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The authors study concentration profiles of solutes undergoing equilibrium
absorption in the vicinity of a water well. For the case of a contamination event,
the limit problem of vanishing well radius, which is of self-similar nature, is
analysed in detail. Existence, uniqueness, and qualitative properties of solutions
of the corresponding ordinary differential equations are shown. Some numerical
examples are also presented.

1. Introduction

Many situations arise in which hazardous chemicals, introduced into the sub-
surface, affect the quality of our drinking water supplies. Therefore it is of
importance to understand and estimate the movement of such chemicals dissolved
in the groundwater.

In this paper we consider the problem where chemicals are being injected into
the soil by localized sources. Such a source can be a long thin pipe buried into the
soil, leading for homogeneous soils to a description in terms of two space
dimensions, or some small localized source in the three-dimensional space. By
considering the appropriate half-space problem, situations describing localized
surface injection can also be considered (see Fig. 1). However, we shall always
select the domain

Qe := {x e R" : |*| > e}, (1.1)

for N = 2 and N = 3 to model the porous medium, e.g. the soil or aquifer. Here x
[m] is a point in space and dQf = {x eUN :\x\ = e} models the surface of the well,
i.e. the source with radius e > 0.

The water flow regime is characterized by the water flux vector q [m/s] and the
water content 0 [m3/m3] satisfying the conservation equation

d,0=-V-q foTxeQe,t>0, (1.2)

where t [s] denotes time.
The chemicals under discussion, such as organic herbicides or heavy metals,

undergo various reactions. Adsorption on to the solid soil particles as a
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Interior injection Surface injection

FIG. 1. Injection of contaminant into the soil (N = 2).

retention/release reaction is often the most important factor with respect to the
mobility of the chemical. Taking adsorption into account, the mass balance
equation reads

d,(OC + pS) + V-(Cq- GDVC) = 0 foTxeQr,t>0. (1.3)

Here C [mol/m3] denotes the concentration of dissolved chemical (per unit
volume of fluid), 5 [mol/kg] the concentration of adsorbed chemical (per unit
mass of porous skeleton), p [kg/m3] is the bulk density of the soil, and D [m2/s] a
matrix, the sum of the molecular diffusion and mechanical dispersion (see e.g.
Bear, 1972).

Often the adsorption reaction is fast compared with the water flow, so that a
quasistationary approach is feasible, describing the reaction to be in equilibrium,
i.e.

(1.4)

where <//, called the adsorption isotherm, can be derived from laboratory batch
experiments. Typical examples of isotherms are (see e.g. Freeze & Cherry, 1979):

(fci>0, 0<p<\) (Freundlich),

(k2tk3>0) (Langmuir).
(1.5)

The example of the Freundlich isotherm shows that (1.3) is not only a nonlinear
diffusion-convection equation in general, but may even be degenerate, since ip
need not be differentiable at C = 0. We will include these cases in our subsequent
analysis.

As a result of the injection of water at dQF, the normal mass flux is given as a
convective flux with the concentration Ce of the chemical dissolved in the injected
water, i.e.

(Cq-eDVC)-\ = Ceq-x for x e dQr, t >0, (1.6)

where v is the unit outward normal of £2e. Here v = - e r , with ê  := xl\x\ being the
unit vector in the radial direction.

Equations (1.3), (1.4), (1.6) have to supplemented with an initial condition

C(«,0) = C«, in A,. (1.7)
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Throughout this paper we shall consider Cc and C<> to be constant. The
description of a contamination event leads to the property

CC>CO. (1.8)

One could also think of the reverse case

C 0 >C e , (1.9)

corresponding, for example, to a remedial event by flushing with clean water. As
the analysis of both cases is substantially different, we will restrict ourselves here
to (1.8) and postpone the investigation of (1.9).

Our concern is a detailed analysis of the concentration profiles in the vicinity of
the well. To this end we assume some further simplifications. We consider the
porous medium to be homogeneous and either saturated or the water flow to be
stationary. This leads to

p > 0 and 0 > O are constants, (1-10)

and thus from (1.2)

V-q = 0 forx eQe, t>0. (1.11)

If we assume the normal water flux at the well surface d£2F to be uniform with a
prescribed total rate Q [rn^/s], possibly depending on time, then

ex, (1.12)

where r = \x\ is the radial coordinate and wN the surface area of the unit ball in
RN, i.e. (oN = 2(N-l)n.

We are in particular interested in the dynamics near the well for small well
radius e. The conventional dispersion theories, relating D to q, would lead to
unbounded dispersion coefficients for e—>0 (cf. Bear, 1972). On the other hand,
we consider a homogeneous medium and thus expect the dispersion and
molecular diffusion coefficients to be of the same order of magnitude. We
describe this situation by assuming

£>>0 is scalar and constant. (1-13)

We nondimensionalize the dependent variables in the following way. Set

C " Co
" := 8C , 8C:=Ce-C{),

p (1-14)
P() ^ [4>{8Cu + Co) - K C ) ]

Then u = u(x, t) satisfies

d,/3(M) + V - ( w — ^ - e , - £ > V « j = O forx <E Qe, t>0,

(1.15)

u(x, 0) = 0 for^er2r.

