][j].r = -pgr[2][j].rj 
Pgr[0][j].z = Pgr[2][j].zj 
dpn[0][j] = dpn[2][j]j} 

for (j=ljj<nslice+1jj++){ 
temp = 0j cnt = 0j 
for (i =lj i <= imaxj ++i){ 

if (bound[i][j] + bound[i+1][j] + bound[i-1][j] == 0){ 
temp += Pgr[i][j].zj 
cnt ++j} } 

if (cnt != 0) Pgrinit[j] = 1.2*temp/cntjelse Pgrinit[j] = 0j} 
temp=0j cnt=0j i=0j 
do {ilaveraging Pgr.z for j=4 according to j=3,4,5 

i++j 
temp +=(Pgr[i][S].z + Pgr[i][4].z + Pgr[i][3].z)j 
cnt += 3j 

}while(bound[i][4]==0)j 
temp 1= cntj 
for (i=0 j i < imax-1 j i++) 
{ if(bound[i] [4]==0) Pgr[i][4].z=tempj} 
temp=0j cnt=0j i=0j 
do {ilaveraging Pgr.z for j=nslice-3 according to j=nslice-2, nslice-3, 

nslice-4 
i++j 
temp +=(Pgr[i][nslice-4].z + Pgr[i][nslice-3].z + pgr[i][nslice-

2].z)j 

132 



cnt += 3j 
}while(bound[i][nslice-3]==8)j 
temp 1= cntj 
for (i=8 j i < imax-1 j i++) 
{ if(bound[i] [nslice-3]==8) Pgr[i][nslice-3].z=tempj} 

for(i=1j i <= imaxj ++i){ Pgr[i][1].z = 8j 
if(bound[i][1]!=1){ 

Pgr[i][1].z = 2*Pgr[i][3].z - Pgr[i][5].zj 
if(bound[i][1]==2) 

dpn[i][1] = dpn[i][2]j} 
Pgr[i][nslice].z = 8j 
if(bound[i][nslice]!=1) 
{ Pgr[i][nslice].z = 2*Pgr[i][nslice-2].z -

Pgr[i][nslice-4].zj 
if(bound[i][nslice]==2) 

dpn[i][nslice] = dpn[i][nslice-1]j} } 
for (i =1j i <= imaxj ++i) 
{ pgr[i][1]. r = 8j 

if(bound[i][1]!=1 & bound[i+1][1]!=1 & bound[i-1][1]!=1){ 
II pgr[i][1].r = pgr[i][2].r +(Pgr[i-l][1].z+Pgr[i-l][2].z 

Pgr[i+l][1].z-Pgr[i+1][2].z)*ZCMS/RCMS/4;llcurl free 
pgr[i)[1).r = pgr[i)[2).rj } 

Pgr[i)[nslice).r = 8j 
if(bound[i][nslice)!=1 &bound[i-l)[nslice)!=1 

&bound[i+1)[nslice]!=1) 
{ II Pgr[i][nslice].r Pgr[i][nslice-l].r +(pgr[i-

l][nslice].z+Pgr[i l][nslice-l].z Pgr[i+l][nslice].z-Pgr[i+l][nslice-
1].z)*ZCMS/RCMS/4; 

pgr[i)[nslice].r = pgr[i][nslice-1).rj}} 
PC[1][1)= INITPRES+4j 1114 

for(j = 2j j < nslice+1j ++j) 
{ Pc[1)[j]= Pc[1][j-1)+(Pgrinit[j-1)+Pgrinit[j)*ZCMS/2j} 
for(j = 1j j < nslice+1j ++j) 
{ for (i = 2j i < imax+1j ++i){ 

if (bound[i][j) != 1 & j>3 & j<nslice-1) 
{ Pc[i][j] = Pc[l][j)j 

II Pc[i][j] = Pc[i-l][j]+(Pgr[i-l][j].r+Pgr[i][j].r)*RCMS/2; 
}else Pc[i)[j] = INITPRESj} 

Pc[8)[j]=Pc[2)[j)j} 
for (i = 8j i < imax+1j ++i) 
{ if (bound[i][8)==8) 

Pc[i)[8]= INITPRES+4j 
else Pc[i][8]= INITPRESj 
if (bound[i][nslice+1]==8) 

Pc[i][nslice+1]= INITPRES+4j 
else Pc[i][nslice+1)= INITPRESj 
if (bound[i][8] != 1) 

Pc[i)[8)= PC[i)[3)-Pgr[i][2).z*3*ZCMSj 
if (bound[i][nslice+1) != 1) 

Pc[i)[nslice+1]= PC[i)[nslice-2)+Pgr[i][nslice-1].z*3*ZCMS; 
for(j = 8j j < nslice+2j ++j) 
{ if(bound[i] [j]==1) 

Pc[i)[j)=INITPRES;}} 
diver(Pgr,Plap,nslice,imax,RCMS,ZCMS)j II Plap is not calculated for 
first and last slices(i.e.#l & #nslice) 

gradient(pc , Pcgr ,nslice,imax,RCMS,ZCMS)j 
gradmag = 8j 

for (j=4jj < nslice-2j++j) 
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{ for (i =1; i < imax+l; ++i){ 
if (bound[i][j] != 1) 
{ gradmag += (sqr(Pgr[i][j].r) + 

sqr(Pgr[i][j].z»*(i-l)*RCMS; 
cnt += i-I;} }} 

gradmag /= cnt; //gradmag= sqrt(gradmag); 
oml = 1.9; om2 = 1.4; 
Lambdal = (2/sqr(RCMS) 
Lambda2 = (2/sqr(RCMS) 
ar=13; az=13; 

+ lS/sqr(ZCMS)/6); 
+ 2/sqr(ZCMS»; 

loop=13; Error = 13; 
lError = 13; lFError 1; FError 1; 

do { 
loop ++; 

if (lFError > FError) lFError = FError; 
lError = Error; 
Error = 13; cnt = 13; 
for (i =1; i < imax+l; ++i) 

{ if( bound[i][2] != 1){ 
newPc = Pc[i][6]-Pgr[i][4].z*4*ZCMS;//first order 

difference at 4 but why using 
Pgr[i][4]????????????????????????????????????????????????????????????? 

if (loop> 4131313 & fabs(newPc-Pc[i][2]».13S) 
{ cout« " Error= "« 

Error « " change= "« newPc-Pc[i][2] « " new= "«newPc;} 
Error += fabs(newPc-Pc[i][2]); 
temp += om2*(newPc-Pc[i][2]); 
cnt++; 
Pc[i][2] = om2*newPc + (1-om2)*Pc[i][2];} 

if( bound[i][3] != 1) 
{ newPc = (8*Pc[i][S]-Pc[i][6] + 

Pc[i][2] - 12*ZCMS*Pgr[i][4].z)/8; //centered difference approximation with fourth 
order error 

