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[1] In this paper we present flow and travel time ensemble statistics based on a new
simulation methodology, the adaptive Fup Monte Carlo method (AFMCM). As a
benchmark case, we considered two-dimensional steady flow in a rectangular domain
characterized by multi-Gaussian heterogeneity structure with an isotropic exponential
correlation and lnK variance sY

2 up to 8. Advective transport is investigated using the
travel time framework where Lagrangian variables (e.g., velocity, transverse displacement,
or travel time) depend on space rather than on time. We find that Eulerian and Lagrangian
velocity distributions diverge for increasing lnK variance due to enhanced channeling.
Transverse displacement is a nonnormal for all sY

2 and control planes close to the injection
area, but after xIY = 20 was found to be nearly normal even for high sY

2. Travel time
distribution deviates from the Fickian model for large lnK variance and exhibits
increasing skewness and a power law tail for large lnK variance, the slope of which
decreases for increasing distance from the source; no anomalous features are found.
Second moment of advective transport is analyzed with respect to the covariance of two
Lagrangian velocity variables: slowness and slope which are directly related to the travel
time and transverse displacement variance, which are subsequently related to the
longitudinal and transverse dispersion. We provide simple estimators for the Eulerian
velocity variance, travel time variance, slowness, and longitudinal dispersivity as a
practical contribution of this analysis. Both two-parameter models considered (the
advection-dispersion equation and the lognormal model) provide relatively poor
representations of the initial part of the travel time probability density function in highly
heterogeneous porous media. We identify the need for further theoretical and
experimental scrutiny of early arrival times, and the need for computing higher-order
moments for a more accurate characterization of the travel time probability density
function. A brief discussion is presented on the challenges and extensions for which
AFMCM is suggested as a suitable approach.
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1. Introduction

[2] Because of the obvious limitations and difficulties in
carrying out physical experiments on transport in heteroge-
neous porous media, numerical simulations have always
been an indispensable part of theoretical advances [Freeze,
1975]. First-order analysis [e.g.,Dagan, 1982, 1984; Shapiro
and Cvetkovic, 1988; Rubin, 1990] has been provided a
solid basis for predictions. More recent extensions to
second-order theories [Dagan, 1994; Deng and Cushman,
1995; Hsu et al., 1996; Hsu and Lamb, 2000] have further
strengthened the confidence in the analytical methods for
predicting transport in heterogeneous formations. Although
first- and second-order theoretical results have significantly

advanced our understanding of flow and advective transport
in heterogeneous porous media, and constitute indispens-
able predictive tools, their limitations are still not fully
understood and are an ongoing topic of investigations where
numerical tools play a central role [Bellin et al., 1992, 1994;
Chin and Wang, 1992; Cvetkovic et al., 1996; Salandin and
Fiorotto, 1998; Hassan et al., 1998; Maxwell et al., 1999;
Hassan et al., 2001; Rubin, 2003; Janković et al., 2003; de
Dreuzy et al., 2007].
[3] On the one hand, the perturbation expansions would

imply that the first-order results should strictly apply only
for sY

2 � 1. On the other hand, numerical simulations
indicate that the first-order results are robust and applicable
for sY

2 close to and even above 1 [Bellin et al., 1992;
Salandin and Fiorotto, 1998; Hassan et al., 1998]; this has
been explained by a combined effect of reduced fluctuations
and increased correlation of the flow field relative to the
lnK field. Furthermore, the Lagrangian/trajectory theoret-
ical approaches [e.g., Dagan, 1982, 1984; Shapiro and
Cvetkovic, 1988] typically assume the equivalence between
Lagrangian and Eulerian flow fields, the statistics of which

1Department of Land and Water Resources Engineering, Royal Institute
of Technology (KTH), Stockholm, Sweden.

2Department of Civil and Architectural Engineering, University of Split,
Split, Croatia.

Copyright 2009 by the American Geophysical Union.
0043-1397/09/2008WR007168$09.00

W07402

WATER RESOURCES RESEARCH, VOL. 45, W07402, doi:10.1029/2008WR007168, 2009
Click
Here

for

Full
Article

1 of 24

http://dx.doi.org/10.1029/2008WR007168


can diverge for increasing variability. Thus there are still
open issues regarding the relationship between the lnK and
Lagrangian random fields, the resolution of which can
provide more reliable predictive tools.
[4] Geological formations may exhibit a wide range of

heterogeneous structures, often with significant complexity
depending on the scale of interest. Typical well known
examples are low heterogeneous Borden (sY

2 = 0.29
[Mackay et al., 1986]) and Cape Cod (sY

2 = 0.26 [LeBlanc
et al., 1991]) aquifers or highly heterogeneous Columbus
aquifers (MADE-1 and MADE-2 tracer test [Boggs et al.,
1992]) with approximately sY