-DVu • v = -^rl(u - 1) for x e dQ, t > 0,
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Here

A(t):=Q(t)/wNe. (1.16)

Due to the radial symmetric flow field and the boundary conditions, we expect u
also to be radial symmetric and to satisfy

1
d,P(u) + -^Tf dr[A(t)u - Dr"~x dru] = 0 for r > e, t > 0,

Dd,M(e, 0 = ^ 7 [«(<?, 0 - 1 ] for/X),
(1.17)

.u(r, 0) = 0 forr>e.

To emphasize the role of e, we denote its solutions by uF = ue(r, t). With regard
to /3, we assume

H^l: / 8eC(0 ,x )nC( [0 ,* ) ) ,

H^2: /3(0) = 0, P'(u)>0, and /3"(w) « 0 for«>0.

These properties are in particular implied when using examples (1.5) for ip.
To study Problem (Pf) for small well radius e, it is reasonable to consider the

limit e—»0. We conjecture the convergence, in a sense to be specified, of the
solutions ue to the solution u = u(r, t) of

1 N_,
ifj(u) +-jj—;dr[A(t)u - Dr drii] = 0 forr>0, />0 ,

(Po)J ,n . , _ , , (1-18)
w(0, 0 = 1 forrX),

^u(r, 0) = 0 forr>0.
This is made rigorous, including a rate of convergence, in van Duijn & Peletier
(1994) for N = 2 and for the special case where the injection rate is constant. Note
that only for special cases of injection rates Q{t), the solution of (P,,) exists in the
form of a self-similar solution, i.e. only depending on the variable 17 := rt" with

u(r,t)=f(V). (1.19)

Inserting / into the differential equation and comparing terms, we see that for a
the only possible choice is a = - | and for the injection rate

for some Qx >0.
The function / = /(TJ), with 17 = r/t^-, then satisfies the boundary value problem

(1.21)

(1.22)

/(0) = 1 and

where primes denote dv and

a:=Qt/wNe.
To study the existence of solutions of (SD) and their properties is the purpose of
this paper. In particular, to investigate the limiting behaviour of the solution
profiles for D —> 0, we use the form (SD), and also for the outline of a numerical
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algorithm for the approximation of /. In those cases where we consider a fixed
dispersion coefficient D, we prefer a fully dimensionless form for the boundary
value problem. We use tD [m2] instead of t. Then in (1.15), D is replaced by 1 and
A{t) by Ar^"2"1, where A is a dimensionless parameter given by

A:=<3,/a>yv0D^'. (1.23)

Problems (Pf) and (Po) are then replaced by
1

,B(ue) + —rr-rdr(^t-~lue — rN~ldriie) = 0 for r > e, t>Q,
r

Me{e, t) = —nz-.t^N~x\uAe, t) - 1] forf>0,

UE(r, 0) = 0 for r > 0

and by (Po), consisting of the first and third equation and the boundary condition
u(0, r) = 1 for ?>0. Analogously the equation for the self-similar solution now
reads

V W + ( T r - ' / ' - A / ) ' = 0 fo r0<T,<x ,

and / (* ) = 0. U ]

The outline of the sections is as follows. In Section 2 the unique existence of a
solution of Problem (S) and characteristic properties are investigated for N = 2.
The existence proof uses a shooting argument (for a transformed equation),
which is also the basis of the numerical algorithm described in Section 5. For the
behaviour near rj = 0, the value of the parameter A turns out to be crucial. The
behaviour near 17 = °c is determined by the singular character of the reaction,
leading to sharp fronts exactly in the case 1//3 e L'(0, 5) for some 5>0.
Analogous results are sketched in Section 4 for N = 3. Section 3 investigates the
hyperbolic limit D—»0 for the formulation of Problem (SD). Finally Section 5
deals with an numerical algorithm for (SD) and some examples.

2. The self-similar solution

In this section we study the existence, uniqueness, and qualitative properties of
solutions of the boundary value problem (S). Except for some introductory
observations, the cases N = 2 and N = 3 are treated separately. However, only for
N = 2 are the details of the proofs given. The results for N = 3 are summarized in
Section 4.

We start with the definition of a solution. For this we introduce the negative
flux function

F(V) = 1"-T(T1)-V(V) forrjX). (2.1)

DEFINITION 2.1 A function / : [0, x)_> [0, 1] is called a solution of Problem (S) if

(i) F and /3(/) are absolutely continuous on [0, so);

(ii) F ' + | T , " [ / 3 ( / ) ] ' = 0 a.e. on (0, 00); (2.2)

(iii) /(0) = l and /(*>) = 0. (2.3)
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From this definition we deduce the following proposition.

PROPOSITION 2.2 Let / be a solution of Problem (S) and let P = {TJ > 0 : f(r]) > 0}.
Then

(i) fsC'(P);

(ii) / ' < 0 o n / > ;

(iii) F(TJ)—»0 as 77 —> =c.