Error += fabs(newPc-Pc[i][3]); 
Pc[i][3] = om2*newPc + (1-om2)*Pc[i][3];} } 

if (cnt != e) temp /= cnt; else temp = 13; 
for (i = 1; i < imax+l; ++i) 
{ for (j = 2;j < nslice;++j){ 

if( bound[i][j] != 1) Pc[i][j] -= temp;}} 
Pc[13][2]=Pc[2][2]; 
Pc[13][3]=Pc[2][3]; 
cnt = 13; 

for (i =1; i < imax+l; ++i) 
{ if( bound[i][nslice-l] != 1){ 

newPc = Pc[i][nslice-S] + Pgr[i][nslice-3].z*4*ZCMS; 
Error += fabs(newPc-Pc[i][nslice-l]); 
if (Error/(imax*nslice) > 13.4){ 

cout«i«",nslice-l"«" Error= "«Error«" 
change= "«newPc-Pc[i][nslice-l]«" new= "«newPc; } 

Pc[i][nslice-l] = om2*newPc + (1-om2)*Pc[i][nslice-l];} 
if( bound[i][nslice-2] != 1) 
{ newPc = (8*Pc[i][nslice-4]-Pc[i][nslice-S] + 

Pc[i][nslice-l] + 12*ZCMS*Pgr[i][nslice-3].z)/8; 
Error += fabs(newPc-Pc[i][nslice-2]); 
if (Error/(imax*nslice) > 13.S){ 

cout«i«",nslice-2"«" Error= "«Error«" change= 
"«newPc-Pc[i][nslice-2]«" new= "«newPc;} 
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Pc[i)[nslice-2) = om2*newPc + (1-om2)*Pc[i)[nslice-2)j} 
} 

pc[e)[nslice-2)=Pc[2)[nslice-2)j 
pc[e)[nslice-1)=Pc[2)[nslice-1)j 

Error = ej 
for (j=4jj < nslice-2j++j){ 

for (i =lj i < imax+1j ++i){ 
newPc = Pc[i)[j)j 
if (bound[i)[j) == e) 
{ if(i==l) third = (Pc[i+1)[j) + Pc[i-

l)[j)/sqr(RCMS)j // Pc[i][j] term exists. 
else third= (Pc[i+1)[j) - Pc[i-1)[j)/«i-

1)*RCMS*2*RCMS)j // No Pc[i][j] term 
if(bound[i)[j+2]!=1 & bound[i)[j-2)!=1){ 

meanPc = (Pc[i-
1)[j)+Pc[i+1][j)/sqr(RCMS) + (16*(Pc[i][j-1)+Pc[i)[j+1)-(Pc[i)[j-
2)+Pc[i)[j+2]»/sqr(ZCMS)/12+thirdj //O(h4) is used for second derivative in z 
direction 

Plap[i) [j)/(Lambda1+2/sqr(RCMS»j 

Plap[i)[j)/Lambda1j} 
else{ 

if(i==l) newPc = (meanPc -

else newPc = (meanPc -

mean Pc = (Pc[i-
1)[j)+Pc[i+1)[j)/sqr(RCMS) + (Pc[i)[j-1)+Pc[i)[j+1)/sqr(ZCMS)+thirdj 

{ 

2][j)/RCMSj //O(hr) 

newPc = (meanPc - Plap[i)[j)/Lambda2j}} 
else if (bound[i)[j) == 2){ 

if (bound[i+1)[j] != e & bound[i-1][j) == e) 

gr = (- 2*Pc[i-1)[j) + e.5*Pc[i-

ar = 1.5/RCMSj } 
else if(bound[i-1][j) != e & bound[i+1)[j) == e) 
{ gr = -

(- 2*Pc[i+1)[j) + e.5*Pc[i+2)[j)/RCMSj //O(hr) 

2)[j)/RCMSj //O(hr) 

ar = -1.5/RCMSj} 
else if(bound[i+2)[j) == 1){ 

gr = (- 2*Pc[i-1)[j) + e.5*Pc[i-

ar = 1.5/RCMSj} 
else if(bound[i-2)[j) == 1) 
{ 

(- 2*Pc[i+1)[j) + e.5*Pc[i+2)[j)/RCMSj //O(hr) 

else 
{ 

(Pc[i+1)[j) - Pc[i-1)[j)/(2*ZCMS)j 

ar = -1.5/RCMSj} 

//O(hr) 
ar = ej} 

gr = -

gr = 

gz = (8*Pc[i)[j+1) - 8*Pc[i][j-1) - Pc[i)[j+2) + 
Pc[i)[j-2])/12/ZCMSj//O(hz A 3) 

Pc[i)[j+2)/(6*ZCMS)j //O(hZA2) 

az = ej 
if(j==3) 
{ gz = -(2*Pc[i)[j-1) - 6*Pc[i)[j+1) + 

az = -.5/ZCMSj} 
else if(j== nslice-2) 
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{ gz (2*Pc[i][j+1]-
6*Pc[i][j-1] + Pc[i][j-2])/(6*ZCMS)j //0(hzA2) 

az = .S/ZCMSj} 
if (bound[i][j+1] == 2 & bound[i][j+2] == 1) 
{ gz = (2*Pc[i][j+1] - 6*Pc[i][j-1] + Pc[i][j-

2])/(6*ZCMS)j //0(hzA2) 
az = .S/ZCMSj} 

else if(bound[i][j-1] == 2& bound[i][j-2] == 1) 
{ gz 

(2*Pc[i][j-1] - 6*Pc[i][j+1] + Pc[i][j+2])/(6*ZCMS)j //O(hzA2) 

} 

az = -.S/ZCMSj 

if (bound[i][j+1] == 1){ 
if(j >2) 
{ gz (- 2*Pc[i][j-1] + 

e.S*pc[i][j-2])/ZCMSj//can be more accurate.O(hz) 
az l.S/ZCMSj} 

else{ 
gz - Pc[i][j-1]/ZCMSj// This 

condition hardly occures. 0(1)!!! 
az l/ZCMSj} } 

else if(bound[i][j-1] == 1){ 
if(j< nslice-1) 
{ gz -(- 2*Pc[i][j+1] + 

e.S*Pc[i][j+2])/ZCMSj//can be more accurate.O(hz) 
az = -l.S/ZCMSj} 

else 
{ gz = 

Pc[i][j+1]/ZCMSj// This condition hardly occures. 0(1)!!! 
az = -l/ZCMSj 
cout«"\n****"j}} 

newPc = 
(dpn[i][j]-n[i][j].r*gr-n[i][j].z*gz)/(n[i][j].r*ar+n[i][j].z*az)j } 

if (bound[i][j] != 1){ 
Error += fabs(newPc-Pc[i][j])j 
if (Error> 1eee) cout«"\n("«i«","«j«")"«" 