2 = 4.5 consisting of, for
instance, alluvial terrace deposits composed of sand and
gravel with minor amounts of silt and clay which span
hydraulic conductivity values over 6 orders of magnitude.
Therefore variations in the hydraulic properties may be very
large and it is of considerable theoretical and practical
interest to better understand flow and advective transport
in formations of high heterogeneity. To this end, numerical
simulations are a first choice as an experimental method;
however, accurate simulations of flow and advective trans-
port in highly heterogeneous porous media still pose con-
siderable challenges for any numerical method.
[5] Several studies have specifically addressed flow and

transport in highly heterogeneous porous media, typically
using a ‘‘benchmark’’ configuration and structure: A two- or
three-dimensional regular (rectangular) domain with a
multi-Gaussian lnK and an exponential correlation structure.
Cvetkovic et al. [1996] analyzed Lagrangian velocity statis-
tics and its deviations from Eulerian velocity statistics in
presence of the high heterogeneity with lnK variance up to 4,
using a hybrid finite element numerical scheme. Salandin
and Fiorotto [1998] used classic finite element formulation
with velocity postprocessor [Cordes and Kinzelbach, 1992]
and studied flow and advective transport with lnK variance
up to 4 in order to show Lagrangian and Eulerian velocity
statistics and dispersion coefficients. More recently, de
Dreuzy et al. [2007] extended their work to high-performance
2-D parallel simulations in a large domain and lnK variance
up to 9, investigating asymptotic behavior of the macro-
dispersion tensor. A unique methodology was proposed by
Janković et al. [2003, 2006] and Fiori et al. [2006] using a
multiindicator structure in three dimensions and addressing
effects of high heterogeneity in non-Gaussian lnK fields.
Moreover, Zinn and Harvey [2003] compared flow, disper-
sion, and mass transfer characteristics in the classic multi-
Gaussian field and two non-Gaussian fields with connected
either high- and low-conductivity zones, respectively; all
having lnK variances from 1 to 9. Trefry et al. [2003] studied
preasymptotic transport behavior for a multi-Gaussian het-
erogeneity field with sY

2 � 4 and Gaussian correlation
structure. Valuable insight was gained from these studies
on flow statistics and macroscopic dispersion, in particular
that the first-order solutions provide robust estimates for a
multi-Gaussian heterogeneity field with lnK variance up to 1
[Wen and Gomez-Hernandez, 1998].
[6] In this paper we shall take advantage of the new

simulation methodology referred to as the adaptive Fup
Monte Carlo method (AFMCM) presented by Gotovac et al.
[2009] and study flow and travel time ensemble statistics in
highly heterogeneous porous media with lnK variance up to

8; this approach relies on the general adaptive Fup multi-
resolution framework [Gotovac et al., 2003, 2007, 2009].
Probability density functions (pdf’s) of Lagrangian velocity,
transverse displacement, and travel time are to be investi-
gated for increasing lnK variability. Furthermore, statistical
moments for key transport variables are to be analyzed and
compared with available first- and second-order results,
whereas the simulated probability density functions for
key transport variables will be compared with standard
distributions, including the solution to the advection-disper-
sion equation. Particularly, this paper will show that corre-
lation structures of two Lagrangian variables, inverse
Lagrangian velocity or slowness and slope, define prea-
symptotic behavior of the longitudinal and transverse dis-
persion. Finally, we provide simple estimators for Eulerian
and Lagrangian velocity variance, travel time variance,
slowness, and longitudinal macrodispersivity applicable
for lnK variance as high as 8.

2. Problem Formulation

[7] In this paper we shall take advantage of the simulation
methodology AFMCM and its high accuracy presented by
Gotovac et al. [2009] to study experimentally flow and
advective transport in a highly heterogeneous porous
medium. All relevant flow and transport variables are
considered as random space functions (RSFs).
[8] In real aquifers, the heterogeneous structures can

typically be very complex, possibly exhibiting high vari-
ability, anisotropy, trends, connectivity of extremely low
and/or high permeability zones, and three-dimensional non-
Gaussian features [e.g., Gomez-Hernandez and Wen, 1998].
In this study, we consider a ‘‘classical’’ structure of the
hydraulic conductivity, as a reference case for comparison
with analytical and other numerical solutions: multi-Gauss-
ian with an exponential covariance, completely defined by
first two spatial moments.
[9] The exponential covariance, typically assumed in

analytical first- and second-order studies of groundwater
flow due to suitable integration properties, abruptly
decreases values close to the origin in comparison with
other common covariances (e.g., Gaussian as given by
Trefry et al. [2003]). These effects cause log conductivity
fields in each realization to exhibit large spatial contrasts
and gradients, which make flow and transport simulations
very demanding for any numerical procedure; hence this
configuration provides a challenging benchmark for our
numerical solution.
[10] Our further simplification is to consider a two-dimen-

sional steady state and ‘‘uniform-in-the-average’’ flow field
with a basic configuration illustrated in Figure 1, imposing
the following flow boundary conditions: Left and right
boundaries are prescribed a constant head, while the top
and bottom are no-flow boundaries. The groundwater veloc-
ity field u = (vx, vy) is also a RSF with the mean uA (vxA � u,
vyA � 0), where the subscript A denotes the arithmetic mean,
i.e., uA � E (u) and u � E (u). This configuration is linked
with multi-Gussian lnK field and has been extensively
studied in the literature [e.g., Bellin et al., 1992; Salandin
and Fiorotto, 1998; Hassan et al., 1998; Janković et al.,
2003; de Dreuzy et al., 2007].
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[11] Furthermore, we shall focus on quantifying advective
transport using travel time and transverse displacement
statistics as functions of the longitudinal distance (i.e.,
‘‘control plane,’’ parallel to the mean flow) [Dagan et al.,
1992; Cvetkovic et al., 1992; Andricevic and Cvetkovic,
1998] required frequently in applications such as risk
assessment and regulatory analysis. Transport simulations
will be performed in the inner computational domain in
order to avoid nonstationary influence of the flow boundary
conditions (Figure 1). Injection tracer mass is divided to the
certain number of particles which all carry the equal fraction
of total mass. Particles are injected along the source line and
followed downstream such that travel time and transverse
displacement are monitored at arbitrary control planes
denoted by x.
[12] There are two different injection modes: uniform