Proo/. (i) The continuity of F and / implies / e C'((0, 3°)) and P open. Further,
the boundary condition /(0) = 1 gives that P is nonempty. Thus each point 17,, e P
has a neighbourhood N <= P such that / is strictly positive on N. This implies
)3(/) e C'(yV) and, from equation (2.2), also F e C'(N). Using this in (2.1) results
in / e C2(N). Continuing this process leads to the desired result.

(ii) This follows from a local uniqueness argument as in Atkinson & Peletier
(1971, 1974).

(iii) Let f(rj) >0 for all 17 >0. Then the monotonicity of/, together with (2.1)
and (2.2), yields

F(rj)<0 and F ' ( T / ) > 0 for all TJ >O.
Hence

lim F(T?) = F* =£ 0 (exists). (2.4)

We show that Fx<0 leads to a contradiction. Expression (2.1) gives

l i m T ^ - ' n i , ) - ^ . (2.5)

For N = 2, this contradicts directly the boundary condition /(3O) = 0. For A/= 3
we use (2.5) in equation (2.2) to find

Now F, < 0 contradicts the asymptotic behaviour (2.4). •

The monotonicity of/means that P consists of a single interval of the form

P = (0, L) with L =£ 00.

When L = 00, we are dealing with a solution satisfying

/ ( T J ) > 0 and /'(??) <0 for all 77 >0,

and when L<*> (possibly), we have a solution of the form

/ ( T J ) > 0 and / ' ( T J ) < 0 for 0< TJ < L,

= 0 for?7>L.

Whether L < °° or L = °° occurs depends on the properties of the nonlinear term
fi(f) near/ = 0. We will investigate this in the next section. Another point that
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requires attention concerns the behaviour of the solution near the origin, because
there the equation has a singularity. We consider in detail the case N = 2.

2.1 Structure of solution

Throughout this section, we suppose that/is a solution of Problem (S) for N = 2.
With regard to the behaviour near TJ = 0, we have the following proposition.

PROPOSITION 2.3 lim^,, T]i'Af'(v) = ~A (exists with 0<A < •*).

Proof. On the interval (0, L), we may write the differential equation as

Integrating this expression gives

( r ( ) ) fo rO<7 , 1 <T ? 2 <L,

which implies the existence of the limit (fix TJ2 > 0 and let TJ, J, 0). •

Before we consider the behaviour of the solution near 17 = L, we first give the
necessary and sufficient condition for which L is finite; see also van Duijn &
Knabner (1991, 1992), where similar questions for travelling waves are
considered.

PROPOSITION 2.4 L < x <=> 1/0 e L'(0, 5) for some 5 >0.

Proof. Suppose 1/0 e L'(0, 5) and L = *=. Integrating equation (2.2) from 77 > 0
to x gives

•nf'(v)-mv) = k\ s2[fi(f(s))]' ds.

Using the monotonicity of 0(/(*))> w e estimate

or
f'(v) ^ ,

for every 77 > 0. Now fix TJ() > 0. Integrating (2.6) from 17,, to TJ > 17,, yields

L , 0l7)d 5 > i ( T / ~T/())~Lr0(/"(5))Ck
Jf(v)

Since 0 is concave, we have

ff (in) I

Letting TJ -><* contradicts the integrability of 1/0. Next suppose L < x and
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l/fi £ L'(0, 8). Now we integrate equation (2.2) from some 0< TJ < L to L and
obtain

s))]' d5. (2.7)

In this expression, we estimate for every 0 < TJ < L

or

)) 2

Now fix 0< TJO< L. Integrating (2.8) from TJ,, to TJ,,< TJ < L yields

rfinu) 1rfinu) 1
—-d5<|L2ln(T,/T,()).

Letting r)/L'm. this expression, contradicts the nonintegrability of 1//3. •

To describe the behaviour of /(TJ) near TJ = L < ĉ, we introduce the function

w=!^ ds.

Then we have the following proposition.

PROPOSITION 2.5 lim,,^ [ * ( / ( T J ) ) ] ' = ~\L-

Proof. From (2.7) we obtain for every 0 < TJ < L

'(v) ~ A/(TJ) = -WP(fil)) - f sp(f(s)) ds,

or

This equality implies

The concavity of 0 gives /9'(0+)=£*. But /3 '(0+)<* implies 1//3 ̂  L'(0, 5).
hence /3'(0+) = «, which yields the result. D

Example 2.6. When considering a Freundlich isotherm we have (see also (1.5))

P(f)=f + Kf with K > 0 and 0 < p < l .