Error= " «Error«" change= "«newPc-Pc[i][j]«"new= "«newPcj 

om2)*Pc[i][j]j 
if(bound[i][j] == 2)Pc[i][j] = om2*newPc + (1-

else Pc[i][j] = om1*newPc + (1-om1)*Pc[i][j]j 
Pc[i][j] = newPcj} } 

pc[e][j]=pc[2][j]j} 

FError = ej 
cnt =ej 

gradient(Pc , Pcgr ,nslice ,imax,RCMS,ZCMS)j 
if(le*floor(loop/1e.e) == loop){ 

for (j=4jj < nslice-2j++j) 
{ for (i =lj i < imax+1j ++i) 

{ if (bound[i][j] == e) 
{ 

FError += (sqr(Pcgr[i][j].r- Pgr[i][j].r) 
+ sqr(Pcgr[i][j].z- Pgr[i][j].z»*(i-1)*RCMSj 

cnt += i-1j} } 
} 

FError /= cntj } 
}while «Error> PointEr*cnt & loop < 2Seee & FError <= 1.1*lFError & 

fabs(lError/Error-1) > 1.ee-2e ) Iloop < 1eee )j 
gradient(Pc , Pcgr ,nslice,imax,RCMS,ZCMS)j 
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FError = 0jcnt1 = 0j temp=0j temp2=0j 
for (j=4jj < nslice-2j++j){ for (i =lj i < imax+1j ++i){ 

if (bound[i][j] == 0) 
{ FError += (sqr(Pcgr[i][j].r-

Pgr[i][j].r) + sqr(Pcgr[i][j].z- Pgr[i][j].z))*(i-1)*RCMSj 

FError /= cnt1j 
j=lji=2j 

temp += PC[i][j]*(i-1)j 
cnt1 += i-1j} } } 

while (j < nslice &(fabs(n[i][j].z)<.02 I bound[i][j] != 2)) 
{ if (i < imax) i++j 

j1=jj 
while 
{ 

j++j 

else {j++ji=lj}} 
j++j 

(j < nslice &(fabs(n[i][j].z»=.02 
if (i < imax) i++j 

else {j++ji=lj}} 

I bound[i][j] != 2)) 

while (j < nslice &(fabs(n[i][j].z)<.02 I bound[i][j] != 2)) 
{ if (i < imax) i++j 

else {j++ji=lj}} 
j++j 

while (j < nslice &(fabs(n[i][j].z»=.02 I bound[i][j] != 2)) 
{ if (i < imax) i++j 

else {j++ji=lj}} 
j2=jj 

if (j2 > nslice)cout«"\n Region of interest is not determined properly and 
must be fixed manually."j 

temp=0j temp2 = 0j cnt1 = 0j 

for (j=j1+6j j < j2-4 j j++){ 
for (i=lj i<imax+1j i++){ 

if (bound[i][j] != 1){ 
temp += Pc[i][j]*(i-1)j 
cnt1 += i-1j} } } 

path = "enter path here" + strj 
fout.open(path.c_str(),ios_base: :out)j 

temp = 0j 

for(j= 0 j j< nslice +2j j++){ 
for(i= 0j i<imax+1j i++){ 

fout« Pc[i][j] «"\n"j} 
if(j>2 & j<nslice-1)temp += Pcgr[12][j].zj} 

temp /= (nslice-4)j 
return 0j} 

void tecread(int* j00,int* imax, const char* filename, int* nslice, 
double RCMS, double ZCMS) 
{ int i,j,jp,ip,tempSj 

char header[30]j 
double temp1,temp2,temp3,temp4,temp1p,temp2pj 
ifstream finj 
fin.open(filename, ios_base::in)j 
fin.getline(header,29)j 
fin» temp1 » temp2 » temp3 » temp4 » tempSj 
if (temp2 < 0) {temp2 = -temp2j} 
*imax = (int) (floor) (0.S + temp2/RCMS) +lj 
*j00 = (int) (floor) (0.S + temp1/ZCMS) -lj 

bound[*imax][l] = tempSj 
v[*imax][l].r = temp4j 
v[*imax][l].z = temp3j 

jp=lj temp2p=temp2j temp1p=temp1j 
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fin» temp1 » temp2 » temp3 » temp4 » temp5j 
i = (int) (floor) (0.5 + temp2/RCMS) + 1j 
j = (int) (floor) (0.5 + temp1/ZCMS) - *j00j 

bound[i][j] = temp5j 
v[i][j].r = temp4j 
v[i][j].z = temp3j 

ip=ij jp=jj 
do { 

fin» temp1 » temp2 » temp3 » temp4 » temp5j 
ip=ij jp=jj 
i = (int) (floor) (0.5 + temp2/RCMS) + 1j 
j = (int) (floor) (0.5 + temp1/ZCMS) - *j00j 
if(i >= 1) { 

bound[i][j] = temp5j 
v[i][j].r = temp4j 
v[i][j].z = temp3j} 

if(i==l) v[i][j].r = 0j 
}while(j != jp I i != ip)j 
*nslice = j p j 
for(j=ljj< *nslice +ljj++){ 

bound[0][j] bound[2][j]j 
v[0][j].r - v[2][j].rj 
v[l][j]. r 0j 
v[0][j].z v[2][j].zj}} 

double gasdev(int *idum){ 
static int iset=0j 
static double gsetj 
double fac, r,v1,v2j 
double ran1(int *)j 

if (iset == 0) { 
do { 

v1=2.0*ran1(idum)-1.0j 
v2=2.0*ran1(idum)-1.0j 
r=v1*v1+v2*v2j 

} while(r >= 1.0)j 
fac = sqrt(-2.0*log(r)/r)j 
gset = v1*facj 
iset = 1j 
return v2*facj 