resident and uniform in-flux [Kreft and Zuber, 1978;
Demmy et al., 1999]. For brevity, we use terms ‘‘resident’’
and ‘‘in-flux’’ injection mode. For both modes, uniform
refers to the homogeneous mass density in the source.
‘‘Resident’’ refers to the volume of resident fluid into which
the solute is introduced, while ‘‘in-flux’’ refers to the
influent water that carries the solute into the flow domain.
Particles are separated by equal distance within the source
line for resident and by distance inversely proportional to
the specified flow rate between them for in-flux mode
[Demmy et al., 1999]. In this study, inert tracer particles
are injected instantaneously according to the in-flux injec-
tion mode which yields statistically stationary Lagrangian
velocities in the entire transport domain; this is in contrast to
the resident injection mode where Lagrangian velocity
statistics are nonstationary over a significant distance fol-
lowing the source line [Cvetkovic et al., 1996].
[13] In this first application of the AFMCM for analyzing

flow and advective transport in heterogeneous porous
media, our main interest is (1) to demonstrate the applica-
bility of the method for a ‘‘benchmark’’ configuration and
conditions that are familiar in the literature and hence can be
compared, both with theoretical and simulation results, and
(2) to elucidate some possible new features of advective
transport in this simple configuration when lnK variance of
hydraulic conductivity exceeds 4. The main output stochas-
tic variables are Lagrangian and Eulerian velocity, travel

time, and transverse displacement, but also slowness (in-
verse Lagrangian velocity) and streamline Lagrangian slope
which are important for analyzing longitudinal and trans-
versal dispersivity, respectively.

3. Theory

[14] Let K(x) = KGe
Y(x) define a random space function

(RSF) for the hydraulic conductivity where the subscript G
denotes the geometric mean and Y is a multi-Gaussian log
conductivity field completely represented by two first
moments: N(0, sY

2) with CY(x, x
0) = sY

2 exp (�jx � x0j/IY).
For a given Y, it is a possible to calculate Eulerian velocity
statistics for ‘‘uniform-in-the-average-flow’’ defined by pdf
or alternatively by mean uA (vxA � u, vyA � 0) and
covariances Cvx

and Cvy
, which are available in closed form

as functions of u, sY
2, and IY for lower heterogeneity [e.g.,

Cvetkovic and Shapiro, 1990; Rubin, 1990]. A consistent
first-order approximation yields for the mean velocity uA =
u = KG J/ne, (where J is a mean hydraulic gradient, ne is a
constant effective porosity, and uG � uH � uA) and for the
variances

s2
vx

u2
¼

3

8
s2
Y

s2
vy

u2
¼

1

8
s2
Y

[Dagan, 1989]. A complete first-order covariance is given
by Rubin [1990]. A more complicated second order flow
analysis yields

s2
vx

u2
¼

3

8
s2
Y þ 0:0282 s4

Y ;

s2
vy

u2
¼

1

8
s2
Y þ 0:041 s4

Y ;

and closed form covariance expressions given by Hsu et al.
[1996].
[15] Let a dynamically inert and indivisible tracer parcel

(or particle) be injected into the transport (inner computa-
tional) domain at the source line (say at origin x = 0) for a
given velocity field. The tracer advection trajectory can be
described using the Lagrangian position vector as a function
of time X(t) = [X1(t), X2(t)] [e.g., Dagan, 1984] or,
alternatively, using the travel (residence) time from x = 0
to some control plane at x, t(x), and transverse displacement
at x, h(x) [Dagan et al., 1992]. The t and h are Lagrangian
(random) quantities describing advective transport along a
streamline. The advective tracer flux [M/TL] is proportional
to the joint probability density function (pdf) fth (t, h; x)
[Dagan et al., 1992]. Marginal pdf’s ft =

R

fth dh and
fh =

R

fth dt separately quantify advective transport in
the longitudinal and transverse directions, respectively. For-
mally, t and h are related to X1 and X2 as t(x) = X1

�1(x)
and h(x) = X2[t(x)]; this description is unique if the tracer
particle moves in the direction of the mean flow only, i.e.,

Figure 1. Simulation domain needed for global flow
analysis and inner computational domain needed for flow
and transport ensemble statistics.
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if X1(t) is a monotonously increasing function implying no
backward flow

t x; að Þ ¼

Z x

0

1

vx q ; h q ; að Þð Þ
d q; h x; að Þ ¼

Z x

0

vy q; h q ; að Þð Þ

vx q; h q ; að Þð Þ
d q;

ð1Þ

where y = a is the initial point of a streamline at x = 0. This
concept is valid from low to mild heterogeneity where vx >
0 [e.g., Dagan et al., 1992; Guadagnini et al., 2003;
Sanchez-Villa and Guadagnini, 2005].
[16] In the present study, we shall require a more general

definition than (1) where t and h are calculated along
streamlines using the total velocity instead of its longitudi-
nal component in order to account for backward flow and
multiple crossings. Let l denote the intrinsic coordinate
(length) along a streamline/trajectory originating at y = a
and x = 0; we shall omit a in the following expressions for
simplicity. The trajectory function can be parameterized
using l as [Xx(l), Xy(l)] and we can write

t xð Þ ¼

Z l xð Þ

0

1

v Xx xð Þ;Xy xð Þ
� � d x; h xð Þ ¼

Z l xð Þ

0

vy Xx xð Þ;Xy xð Þ
� �

v Xx xð Þ;Xy xð Þ
� � d x:

ð2Þ

Our focus in the computations will be on the first-passage
time; then we can introduce a simple scaling x = (l(x)/x) V �
l(x) V whereby

t xð Þ ¼

Z x

0

l xð Þ

v Xx Vð Þ;Xy Vð Þ
� � d V �

Z x

0

a V; xð Þ dV ð3Þ

h xð Þ ¼

Z x

0

vy Xx Vð Þ;Xy Vð Þ
� �

v Xx Vð Þ;Xy Vð Þ
� �l xð Þ d V �

Z x

0

b z; xð Þ d z: ð4Þ

[17] In (3), a is referred to as the ‘‘slowness’’ or the
inverse Lagrangian velocity [T/L], while b in (4) is referred
to as the dimensionless streamline slope function, or briefly
‘‘slope.’’ It may be noted that in this approach, all Lagrang-
ian quantities depend on space rather than time as in the
traditional Lagrangian approach [e.g., Taylor, 1921; Dagan,
1984]. Scaled velocities defined by w(V) � v/l and wy(V) �
vy/l will be useful for subsequent statistical analysis (in the
rest of the paper, we shall refer to w(V) as ‘‘Langrangian
velocity’’). Note that l(x) is unique as the trajectory length
for the first crossing at x.
[18] The first two moments of t (3) and h (4) are computed

as

tA xð Þ � E tð Þ ¼

Z x

0

aA zð Þdz;s2
t xð Þ � E t � tAð Þ2

h i

¼

Z x

0

Z x

0

Ca z 0; z 00ð Þdz 0dz 00

hA xð Þ � E hð Þ ¼ 0; s2
h xð Þ � E h2ð Þ ¼

Z x

0

Z x

0

Cb z 0; z 00ð Þdz 0dz 00;

ð5Þ

where the covariance functions are defined by

Cm x0; x00ð Þ � E m x0ð Þm x00ð Þ½  � E m x0ð Þ½ E m x00ð Þ½ ; m ¼ a;bð Þ:

ð6Þ

The moments of the travel time and transverse displacement
are completely defined by the statistics of the slowness and
slope; implicit in (5) and (6) is the assumption of statistical
stationarity, i.e., integral functions in (5) and (6) are
assumed independent of a and x.
[19] The first-order approximation of advective transport

is based on the assumption that the streamlines are essen-
tially parallel, i.e., h(x) � 0 and l � 1, whereby w � vx(x, 0)
and vy[x, h(x)] � vy(x, 0), which implies the equivalence of
the Eulerian and Lagrangian velocity, with absence of
backward flow. Under such conditions, the covariances
Cm (m = a, b) in (5) can be computed as

Ca x0; x00ð Þ �
1

u2
Cvx x0 � x00; 0ð Þ½ ;Cb x0; x00ð Þ �

1

u2
Cvy

x0 � x00; 0ð Þ½ ;

ð7Þ

where Cvx
and Cvy

are covariance functions of the Eulerian
velocity components vx and vy [Rubin, 1990], respectively;
in (7) we have used the fact that the cross covariance
between vx and vy is zero [Rubin, 1990]. Since at first order
aA � (1/u)A � 1/u, the first moment of travel time is
obtained from (5) as

tA xð Þ ¼ xaA ¼ x=u ¼ xne=KGJ : ð8Þ

[20] Using (5) and (7), the travel time variance is derived
in an analogous form as the longitudinal position variance
[e.g., Dagan, 1989],

s2
tu

2
A

I2Ys
2
Y

¼ 2c� 3 lncþ
3

2
� 3E þ 3 Ei �cð Þ þ

1þ cð Þe�c � 1

c2

� �

;

ð9Þ

where c � x/IY, E = 0.5772156649 is the Euler number, and
Ei is the exponential integral. Asymptotic values of st

2 were
derived by Shapiro and Cvetkovic [1988].
[21] The first-order result for the transverse displacement

variance sh
2 is obtained from (5) and (7) in an analogous

form as the transverse variance obtained from Lagrangian
position analysis [e.g., Dagan, 1989]:

s2
h

I2Ys
2
Y

¼ lnc�
3

2
þ E � Ei �cð Þ þ 3

1� 1þ cð Þe�c

c2

� �

: ð10Þ

[22] Finally, we note the empirical relationships for the
geometric mean of the Lagrangian velocity [Cvetkovic et al.,
1996],

wg

u
¼ 1þ

s2
Y

6
; ð11Þ
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and variance of the ln(w),

s2
ln wð Þ ¼ 2 ln 1þ

s2
Y

6

	 


: ð12Þ

4. Computational Framework

4.1. Monte Carlo Methodology

[23] Our new simulation methodology, referred to as the
adaptive Fup Monte Carlo method (AFMCM) and pre-
sented by Gotovac et al. [2009], supports the Eulerian-
Lagrangian formulation which separates the flow from the
transport problem and consists of the following common
steps [Rubin, 2003]: (1) generation of as high number as
possible of log conductivity realizations with predefined
correlation structure, (2) numerical approximation of the log
conductivity field, (3) numerical solution of the flow

equation with prescribed boundary conditions in order to
produce head and velocity approximations, (4) evaluation of
the displacement position and travel time for a large number
of the particles, (5) repetition of steps 2–4 for all realiza-
tions, and (6) statistical evaluation of flow and transport
variables such as head, velocity, travel time, transverse
displacement, solute flux, or concentration (including their
cross moments and pdf’s).
[24] Figure 2 shows the flowchart of the AFMCM, which