Clearly 1//3 e L'(0, 5). For the behaviour of the solution near L, we find from
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that

In case of a Langmuir isotherm, we have

Hence /3'(0+) < * and consequently L = ^. D

2.2 Existence, uniqueness, and monotonicity

In view of the behaviour of the solution near TJ = 0, we introduce here the
transformation

s = - i 7 A and g(s)=/(rj).
A

Then by Proposition 2.3, g is differentiable up to s = 0. Using this we study for g
the initial value problem

]' = O for5>0,
g'(0)=-A, ( >

where C(A) = \k2"'~\ For a given /I >0, we denote the solution by g{s\A). The
object here is to show that there exists a unique y4*>0 such that either
g(A*\s)>0 for all s&0 with g(A*;*) = 0 (if L = *), or g(/ l*; j)>0 for
0 « 5 < L * with g(/l*;L*) = g'(/4*, L*) = 0 (if L < x ) . Here L* = A"'LA.
Extending g by zero in the latter case, it is then easily verified that the function

defines a solution in the sense of Definition 2.1.
To prove local existence for Problem (IVP), we first integrate (2.9) to obtain

the integral representation

g(s) = \-A rexp(-C(A)f>A-'i3'(g(f))d/)dz=:rg(s) (2.10)

Then, for 5 > 0 sufficiently small (depending on A), the operator 7maps the set
X = {u e C([0, 8]) : { « u « l} into itself and is a contraction. Consequently for
any A > 0, equation (2.10) has a unique solution g(A; •) e A\ Then one shows that
in fact g(/4;») e C'([0, S])nC*((0, 5)) and that, on (0, 5), g satisfies equation
(2.9) with g'(A\')<0 and g"(>4;')>0. We can continue this solution for larger
values of s as long as g remains positive. If the solution can be continued for all
s >0, than the monotonicity implies the existence of

\\mg(A;s)=:g(A-~)s(0,\). (2.11)
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On the other hand, for A large, the solution may exist only on a finite interval
(0, LA) where

g(A;LA) = 0 and g'(A;LA)<0. (2.12)
Let

5 + = {A > 0 : (2.11) holds} and S~ = {A > 0 : (2.12) holds}.

Then we have the following lemma.

LEMMA 2.7 The sets S+ and S~ are nonempty, open, and connected such that
inf S+ = 0 and sup 5" = *.

Proof. We first show that solutions g(A\-) of Problem (IVP) vary monotonically
with the shooting parameter A. Let 0 < v 4 i < v 4 2

< x and let g, = g{A,\-) for
/' = 1, 2. Clearly g, >g 2 in a right neighbourhood of 5 = 0. Now suppose there
exists s > 0 such that g\> g2ox\ (0, £) and g,($) = g2C? )• To obtain a contradiction,
we subtract the equations for g, and g2, multiply the result by s, and integrate
from 5 = 0 to s = $. Then

f ^ - ' [ / a f e , ) - j3(g2)]
Jo

This is not possible because both terms have opposite sign. Hence, if A^ e S+,
then any A<A+ belongs to S+ and clearly infS+=0. We construct a strictly
positive lower bound on [0, *) to show that 5 + is nonempty. This bound follows
from (2.10) in which we use the observation that P'(g(t)) >/3'(l) for t>0. Then

g(s) > 1 - A f exp [-iAC(A)j8'(l)z2/A] dz,

from which we deduce that

where f denotes the gamma function.
Next let A* e S~. Because solutions do not intersect, we find for any A>A*

that the corresponding solution becomes zero at 5 = LA < LA.. If

g'(A;LA)<0, (2.13)

then A e S~ also. Now, if g'{A\ LA) = 0, then extending g by zero would lead to a
solution in the sense of Definition 2.1. Then we can apply the monotonicity
argument from above to obtain a contradiction. Thus, for A>A*, (2.13) is the
only possibility.

To show that S~ is nonempty, we construct an upper bound which intersects
the j-axis for A sufficiently large. We obtain this bound by introducing the scaling

t = As and h(A\ t) = g(A;s),

and by considering for h the resulting problem

= 0 f o r r>0 , |

h(0) = \, V(0) = - l . J ( ' '
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Clearly h' <0 and h">0 on the interval of existence and

h(A;t)& max {(1 - r), 0} (2.15)

for all f s= 0 and for all A >0. Integrating (2.14) twice gives

/i(f) = 1 - t - C(X)A~m f (r - z)zm~l[fi(h(z))]' dz.

For r 5= £ we estimate the integrand in this expression with (2.15), to obtain

i)]' if.

^ ( i ) 2 / A ~ ' [ / 3 ( ' i ( z ) ) ] ' if'

This leads to

)t, (2.16)
where

{ .2/A-I if A < 2

G)2""1 if A > 2.
The right-hand side in (2.16) becomes negative for the appropriate choice of A
(large) and t > 1. Hence, for all sufficiently large A, the solutions g{A;s) vanish at
s = LA where g'(A; LA) =s0. Using again the monotonicity argument, one finds
that there cannot exist two of such solutions which both have a zero derivative
when they vanish. This proves that S~ is nonempty. The upper bound (2.16) also
implies that sup 5" = °c.

Finally, the continuous dependence for Problem (IVP) means that both S+ and
S~ are open. •

The properties of the sets 5 + and S~ imply that there exists A* e (0, °°) such
that

Considering the solution g(A*;s), either we have

[g"(A*\-)>0 on(0,oo),

or there exists L* > 0 such that

[A*;-)>0 on(0,L*),
g{A*\L*) = g'{A*, L*) = 0.