} else { 
iset = 0j 
return gsetj}} 

#define M1 259200 
#define lA1 7141 
#define lC1 54773 
#define RM1 (1.0/M1) 
#define M2 134456 
#define lA2 8121 
#define lC2 28411 
#define RM2 (1.0/M2) 
#define M3 243000 
#define lA3 4561 
#define lC3 51349 
double ran1(int * idum){ 

static long ix1,ix2,ix3j 
static double r[98]j 
double tempj 
static int iff=0j 
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int jj 
if (*idum < 0 I I iff ==0) { 

iff 1j 
ix1 (IC1-(*idum» % M1j 
ix1 (IA1*ix1+IC1) % M1j 
ix2 ix1 % M2j 
ix1 (IA1*ix1+IC1) % M1j 
ix3 ix1 % M3j 
for (j=ljj<=97jj++) { 

ix1 = (IA1*ix1+IC1) % M1j 
ix2 = (IA2*ix2+IC2) % M2j 

r[j]= (ix1+ix2*RM2)*RM1j} 
*idum=lj} 

ix1 (IA1*ix1+IC1) % M1j 
ix2 = (IA2*ix2+IC2) % M2j 
ix2 = (IA3*ix3+IC3) % M3j 
j=l +«97*ix3)/M3)j 
if (j > 97 II j < 1) nrerror("RAN1: This can not happen. ")j 
temp=r[j]j 
r[j]=(ix1+ix2*RM2)*RM1j 
return tempj} 

void nrerror(char error_text[]) 
{ fprintf(stderr,"Numerical Recipes run-time error ... \n")j 

fprintf(stderr,"%s\n",error_text)j 
fprintf(stderr, ..... now exiting to system ... \n")j 
exit(l)j} 

int find_nclosest(point contour[],int contour_size,int nslice,int i ,double 
x[],int x_size, double y[], int y_size, double RCMS, double ZCMS, int length) 
{ int r,m,k,up,dnj 

int* index = new int[length+1]j 
double* dist = new double[length+1]j 

for(k=ljk<length+1j++k){ 
dist[k] = 

distance(contour[i].r,contour[i].z,contour[k].r,contour[k].z)j} 
for (k = 0j k < 2*ponum+1j k++){ 

index[k] = findxmaller(dist,length)j 
m = index[k]j 
dist[m] = dist[m] + hugdisj} 

up=0j dn=0j k=0j 
do{ 

} 

m = index[k)j 
dist[m] = dist[m] - hugdisj 
x[k] = contour[m].rj 
y[k] = contour[m].zj 
if «y[k]-contour[i].z) > epsilon) 
{ up=(int) (0. S+(y[k] -contour[i]. z)/ZCMS) j 

if «y[k]-contour[i].z) < -epsilon){ 
dn=(int)(0.S+(contour[i].z-y[k])/ZCMS)j} 

k++j 
}while(k <= ponum I up+dn < 2)j 

return(k)j} 
void Fitlane(double* a,double* b,double x[],int n,double y[],int m,int size) 
{ 

#define DEBug 0 
double sxx, sxy, sxz, syy, syz, szz,sx,sy,sz,mag,cj 
double B[4][4],d[4]j 
int i,j,kj 
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void jacobi(double a[][4], int n, double de], double v[][4])j 
double* z = new double[2*size]j 
for (k = 0j k < sizej k++) 
{ x[k+size] = x[k] j 

y[k+size] = y[k]j 
z[k] = -lj 

z[k+size] = lj } 

size *=2j 
sz = sx = sy = sxx = sxy sxz = syy = syz = szz = 0.0j 

for (i = 0j i < sizej ++i) 
{ sx = sx + (double)(x[i])/SIGMA2j 

sy = sy + (double)(y[i])/SIGMA2j 
sz = sz + (double)(z[i])/SIGMA2j 
sxx sxx + (double)(x[i] * x[i])/SIGMA2j 
sxy sxy + (double)(x[i] * y[i])/SIGMA2j 
sxz sxz + (double)(x[i] * z[i])/SIGMA2j 
syy syy + (double)(y[i] * y[i])/SIGMA2j 
syz syz + (double)(y[i] * z[i])/SIGMA2j 
szz szz + (double)(z[i] * z[i])/SIGMA2j } 
double A[4][4]j 

A[l][l] = sxx-sx*sx/sizej A[1][2] = sxy-sx*sy/sizej A[1][3] = sxz-
sx*sz/sizej 

A[2][1] = A[1][2]j A[2][2] 
A[3][1] = A[1][3]j A[3][2] 

jacobi(A,3,d,B)j 

syy-sy*sy/sizej A[2][3] = syz-sy*sz/sizej 
A[2][3]j A[3][3] = szz-sz*sz/sizej 

d[0]= HUGEIGj //Is it necessary? 
i = findxmaller(d,3)j 
*a = B[l][i]j 
*b = B[2][i]j 
c = B[3][i]j 
mag = sqrt(sqr(*a) + sqr(*b»j 
*a= *a/magj 
*b= *b/magj} 

double distance(double xl, double yl,double x2,double y2) 
{ double dj 

d = sqrt«double)(sqr(xl-x2)+sqr(yl-y2»)j 
return(d)j} 

int findxmaller(double ra[],int ra_size) 
{ int l,iij 

double Sj 

s = ra[l]+hugdisj 
for (l=lj l<ra_size+ljl++) 
{ if(ra[l] < s) 

{ 
ii = Ij}} 

return (ii) j 

} 

s ra[l] j 

double innerprod(double ai, double bl, double cl,double a2,double b2, double c2) 
{ double aj 

a=al*a2 + bl*b2 +cl*c2j 
return (a)j} 

#define ROTATE(a,i,j,k,l) g=a[i][j]jh=a[k][l]ja[i][j]=g­
s*(h+g*tau)ja[k][l]=h+s*(g-h*tau)j 
void jacobi(double a[][4], int n, double de], double v[][4]) 
{ int j,iq,ip,i,ii,jjj 

double tresh,theta,tau,t,sm,s,h,g,c,b[4],z[4]j 
for (ip=ljip<=njip++) { //Initialize to the identity matrix. 

for (iq=ljiq<=njiq++) v[ip][iq]=0.0j 
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v[ip)[ip)=1.0j 
} 

for (ip=1jip<=njip++) { II Initialize band d to the diagonal of a. 
b[ip)=d[ip)=a[ip)[ip)j 
z[ip)=0.0j I/This vector will accumulate terms of the form tapq as 

in equa- tion (11.1.14).a'pp = app - tapq 
} 

for (i=1ji<=S0ji++) { 
sm=0.0j 
for (ip=1jip<=n-1jip++) { IISum 0 -diagonal elements. 

for (iq=ip+1jiq<=njiq++) 
sm += fabs(a[ip)[iq)j } 

II printf ("sum of Off Diagonal elements %g\n",sm); II 
if (sm == 0.0) { II The normal return, which relies on quadratic 

convergence to machine underflow. 
returnj} 

if (i < 4) 
tresh=0.2*sm/(n*n)j // ... on the first three sweeps. 

else 
tresh=0.0j II .. . thereafter. 

for (ip=1jip<=n-1jip++) { 
for (iq=ip+1jiq<=njiq++) { 

g=100.0*fabs(a[ip)[iq)j 

if(i > 4 &&(double)(fabs(d[ip)+g) == (double)fabs(d[ip) 
&& (double)(fabs(d[iq)+g) == (double)fabs(d[iq)) 

a[ip)[iq)=0.0j 
else if (fabs(a[ip)[iq) > tresh) { 

h=d[iq)-d[ip)j 
if «double)(fabs(h)+g) == (double)fabs(h» 

t=(a[ip)[iq)/hj lit = 1/(2*teta ) 
else { 

theta=0.S*h/(a[ip)[iq)j IIEquation (11.1.10). 
t=1.0/(fabs(theta)+sqrt(1.0+theta*theta»j 
if (theta < 0.0) t = -tj } 

c=1.0/sqrt(1+t*t); 
s=t*c; 
tau=s/(1.0+c); 
h=t*a[ip)[iq); 
z[ip) hj 
z[iq) += h; 
d[ip) -= hj 
d[iq) += hj 
a[ip)[iq)=0.0j 
for (j=1jj<=ip-1jj++) { II Case of rotations 1 <= j <po 

ROTATE(a,j,ip,j,iq)} 
for (j=ip+1jj<=iq-1;j++) { II Case of rotations p <j< q. 