represents a general framework for flow and transport in
heterogeneous porous media. The methodology is based on
Fup basis functions with compact support (related to the
other localized basis functions such as splines or wavelets)
and Fup collocation transform (FCT), which is closely
related to the discrete Fourier transform and can simply
represent, in a multiresolution way, any signal, function, or
set of data using only few Fup basis functions and resolu-
tion levels on nearly optimal adaptive collocation grid
resolving all spatial and/or temporal scales and frequencies.
Fup basis functions and FCT were presented in detail by
Gotovac et al. [2007]. New or improved Monte Carlo
methodology aspects are (1) Fup regularized transform
(FRT) for data or function (e.g., log conductivity) approx-
imation in the same multiresolution way as FCT, but
computationally more efficient, (2) novel form of the
adaptive Fup collocation method (AFCM) for approxima-
tion of the flow differential equation, (3) new particle
tracking algorithm based on Runge-Kutta-Verner explicit
time integration scheme and FRT, and (4) Monte Carlo
(MC) statistics represented by Fup basis functions. All
mentioned MC methodology parts are presented by Gotovac
et al. [2009].
[25] Finally, AFMCM uses a random field generator

HYDRO_GEN [Bellin and Rubin, 1996] for step 1, FCT
or FRT for log conductivity approximation (step 2), AFCM
for the differential flow equation (step 3), new particle
tracking algorithm for transport approximations for step 4,
and statistical properties of the Fup basis functions for step 6
(Figure 2).

4.2. Experimental Setup

[26] Figure 1 shows flow and inner transport domain,
while Table 1 presents all input data needed for Monte Carlo
simulations. Experimental setup presented here is based on
convergence and accuracy analysis of Appendix A and
Gotovac et al. [2009].
[27] Figure 1 shows a 2-D computational domain for

steady state and unidirectional flow simulations using three
sets of simulations defined on domains 64IY � 32IY, 128IY �
64IY, and 64IY � 128IY (IY is the integral scale; Table 1),
imposing the following boundary conditions: Left and right
boundaries are prescribed a constant head, while the top and
bottom are no-flow boundaries. The random field generator
HYDRO_GEN [Bellin and Rubin, 1996] generates lnK
fields for six discrete values of lnK variance: 0.25, 1, 2, 4,
6, and 8; for simplicity, the porosity will be assumed
uniform. Gotovac et al. [2009] defines discretization or
resolution for lnK and head field for domain 64IY � 32IY
in order to get accurate velocity solutions for particle
tracking algorithm (Table 1); nY/IY = 4 (four collocation
points per integral scale) and nh/IY = 16 for low and mild
heterogeneity (sY

2 � 2) and nY/IY = 8 and nh/IY = 32 for high
heterogeneity (sY

2 > 2). For other two set of simulations on

Figure 2. Flowchart of the presented methodology: the
adaptive Fup Monte Carlo method (AFMCM).
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larger domains we use nY/IY = 4 and nh/IY = 16 for high
heterogeneity in order to keep 2.1 � 106 head unknowns in
each realization, which is our current computational limit
(Table 1), but still maintaining a relatively accurate velocity
solution according to Gotovac et al. [2009].
[28] Transport simulations will be performed in the inner

domain in order to avoid nonstationary influence of the flow
boundary conditions. Appendix A shows particular analysis
which finds an inner computational domain for all three sets
of simulations implying flow criterion that each point of the
inner domain must have constant Eulerian velocity variance
(Table 1, Figure A1). Figure A2 shows that for high
heterogeneity all domains ensure similar travel time results,
while larger transversal dimensions are needed for reliable
transverse displacement statistics. All simulations use up to
NP = 4000 particles, nMC = 500 Monte Carlo realizations
and relative accuracy of 0.1% for calculating t and h in each
realization in order to minimize statistical fluctuations
[Gotovac et al., 2009, Table 1]. Source area (or line; y0 =
12IY) is located in the middle of the left side of the inner
domain and is sufficiently small that injected particles do
not fluctuate outside the inner domain and sufficiently large
such that change in transport ensemble statistics due to
source size is minimized (Table 1, Figure A3). Finally, as
mentioned above, in-flux injection mode is used, which
imply that position of each particle (yi) in the local coordi-
nate system of source line can be obtained solving the
following nonlinear equation:

i ¼ NP

Z

yi

0

vx 0; yð Þ d y=

Z

y0

0

vx 0; yð Þ d y i ¼ 0; . . . ;NPð Þ

[Demmy et al., 1999].
[29] The cumulative distribution function (CDF) of the

travel time is to be computed as

Ft t; xð Þ ¼ EðH t � t xð Þð Þ ¼
1

NPnMC

X

NP

i¼0

X

nMC

j¼1

H t � t xð Þð Þð Þ; ð13Þ

where H is a Heaviside function, NP is number of particles,
nMC is number of Monte Carlo realizations, while travel
time in (13) has the form (3) for each particular particle and
realization; therefore expectation in (13) is made over all
realizations and particles from the source. Probability density
function (pdf) is simply obtained as ft(t;x) = @(Ft(t;x))/@t.
Analogous procedure is applied for all other Lagrangian

variables such as transverse displacement, Lagrangian
velocity, slowness and slope. Because of stationarity,
Eulerian velocity pdf is calculated over the whole inner
computational domain and all realizations are as in
Appendix A. Detailed description of Monte Carlo statistics
using AFMCM is presented by Gotovac et al. [2009].