Applying once more the monotonicity argument, it follows that the value of A*
is uniquely determined. Extending g by zero in case (II), we obtain the following
theorem.

THEOREM 2.8 Problem (S) has a unique solution/, given by/(r/) = g(A*\ TJA) for
TJ^O.
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Problem (S) can be solved explicitly when A = 2. We work out the details in the
next example.

Example 2.9. Taking A = 2 reduces equation (2.9) to

g' + &P(g)]' = 0 fors>0.
Integration gives

Choosing A = ̂ (3(l), and using /3(0) = 0, implies that g' vanishes whenever g
vanishes. Hence we find the expressions

fi i r1 i
—~dt = k and — -dt =

When the function /3 is differentiate up to s = 0, i.e. /3'(0+) < oo, we have precise
information about the asymptotic behaviour of /(TJ) as TJ —> OO.

THEOREM 2.10 Let /3 satisfy H^l.2 such that 0' E C([0, 1]), with a e (0, 1).
Then, given any TJ0 > 0, there exists constants /C, and K2 such that

for all TJ 5* TJ0.

Proof. We construct the estimates for the transformed function g. Equation (2.9)
implies

-'P'il) (2.17)

Integrating for given s 3=s()>0, we get

and once more gives

U c r » r U c , W ( i v - d , ( 2 ] 8 )

Next, we improve the upperbound by writing

gig1 = -C(A)/3'(0)s2'A-1 + C I A ^ - ' ^ ^ O ) - jS'te)]. (2.19)

Using the upper bound from (2.18) and the Holder continuity of the derivative
/3', it follows that the second term on the right in (2.19) is integrable on [st), °°).
Hence



TRANSPORT IN POROUS MEDIA 189

for some C* > 0. Integrating this expression once more gives the improves upper
bound

e-

for some K2 > 0. Returning to the variable 17 proves the result. •

For later use, in particular when studying the convergence of solutions of the
time-dependent problem for singular reactions, we regularize the function /3. We
put

fin(s) = p(s + 1)-P(l) (?&0, n e M). (2.20)

Then /3n again satisfies H^l.2 and in addition 0n e CT([0, °°)). It leads to the
regularized problems

(S,,)

1/(0) = 1,

By Theorem (2.8) Problem (S,,) has a unique solution /„, which is positive,
smooth, and strictly decreasing on (0, 00). Furthermore, each /„ satisfies the
asymptotic behaviour from Theorem (2.10) with /3'(0) replaced by /3^(0) =
/3'(\/n). Furthermore, we have the following theorem.

THEOREM 2.11 Considering the approximations (2.20), we have /,(TJ)—»/(TJ) as
n —> =°, uniformly in 17 5* 0.

Proof. For each n sN, the transformed functions g,, satisfy

] '=0 for 5 > 0,1

Setting z,, = g,, + \ln and using (2.20), we find that each z,, is a solution of

2 - ' [ /3(z) ] '=0 for5>0,

Applying the monotonicity argument again, we find

Zn s* zn+i ^ g on [0, °o), for all « e W
Hence,

lim zn\z ^g pointwise on (0, =0),

/I—*3C

and thus

lim gn -» j &g pointwise on (0, <»). (2.22)
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Next multiply equation (2.21) by s and integrate the result. For any s>0 and
n e W, there results

^n{gn{t)) dr. (2.23)

Thus, for any given K <s (0, &), there exists M > 0 such that

-A/s£g;<0 on/C, for all n e (V.
By equicontinuity,

gn-»£ in

along some subsequence n/^. In fact, since g ^ ^ l on [0, »), we obtain
I e C([0, oo)) and ^(0) = 1. The monotonicity of the sequence {zn} gives z(x) = 0
and

g,,-+z inC([0,=o)),

for the entire sequence n/*> (apply Dini's Theorem to {z,,} and use the
asymptotic behaviour (upper bound in (2.18)). Passing to the limit in expressing
(2.23) gives i e C'((0, »)) and for all s > 0

- C(A) f
A Jo

dt. (2.24)

Since i decays exponentially fast at infinity, we obtain from (2.24) lim^jc^'CO =

/ (exists). Clearly / = 0 since 2(30) = 0. Therefore

The same identity holds for g. Then we conclude from z =* g that in fact z = g on
[0, 3°). This completes the proof of the theorem. •

3. The hyperbolic limit

To study the limit £>\0, we cannot use the scaling of the variables as was done to
obtain Problem (S). Instead we return to the nondimensionless formulation
leading to Problem (SD), which we give here for N = 2:

'=0 forrjXD,( S D ) C ;
From the theory developed in Section 2, we conclude that, for each D > 0, this
problem has a unique solution fD which satisfies

(i) 0« / o *£ l on[0, »):

00 II/OIIU«(IL«)) = 1 (by the monotonicity of/D); (3.2)

(iii) T7/3(/o(i?)) dr; = a (mass conservation). (3.3)
•'()
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We use Wu(/C) <s LP(K) for 1 =sp < x and for K m (0, x), so that for a sequence
D\0 there exists a function / e L*((0, x)) such that

0 = s / « l a.e. on[0, x),

and a subsequence, denoted again by D\0, along which

/ « - » / inLp(/C) and / D - » / a.e. on (0, x).