ROTATE(a,ip,j,j,iq)} 
for (j=iq+1;j<=n;j++) { II Case of rotations q <j (= n. 

ROTATE(a,ip,j,iq,j) } 
for (j=1;j<=n;j++) { 

ROTATE(v,j,ip,j,iq)}}}} 
for (ip=1jip<=njip++) { 

b[ip) += z[ip); 
d[ip)=b[ip); II Update d with the sum of tapq, 
z[ip)=0.0; 1/ and reinitialize z. 

} } nrerror("Too many iterations in routine jacobi"); } 
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-----------

void filter(point A[][MAXSLICE],int nslice,int imax,double sigl,double sig2, 
double RCMS, double ZCMS) 
{ int i,jj 

double tmpzl,tmpz2,tmpz3,tmpz4,tmprl,tmpr2,tmpr3,tmpr4j 
double m, temp,a0,al,a2,a3j 
for (i=0ji<imax+2ji++) 

for(j=0jj<nslice+2jj++) 
{ 

} 

vfilt[i][j].z = A[i][j].zj 
vfilt[i][j].r = A[i][j].rj 

m= -.5*sqr(RCMS/sigl)j 
a0=lj al=exp(m)j a2=exp(4*m)j a3=exp(9*m)j 
temp = 1+2*(al+a2+a3)j 
a0=a0/tempj al=al/tempj a2=a2/tempj a3=a3/tempj 
for(j=0j j<nslice+2jj++) 
{////////////////this filter does not do filtering for marginal upper rows, 

but does it for lower rows using symmetry. 
for(i=lji< imax-2ji++) 
{ if( i==l ){ 

vfilt[i][j].z = a0*A[i][j].z + al*(A[i­
l][j].z+A[i+l][j].z) + a2*(A[3][j].z+A[i+2][j].z) + a3*(A[4][j].z+A[i+3][j].z)j 

vfilt[i][j].r = a0*A[i][j].r + al*(A[i­
l][j].r+A[i+l][j].r) + a2*(-A[3][j].r+A[i+2][j].r) + a3*(-A[4][j].r+A[i+3][j].r)j 

} else if( i==2 ){ 
vfilt[i][j].z = a0*A[i][j].z + al*(A[i­

l][j].z+A[i+l][j].z) + a2*(A[i-2][j].z+A[i+2][j].z) + a3*(A[3][j].z+A[i+3][j].z)j 
vfilt[i][j].r = a0*A[i][j].r + al*(A[i­

l][j].r+A[i+l][j].r) + a2*(A[i-2][j].r+A[i+2][j].r) + a3*(-A[3][j].r+A[i+3][j].r)j 
} else if( i > 2 ){ 

if (bound[i][j] != l){ 
if (bound[i+l] [j] != l){ 

if (bound[i+2][j] != l){ 
vfilt[i][j].z = a0*A[i][j].z + 

al*(A[i-l][j].z+A[i+l][j].z) + a2*(A[i-2][j].z+A[i+2][j].z) + a3*(A[i-
3][j].z+A[i+3][j].z)j 

vfilt[i][j].r = a0*A[i][j].r + 
al*(A[i-l][j].r+A[i+l][j].r) + a2*(A[i-2][j].r+A[i+2][j].r) + a3*(A[i-
3][j].r+A[i+3][j].r)j 

} else 
{ 

vfilt[i][j].z = (a0*A[i][j].z + 
al*(A[i-l][j].z+A[i+l][j].z)+ a2*(A[i-2][j].z+A[i+2][j].z»/(a0+2*al+2*a2)j 

vfilt[i][j].r = (a0*A[i][j].r + 
al*(A[i-l][j].r+A[i+l][j].r)+ a2*(A[i-2][j].r+A[i+2][j].r»/(a0+2*al+2*a2)j} 

} else { 
vfilt[i][j].z = (a0*A[i][j].z + 

al*(A[i-l][j].z+A[i+l][j].z»/(a0+2*al)j 
vfilt[i][j].r = (a0*A[i][j].r + al*(A[i-

1][j].r+A[i+l][j].r»/(a0+2*al)j} 
}else { 

vfilt[i][j].z = A[i][j].zj vfilt[i][j].r = 
A[i][j].rj}} } 

vfilt[0][j].z = vfilt[2][j].zj vfilt[0][j].r = -vfilt[2][j].rj} 
m= -.5*sqr(ZCMS/sig2)j 
a0=lj al=exp(m)j a2=exp(4*m)j a3=exp(9*m)j 
temp = 1+2*(al+a2+a3)j 
a0=a0/tempj al=al/tempj a2=a2/tempj a3=a3/tempj 
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for(i=l;i< imax;i++) 
{ tmpz1=A[i][0].z; tmpz2=A[i][1].z; tmpz3=A[i][2].z; 
tmpr1=A[i][0].r; tmpr2=A[i][1].r; tmpr3=A[i][2].r; 

for(j=l; j<nslice+1;j++) 
{ if (bound[i][j] != 1){ 

if (bound[i][j+1] != 1 & bound[i][j-1] != 1 & j 
> 1 & j < nslice){ 

if (bound[i][j+2] != 1 & bound[i][j-2] != 
1 & j > 2 & j < nslice - 1) 

{ 

vfilt[i][j].z = a0*A[i][j].z + a1*(A[i][j-1].z+A[i][j+1].z) + a2*(A[i][j-
2].z+A[i][j+2].z) + a3*(A[i][j-3].z+A[i][j+3].z); 

vfilt[i][j].r = a0*A[i][j].r + 
a1*(A[i][j-1].r+A[i][j+1].r) + a2*(A[i][j-2].r+A[i][j+2].r) + a3*(A[i][j-
3].r+A[i][j+3].r); 