5. Transport Statistics

5.1. Travel Time

[30] Appendix A shows that all three sets of simulations
give practically the same travel time statistics. Therefore
here we show high-resolution travel time results for domain
64IY � 32IY and other related input data in Table 1
(simulations 1–6).
[31] Dimensionless mean travel time is closely repro-

duced with expression (8) for all considered sY
2. The

dimensionless travel time variance as a function of distance
is illustrated in Figure 3 where a comparison is made with
the first-order solution (9). The simulated variance is a
nonlinear function of the distance from the source only,
say, up to about 5IY, after which it attains a near-linear
dependence. Interestingly, the nonlinear features of st

2 with
distance diminish as sY

2 increases: The discrepancy of the
simulated st

2 from a line set at the origin is larger for, say, sY
2

= 2 (Figure 3a) than for sY
2 = 8 (Figure 3b); this st

2 behavior
will be explained in the sequel with respect to the slowness
correlation (equation (5)).
[32] The comparison with the first-order solutions indi-

cates, consistent with earlier studies, that up to sY
2 = 1,

equation (9) reproduces simulated values reasonably well,
although some deviations are visible even for sY

2 = 0.25
(Figure 3a). With increasing sY

2, the deviations are signifi-
cantly larger between the simulated and first-order solution
(relative error er = (st,AFMCM

2 � st,1
2 )/st,AFMCM

2 of the first-
order theory is only 4.7% for sY

2 = 0.25, 13.3% for sY
2 = 1,

but even 65.6% for sY
2 = 8; Figure 3b). Actually, the first-

order variance is relatively accurate and robust for low
heterogeneity up to sY

2 = 1. Note that st
2 in Figure 3 retains a

concave form, in contrast to the case of particle injection in
the resident injection mode, where the variance st

2 attains a
convex form within the first 7–12 integral scales [Cvetkovic
et al., 1996]. The main reason for the difference is the
nonstationarity of the Lagrangian velocity and slowness for
resident injection mode. For in-flux injection, the Lagrang-
ian velocity and slowness are stationary and consequently
the travel time variance attains a linear form already after a
few integral scales [Demmy et al., 1999]. Impact of the

Table 1. All Input Data for Monte Carlo Simulations

Flow
Domain

First Set (Simulations 1–6),
64IY � 32IY

Second Set (Simulations 7–9),
128IY � 64IY

Third Set
(Simulation 10),
64IY � 128IY

1, sY
2 = 0.25 2, sY

2 = 1 3, sY
2 = 2 4, sY

2 = 4 5, sY
2 = 6 6, sY

2 = 8 7, sY
2 = 4 8, sY

2 = 6 9, sY
2 = 8 10, sY

2 = 8

nY/IY 4 4 8 8 8 8 4 4 4 4
nh/IY 16 16 16 32 32 32 16 16 16 16
Inner domain 40IY � 26IY 40IY � 26IY 40IY � 24IY 40IY � 20IY 40IY � 18IY 40IY � 16IY 100IY � 52IY 100IY � 46IY 100IY � 40IY 40IY � 96IY
Np 1000 1000 1000 4000 4000 4000 4000 4000 4000 4000
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Lagrangian velocity and slowness will be further discussed
in sections 7 and 9.
[33] The travel time probability density functions (pdf’s)

are illustrated on a log-log plot for three chosen control
planes and all considered sY

2 in Figure 4. Deviations from a
symmetrical distribution (e.g., lognormal) decrease with
distance from the source area, and increase significantly
with increasing sY

2. For low heterogeneity (Figures 4a and
4b), small deviations from a symmetric distribution occur
only within the first 10–20 integral scales, while almost
complete symmetry is attained after 40 integral scales. For
mild heterogeneity (Figure 4c) asymmetry of the travel time
density become larger, diminishing with increasing dis-
tance; at around 40 integral scales a symmetric distribution
approximates well the simulated pdf. For high heterogeneity
(Figures 4d–4f) the computed pdf is increasingly asymmet-
ric, with both the early and late arrival shifted to later times.
Although the asymmetry in the pdf diminishes with increas-
ing distance, for high heterogeneity it is still maintained
over the entire considered domain of 40IY. The second set of
simulations with larger longitudinal domain of 100IY does
not show significantly smaller deviations between the actual
travel time pdf and lognormal approximation.
[34] The travel time density exhibits power law tailing

with an increasing (steeper) slope for larger distance. The
inferred slopes are summarized in Table 2 for all considered
sY
2 and three locations (x/IY = 10, 20, and 40). All slopes are

higher than 3:1, implying that in spite of a power law
asymptotic form, advective transport under investigated
conditions is not anomalous even for the highest sY

2 con-
sidered [Scher et al., 2002; Fiori et al., 2007].

5.2. Transverse Displacement

[35] Appendix A shows that transverse spreading is very
sensitive to the transversal size of the domain. Therefore we
use the largest required domain for high heterogeneity cases
(sY

2 > 2) as stated in section 4.2 (simulations 1–3, 7–8, and

10; see also Table 1) in order to satisfy flow and transport
criteria. The first moment of the transverse displacement h is
close to zero with maximum absolute values less than 0.1IY.
Figure 5a shows dimensionless transverse displacement
variance sh

2 for all control planes and considered sY
2.