The monotonocity of the functions in the approximating sequence implies that /,
possibly redefined on a set of measure zero, is monotone on (0, x). Further it
follows from (3.3) and / 5= 0 that

f vptf(r,))di,=a. (3.4)

Hence / ( x ) = 0. To obtain an equation for the limit /, we introduce the weak
form of (3.1), i.e.

r
[(Orifo - afD)(p' + /3(/D)(TJ<P + JTJ <p')\ drj = 0,

with <p e Q*((0, x)). Passing to the limit in this expression gives

Jo

for all <p e C,"((0, x)). Hence

2l2P(?) - af is locally absolutely continuous on (0, x)
and

(3.5)

for any 0< TJ, < TJ2<
 x- Letting TJ2—» ̂  in this expression shows that

lim TT/9(/(TJ)) = ^ e R (exists).

Now suppose f 5^0. Then

contradicting the mass-conservation equation (3.4). Hence € = 0 and (3.5) gives,
with T72—>x,

) ds. (3.6)

This shows that

Hm/(T,)=1. (3.7)
n JO
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Now suppose/has a jump discontinuity for some TJS>0, with

/+<->= lim

Then the continuity of the right-hand side in (3.6) gives the relation

which is the well-known Rankine-Hugoniot shock condition (see e.g. Whitham,
1974). The concavity of (3, applied to condition (3.8), implies that there exists at
most one value of 17 where a discontinuity or shock can occur. By the
monotonicity of / and (3.7), there are two possibilities. Either / e C([0, ^)) or
there exists 77s>0 such that / e C([0, i?s)U(Tji, *)), with / + > / ~ at rjs. Now
suppose that, for some interval / c ( 0 , =c), we have

/ > 0 and strictly decreasing on /, / e C(/).

Then, from (3.6),

and

[ - | I ) W ) + « / ] ' = -TIH(/) on/.

Using once more the continuity of/, we obtain, for each 17 e /,

_
/ ( T , + 4 ) / ( 7 , ) /

The term between brackets converges, for A^>0, to a - ^PiHv))- Note that
this is a strictly decreasing function of -q (since /3"=sO), taking on the value a at
17 = 0 and converging to —x for 77—* x. Hence there is a unique rj >0 such that
a ~ ^V2P'(?(l)) = 0- Using this observation in (3.9) gives

/ differentiate with / ' = 0 on l\{rj}

and, since / e C(/),
/ = constant on /,

contradicting the strict monotonicity of / on /. This leaves the following as the
only possibility for / :

By the uniqueness of the limit function, the solutions fD corresponding to the
entire sequence D\0 converge to/ . Hence we have the following theorem.

THEOREM 3.1 Let/D be the solution of Problem (SD) for D >0. Then, along any
sequence D\0,

/ D - * / a.e. on(0, *),
with /given by (3.10).
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Remark 3.2. For a singular reaction, leading to / O ( T ? ) > 0 for O^-q<LD and
/D(TJ) = 0 for T]^LD, it follows from the mass-conservation equation (3.3) that
LD > Vs for every D > 0.

4. Results for N = 3

We recall Problem (S) for N = 3:

] '=0 forTjX), ( 4 i )

Multiplying equation (4.1) by exp(A/Tj) yields

[ T J V ' Y ' ] ' + hV'"[0( / (Tj))] ' = 0, (4.2)

from which we deduce for the behaviour near TJ = 0

lim Tj2eA'Y'(17) = ~A (exists with 0 < A < ^).

consequently,
lim/'(Tj) = 0 for all A >0. (4.3)

As in the two-dimensional setting, we have here

/ ' ( T J ) < 0 whenever/(TJ)>0,

which implies again that the set

is of the form

P = (0, L) with L =s ac.

The characterization for finite L is as in Proposition 2.4, i.e.

L < x o l//3eL'(0, 5) for some 8 >0.

When L < 3c, the behaviour of /(TJ) for TJ near L is given by Proposition 2.5.
To prove the existence result, we introduce the transformation

s = e-A/" and g(s)

and study the initial value problem

L(0) = l, g\0)=-A.

Again we look for decreasing and concave solutions of this problem. By the
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method of Section 2.2. we find that there exists a unique A*>0 and a unique
solution g(A*;s) such that either

g(A*\')>0 on (0,1),

or there exists L* e (0, 1) such that

(g(A*;-)>0 on(0, L*),

In the latter case, we extend the solution by zero on (0, 1). As a result we find
that

f{Tt):=g(A*:e'Ur>) for 7,^0,

is the unique solution of Problem (S).