} else{ 
vfilt[i][j].z = (a0*A[i][j].z + 

a1*(A[i][j-1].z+A[i][j+1].z)+ a2*(A[i][j-2].z+A[i][j+2].z»/(a0+2*a1+2*a2); 
vfilt[i][j].r = (a0*A[i][j].r + 

a1*(A[i][j-1].r+A[i][j+1].r)+ a2*(A[i][j-2].r+A[i][j+2].r»/(a0+2*a1+2*a2); 
}} else{ 
vfilt[i][j].z = (a0*A[i][j].z + 

a1*(A[i][j-1].z+A[i][j+1].z»/(a0+2*a1); 
vfilt[i][j].r = (a0*A[i][j].r + 

a1*(A[i][j-1].r+A[i][j+1].r»/(a0+2*a1);} 
}else { 

vfilt[i][j].z = A[i][j].z; vfilt[i][j].r = A[i][j].r;}} 
} 

fore j = 2; j < nslice ; j++) { 
vfilt[0][j].z = vfilt[2][j].z; vfilt[0][j].r = -vfilt[2][j].r;} 
for (i=0;i<imax+2;i++) 

for(j=0;j<nslice+2;j++) 
{ A[i][j].z = vfilt[i][j].z; 

A[i][j].r = vfilt[i][j].r;}} 
void diver(point A[][MAXSLICE], double B[][MAXSLICE],int nslice , int imax, double 
RCMS, double ZCMS) 
{ int i,j,k; 

double roundz2,roundr1,third; 
for (j=2;j < nslice;++j) 
{ for (i =1; i < imax+1; ++i){ 

if (bound[i][j] ==0){ 

bound[i][j-2] == 0) 

roundr1 = (A[i+1][j].r - A[i-1][j].r)/2/RCMS; 
if(j > 3 & j < nslice-2 & bound[i][j+2] == 0 & 

roundz2 = (8*A[i][j+1].z - 8*A[i][j-1].z -
A[i][j+2].z + A[i][j-2].z)/12/ZCMS;// O(hz A 3) 

else if(j > 2 & j < nslice-1 & bound[i][j+1] == 0 & 
bound[i][j-1] == 0) 

roundz2 = (A[i][j+1].z - A[i][j-1].z)/2/ZCMS; 
/1 O(hz) 

else if(j == 2 I bound[i][j-1] != 0) 
roundz2 = -(2*A[i][j-1].z + 3*A[i][j].z -

6*A[i][j+1].z + A[i][j+2].z)/6/ZCMS; 
else if(j == nslice-1 I bound[i][j+1] != 0) 

roundz2 = (2*A[i][j+1].z + 3*A[i][j].z -
6*A[i][j-1].z + A[i][j-2].z)/6/ZCMS; 

if(i==l)third = roundr1; 
else third= A[i][j].r/(i-1)/RCMS; 
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B[i][j] = roundr1+roundz2+thirdj 
}else{ 

B[i][j] = 0j} } 
B[0][j]=B[2][j];}} 

void cal_vdelv(int iJint jJint nslice J double RCMS J double ZCMS) 
{ double roundr1 Jroundr2 Jroundz1 Jroundz2j 

roundr1 = (v[i+1][j].r - v[i-1][j].r)/2/RCMSj 
roundr2 = (v[i+1][j].z - v[i-1][j].z)/2/RCMSj 
if(j>l & j<nslice & bound[i][j+1]==0 & bound[i][j-1]==0) 
{ roundz1 = (8*v[i][j+1].r - 8*v[i][j-1].r - v[i][j+2].r + 

v[i][j-2].r)/12/ZCMSj//round of V.r over round of z 
roundz2 (8*v[i][j+1].z - 8*v[i][j-1].z - v[i][j+2].z + v[i][j-

2].z)/12/ZCMSj} 
else { 

roundz1 = (v[i][j+1].r - v[i][j-1].r)/2/ZCMSj 
roundz2 = (v[i][j+1].z - v[i][j-1].z)/2/ZCMSj} 

vdelv[i][j].r = v[i][j].r*roundr1 + v[i][j].z*roundz1 
vdelv[i][j].z = v[i][j].r*roundr2 + v[i][j].z*roundz2 j} 

void cal_lapv(int iJint jJint nslice J double RCMS J double ZCMS) 
{ double 
roundr1Jroundr2Jround2r1Jround2r2Jround2z1Jround2z2Jurr2JrJthirdrJthirdzj 

roundr1 = (v[i+1][j].r - v[i-1][j].r)/2/RCMSj 
roundr2 = (v[i+1][j].z - v[i-1][j].z)/2/RCMSj 
round2r1 = (v[i+1][j].r - 2*v[i][j].r + v[i-1][j].r)/RCMS/RCMS; 
round2r2 = (v[i+1][j].z - 2*v[i][j].z + v[i-1][j].z)/RCMS/RCMSj// O(hr) 
if(j>l & j<nslice & bound[i][j+1]==0 & bound[i][j-1]==0) 
{ round2z1 = (16*v[i][j+1].r +16*v[i][j-1].r -

v[i][j+2].r - v[i][j-2].r - 30*v[i][j].r)/12/ZCMS/ZCMSj 
round2z2 = (16*v[i][j+1].z +16*v[i][j-1].z - v[i][j+2].z - v[i][j-

2].z - 30*v[i][j].z)/12/ZCMS/ZCMSj} 

O(hz) 

else{ 
round2z1 = (v[i][j+1].r - 2*v[i][j].r + v[i][j-1].r)/ZCMS/ZCMSj/1 

round2z2 = (v[i][j+1].z 
r = (i-1)*RCMSj 

- 2*v[i][j].z + v[i][j-1].z)/ZCMS/ZCMSj} 

if (i!=l) 
{II i<3??????? 

urr2 = v[i][j].r/r/r; 
thirdr = roundr1/rj 

}else{ 
thirdz = roundr2/rj 

urr2 = round2r1j 
thirdr = round2r1j 
thirdz = round2r2j} 

lapv[i][j].r = round2r1 + round2z1 + thirdr -urr2j 
lapv[i][j].z = round2r2 + round2z2 + thirdzj} 

void gradientns(int iJint j) 
{ Pgr[i][j].r = RHO*(fr - vdelv[i][j].r) + MU*lapv[i][j].rj 