Variance sh
2 increases nonlinearly with distance and its form

as a function of x is in qualitative agreement with the first-
order solution. The magnitude of sh

2 is underestimated by
the first-order results with relative error of 12.8% for sY

2 =
0.25 and 39.4% for high heterogeneity.
[36] Figures 5b–5d show transverse displacement pdf

(sY
2 = 1, 4, and 8) at three different control planes (x/IY = 1, 5,

and 40). Generally, the transverse displacement pdf shows a
higher peak and wider tailings compared with the normal
distribution, mainly due to streamline fluctuations around the
mean and flow channeling. These deviations are more
significant for very close control planes (x/IY < 10) and
high heterogeneity cases (sY

2 � 4). Moreover, for x/IY > 20,
transverse displacement is found to be very close to the
normal distribution, even in a case of high heterogeneity
[Cvetkovic et al., 1996]. This behavior is also shown in
Table 3 with respect to the kurtosis coefficient and sY

2 = 8.
Kurtosis is relatively high for very close control planes
implying sharper peak around the mean, while for x/IY > 20
kurtosis is close to 3, implying convergence to the normal
distribution.

6. Flow Statistics

[37] If integral expressions for travel time and transverse
displacement (1) are written in a discrete form, e.g., as

t xð Þ ¼
X

N

i¼0

aiDxi;

we obtain a form consistent with a random walk representa-
tion of transport [e.g., Scher et al., 2002]. Of particular

Figure 3. Dimensionless travel time variance (AFMCM and first-order solution): (a) sY
2 = 0.25, 1, and

2, and (b) sY
2 = 4, 6, and 8. Simulations 1–6 are used (Table 1).
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Figure 4. Travel time probability density function (pdf) for three different control planes and all
considered sY

2 in log-log scale including comparison with lognormal distribution. Simulations 1–6 are
used (Table 1).
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significance is that we use a Cartesian coordinate x as the
independent variable, and thus the domain can be defined
with a specified number of segments of a constant or
variable length, and a particle is viewed as performing
jumps (‘‘hops’’) from one segment to the next. In such a
representation of advective transport, the key statistical
quantities are a and b. Furthermore, the segment length

(constant or variable) needs to be appropriately defined in
relation to the integral scales of the Lagrangian velocity
field. Without attempting to pursue such analysis at this
time, we shall take advantage of the proposed AFMCM
approach in order to study the flow statistics, first of the

Table 2. Travel Time Probability Density Function Asymptotic

Slopes for Different lnK Variances and Control Planesa

sY
2 4 6 8

x/IY = 10 4.21:1 3.43:1 3.07:1
x/IY = 20 4.67:1 3.62:1 3.37:1
x/IY = 40 5.68:1 4.20:1 3.54:1

aSimulations 1–6 are used.

Figure 5. Dimensionless transverse displacement: (a) variance for all considered sY
2, pdf’s in semilog

scale for different control planes and (b) sY
2 = 1, (c) sY

2 = 4, and (d) sY
2 = 8. Simulations 1–3, 7–8, and 10

are used (Table 1).

Table 3. Kurtosis for Transverse Displacement Probability

Density Function and sY
2 = 8a

x/IY Kurtosis (h)

1 9.675
2 5.631
5 4.174
10 3.522
20 3.204
40 3.025

aSimulation 10 is used.
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velocity field, and then more significantly, of the slowness a
with emphasis on travel time and longitudinal dispersion,
and slope b with emphasis on transverse displacement and
transverse dispersion. Simulations 1–6 are used for all
variables; apart from b which use simulations 1–3, 7–8,
and 10 (Table 1). It means that both velocities share the
same area, i.e., inner computational domain as specified in
Figures 1 and A1 where Eulerian velocity is stationary.
Eulerian velocity statistics are calculated in collocation
points of head solution within the inner domain. On the
other side, Lagrangian velocity and other Lagrangian
variables are calculated using the certain number of particles
and control planes as specified in Table 1. Because of the
weak stationarity of log conductivity field that correlation
depends only on the separation between two points, rather
than its actual positions, both velocities share the same
property. Consequently, mean, variance, and pdf are
stationary for all points for Eulerian velocity or control
planes for Lagrangian velocity in the inner domain which
significantly simplifies this analysis.

6.1. Mean and Variance

[38] Figure 6a illustrates how different dimensionless
mean velocities change with increasing sY

2. Arithmetic mean
of vx/u and vy/u is unity and zero, respectively [Dagan,
1989]. Discrepancy between theoretical and numerical
results is the first indicator of numerical error (<3% even
for high-heterogeneity cases; see Gotovac et al. [2009]).
Geometric mean of the dimensionless Lagrangian velocity
w/u increases linearly, while Eulerian geometric mean
decreases nonlinearly with increasing sY

2, due to the forma-
tion of preferential flow ‘‘channels.’’ An empirical expres-
sion for geometric mean of Lagrangian velocity suggested
by Cvetkovic et al. [1996, equation (11)] appears as a good
estimator, even for sY

2 > 4. Note that arithmetic mean of au
and b is unity and zero, respectively.
[39] In Figures 6b–6d the dependence of velocity-related

variances on sY
2 is illustrated. The Eulerian velocity variance

is bounded by the first-order [Rubin, 1990] and second-
order [Hsu et al., 1996] results as lower and upper limit,
respectively (Figures 6b and 6c). The first-order solution is
accurate for low heterogeneity cases sY

2 < 1 and acceptable
for mild heterogeneity with sY

2 � 2 (relative error less than
10% for longitudinal velocity, but up to 34% for transverse
velocity). The second-order solution is accurate and robust
for low and mild heterogeneity, but not appropriate for high
heterogeneity (for sY

2 = 4 relative error is around 19% for
transversal velocity).
[40] Generally, both analytic solutions better approximate

longitudinal than the transverse velocity variance. Numer-
ical results of Salandin and Fiorotto [1998] agree quite well
with our results up to sY