Example 4.1. Let the adsorption isotherm <p be linear. Then

P(f)=f + Kf withK>0,

and for Problem (IVP) we have

In 5/ s

g(0) = l. g'(0) = -A.

Integrating the equation twice yields

Taking

gives a positive, decreasing, and concave solution on (0, 1) which satisfies

In terms of the original similarity variable, the solution reads

f(V) = 1 - A* jL exp [-JA2O +

To study the hyperbolic limit D\0, we return to Problem (SD) for N = 3:

-«/) ' + h ' [W)] ' - 0 for r, > 0.

Note that the dependent variable -q in Problems (SD) and (S) is different:
rj = rljt [m/s*] in Problem (SD), whereas 17 = rlJ(Dt) [-] in Problem (S).
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Any solution fD of Problem (SD) satisfies the mass-conservation identity

r?2/3(/D(rj)) dT, = la. (4.4)f
Going through the procedure of Section 3, we obtain, for any sequence D \ 0 ,

fD-*f a.e. on(0, *),
where

7:::::} «**-(%l7:::::
5. Numerical approximation

In this section we describe an algorithm to approximate the solutions of Problem
(SD) and indicate some examples. We consider here only N = 2. Based on
Section 4 an analogous algorithm for N = 3 can be designed. The numerical
procedure is strongly related to the existence proof from Section 2.2. It is shown
there (by means of the transformation s = A~'TJA) that the situation is as follows.

The solution of Problem (SD) is characterized by a value A* >0 such that

\imv
l-*f'(rl)=-A*.

Setting

S+:=[0,A*) and S~ :=(/**,*),

we find that for A e S+ the solution of the initial value problem

<M/(0) = l. limVY(i>)=-*.
satisfies

lim/(Tj)>0, (5.2)
v— •*•

and for A e. S~ the solution of (IVP,,) satisfies

KIA) = 0. /'{VA)<0 for some VA>0. (5.3)

This shows the convergence of the shooting algorithm (if performed exactly):

The shooting algorithm
(1) Choose/4(;e 5", A"eS+,j:=0.
(2) A:=±(rt + A'u),j:=j + l.
(3) Compute the solution of (IVP,,).
(4) If A e S + ,

A\,:=A, A'r^A'r1, goto (2).
(5) If A eS~,

AJ,:=A, Ai:=A{T\ goto (2).
(6) Stop.
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This algorithm either finds the solution in finitely many steps or generates
sequences A'( e S~ and A'u e S+, such that

\A>, - Aj
u\ = 2-' \A{) - A°u\ ^ 0 for j' -» x ,

and A* e (A'u, A
1,). Several steps of the algorithm cannot be performed exactly.

To approximate the solution of (IVP,), we integrate the equation as in the proof
of Proposition 2.3. This incorporates the shooting parameter A:

l. (5.4)

We approximate the solution of (5.4) by the third-order Adams-Bashforth
method. The integrands are approximated by the trapezoidal rule. The procedure
is started by extrapolation steps starting from TJ = 0, based on Proposition 2.3.
The number of such steps is increased for a/D < 1 to deal with the singularity in
(5.4). In this way we compute approximating values / for /(TJ,). (However, the
examples given below all are computed with equidistant TJ, = ih, for i = 1, 2,... and
h>0.)

The occurrence of/(TJ,) = O is tested by | / | < e , for some control parameter
£i > 0 and correspondingly / ( T J , ) > 0 and / ( T J , ) < 0 have to be interpreted. The
parameter A is considered to be in S+ if, for some i>l(Ie N is a given control
parameter, sufficiently large), / ( T J , ) > 0 and /(TJ*) remains close to /(TJ,) for
7 *££«/. To avoid misinterpretation, in particular for a/D»\, when the
self-similar solution is very flat in the vicinity of TJ = 0 (see Fig. 4), we also require
r], > TJ, where TJ, is the position of the shock in the limit case D = 0 (see (3.10)
and (4.5)).

To facilitate the detection of A e S~, )3 is extended monotonically for / < 0 .
The parameter A is considered to be in S~, if for some /, say / = 7, /(TJT) < 0 and
/(Tj,)>Ofor all i<l

For 0 « TJ ̂  3c, let A/(TJ) denote the mass for the given TJ >0, scaled by \/wN

(see also (3.3)):

1 dv, (5-6)
Jo

where

We approximate M(-q,) by the trapezoidal rule as a measure of accuracy and use
it in the case of singular reactions (L < °c) to detect convergence and estimate the
position of the front L.

This is done by the requirement /(TJ,) = 0 and mass error = 2a/N - M(TJ,) < e2,
where e2 > 0 is a control parameter. In the case L = *>, we use the requirement
/(1?/) = 0 and / '(TJ,) = O. An alternative in the finite case would be the use of
Proposition 2.5. The choice of the discretization parameter h determines the
accuracy of a solution in terms of ex and e2-

The shooting algorithm could also be based on Problem (IVP). If we then
interpret the numerical procedure in terms of the oroginal variable TJ, this
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0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIG. 2. Self-similar solution for a/D < 1.

amounts to a grading of the mesh {17,}. For a/D < 1, this way may be preferable,
but not for a/D»\.