Pgr[i][j].z = RHO*(fz - vdelv[i][j].z) + MU*lapv[i][j].zj} 
void estim_b~radient(int iJint jJint nsliceJdouble* ErrJdouble* Erz) 
#define N 6 
{ double ab[N+1][4]Jzt[N+1][4]JcurlEr1; 

double A[200][N+1]Jz[200][4]Ja[N+1][N+1]Jya[N+1][N+1]Jd Jcol[N+l]j 
int iiJjjJkkJcnt=0Jindx[N+1]j 
for (ii=i-3j ii < i+4j ii++) 

for (jj=j-3j jj < j+4; jj++) 
if (bound[ii][jj] == 0 & sqr(ii-i)+sqr(jj-j) < 16){ 

cnt++j 
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A[cnt][1] = ii*iij A[cnt][2] = jj*jjj A[cnt][3] = 
ii*jjj A[cnt][4]= iij A[cnt][S] = jjj A[cnt][6] = 1j 

z[cnt][1] = Pgr[ii][jj].rj z[cnt][2] = Pgr[ii][jj].Zj 
z[cnt][3]=z[cnt][4]=0j} 

for (ii = 1j ii< N+1j ii++) 
for (jj = 1j jj< N+1j jj++) 

a[ii][jj] = 0j 

for (ii = 1j ii< N+1j ii++) { 
for (jj = 1j jj< N+1j jj++){ 

for (kk = 1j kk < cnt+1j kk++) 
a [ ii] [j j] += 

A[kk][ii]*A[kk][jj] j}} 

} 

for (ii = 1j ii< N+1j ii++) 
for (jj = 1j jj< 4; jj++) 

zt[ii][jj] = 0j 
for (ii = 1j ii< N+1j ii++) { 

for (jj = 1; jj< 4j jj++) 
{ for (kk = 1j kk < cnt+1j kk++) 

zt[ii][jj] += A[kk][ii]*z[kk][jj];} 

1udcmp(a,N,indx,&d)j IIDecompose 
the matrix just once. 

for(jj=1jjj<=N;jj++) 
{ for(ii=1jii<=N;ii++) co1[ii]=0.0; II col is unity matrix. 

co1[jj]=1.0; 
1ubksb(a,N,indx,co1)j 
for(ii=1jii<=Njii++) 
{ ya[ii][jj]=co1[ii]j}} 

for (ii = 1j ii< N+1j ii++) 
for (jj = 1j jj< 4j jj++) 

ab[ii][jj] = 0j 
for (ii = 1j ii< N+1j ii++) II ab a'*zt = inv(A'A)*A'z 

{ for (jj = 1j jj< 4; jj++){ 
for (kk = 1j kk < N+1; kk++) 

ab[ii][jj] += ya[ii][kk]*zt[kk][jj]j} } 
Pgr[i][j].r = i*i*ab[1][1] + j*j*ab[2][1] + i*j*ab[3][1] + i*ab[4][1] + 

j*ab[S][1] + ab[6][1]j 

Pgr[i][j].z = i*i*ab[1][2] + j*j*ab[2][2] + i*j*ab[3][2] + i*ab[4][2] + 
j*ab[S][2] + ab[6][2]j 

*Err = 0j *Erz = 0; 
cnt = 0j 

for (ii=i-3j ii < i+4; ii++) 
for (jj=j-3j jj < j+4; jj++){ 

if (bound[ii][jj] == 0 & sqr(ii-i)+sqr(jj-j) < 16){ 
cnt++; 
*Err += sqr(ii*ii*ab[1][1] + jj*jj*ab[2][1] + 

ii*jj*ab[3][1] + ii*ab[4][1] + jj*ab[S][1] + ab[6][1] -Pgr[ii][jj].r); 
*Erz += sqr(ii*ii*ab[1][2] + jj*jj*ab[2][2] + 

ii*jj*ab[3][2] + ii*ab[4][2] + jj*ab[S][2] + ab[6][2] -Pgr[ii][jj].z)j} 
if (bound[ii][j] == 0 & bound[ii+1][j] != 0) II Recalculation 

of pressure gradient for nearest internal points to the boundary 
{ Pgr[ii][j].r = ii*ii*ab[1][1] + 

j*j*ab[2][1] + ii*j*ab[3][1] + ii*ab[4][1] + j*ab[S][1] + ab[6][1]j 
Pgr[ii][j].z = ii*ii*ab[1][2] + j*j*ab[2][2] + 

ii*j*ab[3][2] + ii*ab[4][2] + j*ab[S][2] + ab[6][2]j} } 
*Err 1= cnt; *Erz 1= cnt; 
*Err = sqrt(*Err)j *Erz = sqrt(*Erz)j Ilvariance of the error due to 2nd 

order approximation 
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curlEr1 = 2*j*ab[2][1] + i*ab[3][1] + ab[5][1] - (2*i*ab[1][2] + 
j*ab[3][2] + ab[5][2])j} 
double inner_prod(point A[][MAXSLICE],point B[][MAXSLICE],int i,int j) 
{ double aj 

a=A[i][j].r*B[i][j].r + A[i][j].z*B[i][j].zj 
return (a)j} 

#define TINY 1.0e-20 II A small number. 
void ludcmp(double a[N+1][N+1], int n, int *indx, double *d) 
{ 

int i,imax,j,kj 
double big,dum,sum,tempj 
double *vv = new double[n+1]j 
*d=1.0j II No row interchanges yet. 
for (i=1ji<=nji++) { II Loop over rows to get the implicit scaling information. 

big=0.0j 
for (j=1jj<=njj++) 
if «temp=fabs(a[i][j]» > big) big=tempj 

if (big == 0.0) nrerror("Singular matrix in routine ludcmp")j 
vv[i]=1.0/bigj } 

for (j=1jj<=njj++) { II This is the loop over columns of Crout 5 method. 
for (i=1ji<jji++) { II This is equation (2.3.12) except for i = j. 

sum=a[i][j]j 
for (k=1jk<ijk++) sum -= a[i][k]*a[k][j]j 
a[i][j]=sumj } 

big=0.0j IIInitialize for the search for largest pivot element. 
for (i=jji<=nji++) { IIThis is i = j of equation (2.3.12) and i 

j+1. .. N of equation (2.3.13). 
sum=a[i][j]j 
for (k=1jk<jjk++) 

sum -= a[i][k]*a[k][j]j 
a[i][j]=sumj 
if ( (dum=vv[i]*fabs(sum» >= big) { 

big=dumj 
imax=ij} } 

if (j != imax) { II Do we need to interchange rows? 
for (k=1jk<=njk++) { II Yes, do so ... 

dum=a [imaxH k] j 
a[imax][k]=a[j][k]j 
a[j] [k]=dumj} 

*d = -(*d)j II . .. and change the parity of d. 
vv[imax]=vv[j]j} 

indx[j]=imaxj 
if (a[j][j]== 0.0) a[j][j]=TINYj 
if (j != n) { IINow, finally, divide by the pivot element. 