In Figs. 2-4 we show the solution profiles for the following data:

p = 0 = 0-5, A:, = 3,/? = 0-5;

(uy+ is regularized by a straight line in [0,10~14]

(2, = 2-5.
Fig. 2: £> = 3 => fl/D = 0-2653;
Fig. 3: £> = 015 => a/D = 5-3052;
Fig. 4: D = 0-009375 => a/D = 84-883;
/i = 10"4, e, = 10"*, £2 = 10~4.

6. Concluding discussion

In this paper we studied the concentration profiles of a solute undergoing
equilibrium adsorption in the vicinity of a water injecting well. We restricted
ourselves to a contamination event, i.e. to a concentration Ce in the injected
water higher than the initial concentration C(). The initial-boundary value
problem, which may expected to be the limit problem for a vanishing well radius,
allows for self-similar solution, which have been considered in detail in this paper.
Besides the singularity due to the specific flow regime, we also allow for a
degeneration in the problem caused by an adsorption isotherm with unbounded
slope near zero concentration, as the Freundlich isotherm.
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0.2-

O.0--
0.0 0.2 0.4 0.6

Fid. 3. Self-similar solution for a/D > 1

1.0

0.8-

0.6-

0.4-

0.2-

0.0-
0.0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 4. Self-similar solution for a/D » 1.
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Although we cannot determine a closed form for the self-similar solution, our
analysis reveals most of its relevant properties. In addition, the existence proof by
means of a shooting argument gives rise to simple numerical algorithm, requiring
only the solution of an initial value problem for an ordinary differential equation.
It turns out that the behaviour at the well is only determined by a dimensionless
parameter A measuring the relative strength of convection versus dispersion, and
is not influenced by the isotherm. One may expect that the situation is different
for the remedial event C0<Ce not considered here. In particular, for two space
dimensions and A < 1, the solution develops a cusp at the well. This also shows
the usefulness of the similarity solution in connection with the numerical
approximation of reactive solute transport driven by complex flow regimes. The
similarity solution may not only serve as an 'explicit solution' to validate
numerical codes designed to cope with general geometries and flow regimes. As
the numerical approximation in particular of the cusp case may be difficult, one
can think of incorporating the similarity solution found here in general numerical
codes to provide the approximate solution (or its first iterate) in the vicinity of
wells.

The qualitative influence of the isotherm, on the other hand, can be seen in the
far-field behaviour, in particular in the existence of a sharp infiltration front (for
the case C,, = 0 and Freundlich-type isotherms) and in the growth of the
concentration profile near the front. The results turn out to be the same as for
travelling wave solutions, which are asymptotic profiles for large time for a
stationary water flow in one direction. This confirms that the qualitative front
behaviour is solely due to the nature of the isotherm and not influenced by the
underlying flow regime. Of course, the flow speed strongly influences the front
speed. To be able to estimate the front position is of paramount importance for
the application in groundwater hydrology, as one is then able to decide whether
and when pollution may be hazardous for a drinking water supply. This also gives
importance to the explicit shock solution for the hyperbolic limit case D = 0. The
explicit front position obtained here serves as a lower bound for the general case.

Acknowledgements

The authors wish to acknowledge L. A. Peletier (Leiden University) for a number
of fruitful discussions and P. A. C. Raats (Institute for Soil Fertility, Haren (Gr.),
Netherlands) for bringing this problem to our attention. This work was completed
while both authors enjoyed the support and hospitality of the Institute for
Mathematics and its Applications.

REFERENCES

ATKINSON, F. V., & PELETIER, L. A. 1971 Similarity profiles of flows through porous
media. Arch. Rational Mech. Anal. 42, 369-79.

ATKINSON, F. V., & PELETIER, L. A. 1974 Similarity solutions of the nonlinear diffusion
equation. Arch. Rational Mech. Anal. 54, 373-92.

BEAR, J. 1972 Dynamics of Fluids in Porous Media. New York: Elsevier (also Dover,
1988).



r

200 C. J. VAN DUIJN AND PETER KNABNER

FREEZE. R. A., & CHERRY, J. A. 1979 Groundwaier. Englewood Cliffs, NJ: Prentice-Hall.
VAN DUIJN, C. J., & KNABNER, P. 1991 Solute transport in porous media with equilibrium

and non-equilibrium multiple-site adsorption: Travelling waves. J. Reine Angew.
Math. 415, 1-49.

VAN DUIJN, C. J., & KNABNER. P. 1992 Travelling waves in the transport of reactive
solutes through porous media: Adsorption and binary in exchange—Part II. Transport
in Poms Media 8, 199-226.

VAN DUIJN, C. J., & PELETIER, M. A. 1994 Asymptotic behavior of solutions of'a
nonlinear transport equation. Preprint, Delft University of Technology.

WHITHAM, G. B. 1974 Linear and Nonlinear Waves. New York: Wiley.