dum=1.0/(a[j][j])j 
for (i=j+1ji<=nji++) a[i][j] *= dumj} } 

delete []VVj} 
void lubksb(double a[N+1][N+1], int n, int *indx, double bE]) 
{ int i,ii=0,ip,jj 

double sumj 
for (i=1ji<=nji++) { 
ip=indx[i]j 
sum=b[ip]j 
b[ip]=b[i]j 
if (ii) 

for (j=iijj<=i-1jj++) sum -= a[i][j]*b[j]j 
else if (sum) ii=ij 
b[i]=sumj} 
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for (i=nji>=lji--) { // Now we do the backsubstitution, equation (2.3.7). 
sum=b[i]j 
for (j=i+1jj<=njj++) sum -= a[i][j]*b[j]j 
b[i]=sum/a[i][i]j }} 

void gradient(double A[][MAXSLICE], point B[][MAXSLICE],int nslice,int imax, 
double RCMS, double ZCMS) 
{ int i, jj 

for (j=3jj < nslice-1j++j){ 
for (i = 1j i < imaxj ++i){ 

if (bound[i][j] != 1){ 
B[i][j].r = (A[i+1][j] - A[i-1][j])/2/RCMSj //O(hr) 
B[i][j].z = (8*A[i][j+1] - 8*A[i][j-1] - A[i][j+2] + A[i][j-

2])/12/ZCMSj//0(hzA3) 
if(j<4) B[i][j].z = -(2*A[i][j-1] + 3*A[i][j] - 6*A[i][j+1) + 

A[i)[j+2)/6/ZCMSj //0(hZA2) 
else if(j> nslice-3) B[i)[j).z = (2*A[i][j+1) + 3*A[i][j] -

6*A[i)[j-1] + A[i)[j-2])/6/ZCMSj //0(hZA2) 
}else { 
B[i)[j).r = 0j 
B[i)[j).z = 0j} 

if(bound[i][j) == 2){ 
if (bound[i+1][j) == 1) 

B[i][j).r = (1.5*A[i][j) - 2*A[i-1)[j] + 0.5*A[i-
2)[j)/RCMSj //O(hr) 

else if(bound[i-1][j] == 1) 
B[i)[j).r = -(1.5*A[i)[j] - 2*A[i+1][j) + 

0.5*A[i+2][j])/RCMSj} 
if (bound[i)[j+1) == 2 & bound[i)[j) == 0) 

B[i)[j).z = (2*A[i)[j+l) + 3*A[i)[j) - 6*A[i)[j-1) + A[i)[j-
2)/6/ZCMSj //0(hZA2) 

else if(bound[i][j-1) == 2& bound[i][j) == 0) 
B[i)[j).z = -(2*A[i)[j-l) + 3*A[i][j) - 6*A[i)[j+l) + 

A[i][j+2])/6/ZCMSj //0(hZA2) 
if(bound[i)[j] == 2){ 

if (bound[i)[j+1) == 1) 
if(j >3) B[i][j].z = (1.5*A[i)[j] - 2*A[i)[j-1) + 

0.5*A[i][j-2)/ZCMSj//can be more accurate.O(hz) 
else B[i)[j).z = (A[i)[j) - A[i)[j-1])/ZCMSj// This 

condition hardly occures. 0(1)!!! 
else if(bound[i)[j-l) == 1) 

if(j< nslice-2) B[i)[j).z = -(1.5*A[i][j) - 2*A[i)[j+1) + 
0.5*A[i][j+2)/ZCMSj//can be more accurate.O(hz) 

else B[i)[j).z = (A[i)[j+l) - A[i)[j)/ZCMSj// This 
condition hardly occures. 0(1)!!! 

else if (bound[i][j+2) == 1) 
if(j >3) B[i)[j).z = (2*A[i][j+1) + 3*A[i][j) - 6*A[i)[j-

1] + A[i][j-2])/6/ZCMSj// 0(hZA2) 
else B[i][j].z = (A[i][j+1] - A[i][j-l])/2/ZCMSj// This 

condition hardly occures. O(hz) 
else if(bound[i][j-2] == 1) 

if(j< nslice-2) B[i][j].z = -(2*A[i][j-1) + 3*A[i][j) -
6*A[i][j+1) + A[i)[j+2])/6/ZCMSj //0(hZA2) 

else B[i)[j).z = (A[i)[j+1) - A[i)[j-1])/2/ZCMSj} } 
if (A[0][j) == A[2)[j]) {B[0)[j].z = B[2)[j).zj B[0)[j).r = -B[2)[j).rj} 
else if (A[0][j] == -A[2][j) {B[0)[j).z = -B[2][j].zj B[0][j].r = 

B[2)[j).rj}}} 
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Appendix B: MATLAB code for non-iterative technique 

i.tt'.i.rns prer;e.nted in papers: 

1 an.d LNCS 2005 (3:;6.S): i1Jl /i2 

GG8 12 

%%%%%%%%% % %%%%%%%%%%%%% ~~~ %%%%%%%%%%%%%%%%%% %%%%%%%%% 

fid1 fopen ( 'C: ry. ddt' ) ; 
fid2 fopen('C:\Gr.dat'); 
fid3 fopen('C:\G7.dat'); 
B = fscanf(fid1, '%g'); 

Gr = fscanf(fid2, '%g'); 
Gz = fscanf(fid3, '%gl); 

fclose all; 

rRES = 1; 
zRES = 1; 
B = reshape(B,20,100); 
Gr = reshape(Gr,20,100); 
Gz = reshape(Gz,20,100); 
for i=1:size(Gr,2) 

tempGr = Gr(:,i); tempGz = GZ(:,i); tempB = B(:,i); 

if ((i-=l) && (i-=size(Gr,2))) 
tempder = (find(B(:,i+1) == 2) - find(B(:,i-1) 

elseif (i==l) 

tempder 
else 

tempder 
end; 

find(B(:,i+1) == 2) - find(B(:,i) 

find(B(:,i) == 2) - find(B(:,i-1) 

tempGr(tempB 1)= 0; ind = find(tempB == 0); 

2) ) /2; 

2) ; 

2) ; 

tempGz(tempB 1)= tempGz(tempB == 2) + tempGr(tempB 2)* 
tempder; 

Gr(:,i) = tempGr; GZ(:,i) = tempGz; 
end; 
Gre = [fliplr([-flipud(Gr); Gr]) 

Gze = [-fliplr([flipud(Gz); Gz]) 
riable definitions 

[-flipud(Gr); Gr]]; GRE = fft2(Gre); 
[flipud(Gz); Gz]]; GZE = fft2 (Gze); 

vec_r = complex(O,sin(2*pi*(O:size(Gre,1)-1)/size(Gre,1)))/rRES; 
vec_z = complex(O,sin(2*pi*(O:size(Gre,2)-1)/size(Gre,2)))/zRES; 
for i=l:size(Gre,l) 

for j=1:size(Gre,2) 
PE(i,j)=(conj (vec_r(i))*GRE(i,j) + conj (vec_z(j))*GZE(i,j)) / 

(abs(vec_r(i) )*abs(vec_r(i))+abs(vec_z(j))*abs(vec_z(j))); 
end 

end 
PE(l,l) = 0; pe = ifft2(PE); 
p = real(pe(l+size(Gr,l) :size(Gre,l) ,size(Gr,2)+1:size(Gre,2))); 

p(B -= 0) = NaN; contourf(p,50) 
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