2 � 4, especially for transverse
variance. Their longitudinal variance is slightly higher than
the second-order theory, which may be a consequence of the
small numerical error. Recent numerical results of de
Dreuzy et al. [2007] which used sY

2 � 9 are in a close
agreement with Salandin and Fiorotto [1998] for sY

2 up to 4,
but they did not report results for sY

2 > 4. J. R. de Dreuzy
et al. (personal communication, 2008) calculated flow statis-
tics in a single realization of a large domain (409.6IY �
409.6IY and nY = 10). They obtained 6–8% smaller varian-
ces than published MC results with 100 realizations

[de Dreuzy et al., 2007], explaining this difference as a lack
of the extreme velocity values in the single realization.
Furthermore, Zinn and Harvey [2003] reported smaller
variance values than de Dreuzy et al. [2007], although they
used the same block-centered finite difference procedure.
Nevertheless, we can conclude that our velocity variances
are in a good agreement with J. R. de Dreuzy et al. (personal
communication, 2008) for high heterogeneity in a wide
range of sY

2 2 [0, 8]. We are now in position to provide
simple estimator for Eulerian variances in the form sug-
gested by Hsu [2004],

s2
i

u2
¼ s

2 1½ 
i 1þ

1

c

s
2 2½ 
i

s
2 1½ 
i

 !c

; i ¼ vx; vy; ð14Þ

where the superscript in brackets denotes variance correc-
tions obtained by the first- and second-order presented in
section 3, while c is an unknown real number which can be
calibrated using MC results. We obtain c as 0.175 and 0.535
for longitudinal and transversal Eulerian variance, respec-
tively, whereby

s2
vx

u2
¼

3

8
s2
Y 1þ

1

0:175

0:0282 s4
Y

3=8ð Þs2
Y

	 
0:175

¼
3

8
s2
Y 1þ

376

875
s2
Y

	 
0:175

ð15Þ

s2
vy

u2
¼

1

8
s2
Y 1þ

1

0:535

0:041s4
Y

1=8ð Þs2
Y

	 
0:535

¼
1

8
s2
Y 1þ

328

535
s2
Y

	 
0:535

:

ð16Þ

Figures 6b–6c show that estimators (15) and (16) reproduce
reasonably well MC results.
[41] Figure 6b shows dimensionless variance of log-

Lagrangian velocity for which empirical expression given
by Cvetkovic et al. [1996, equation (12)] appears as a good
estimator, even for sY

2 > 4. Figure 6c presents variance of
the slope function which is smaller than one and increases
as sY

2 increases due to more variable flow in transversal
direction. Figure 6d presents dimensionless variances of
Lagrangian velocity and slowness which are significantly
larger than Eulerian velocity variances. Note that all mean
and variances show stationarity with same values in all
control planes due to used in-flux injection mode. On the
other side, Cvetkovic et al. [1996] used resident mode and
reported Lagrangian nonstationarity within first 7–12IY. In
section 7 we shall take advantage of the relatively simple
dependency of sa

2 u on sY
2 as given in Figure 6d to derive an

estimator for longitudinal dispersion.

6.2. Correlation

[42] The correlation of the Eulerian velocity components
vx and vy is illustrated in Figures 7a and 7b, respectively, for
different sY

2. Longitudinal velocity correlation function in
the x direction decreases with increasing sY

2 (Figure 7a) due
to change in velocity structure by preferential flow. In
Figure 7b, high heterogeneity yields a diminishing ‘‘hole
effect.’’ It is important to note, however, that in contrast to
the correlation function, the covariance function increases
with sY

2 because variance (Figures 6b and 6c) more rapidly
increases than correlation function decreases for large sY

2.
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Figure 6. First two Eulerian and Langrangian velocity moments as a function of sY
2: (a) arithmetic and

geometric means, variance values of (b) vx/u and ln(w), (c) vy /u and b, and (d) au and w/u. Equations (11)–
(12) from Cvetkovic et al. [1996] are included in order to estimate geometric mean and variance of the
Lagrangian velocity, respectively. Equations (15) and (16) present estimators for the AFMCM Eulerian
velocity longitudinal and transversal variance, respectively. Solutions of Eulerian velocity variances of
Salandin and Fiorotto [1998] and J. R. de Dreuzy et al. (personal communication, 2008) are also included.
Simulations 1–6 are used for all variables, apart from b which use simulations 1–3, 7–8, and 10 (Table 1).
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Recalling Figure 14 of Gotovac et al. [2009], we can
conclude that first- and second-order theory provides upper
and lower covariance limits, respectively; however, for high
heterogeneity these approximations are poor.
[43] Figures 8a–8d illustrate correlation functions of

Lagrangian velocity w, slowness a, and slope b, for different
sY
2. Lagrangian velocity correlation function increases with

increasing sY
2 (Figure 8a), contrary to the Eulerian longitu-

dinal velocity component (Figure 7a). Thus the opposing
effect of increasing sY

2 on the correlation function of vx and
w clearly demonstrates the effect of increasingly persistent
flow along preferential channels.
[44] Correlation of the slowness a decreases with in-

creasing of sY
2 (Figures 8b and 8c), which has a direct effect

on the longitudinal dispersion quantified by the travel time
variance (section 7). Furthermore, travel time variance is a
completely defined by the covariance of the slowness
(equation (5)). Figures 8b and 8c indicate a relatively small
slowness correlation length and integral scale, approximately
equal to the integral scale of log conductivity. Therefore
integration of equation (5) yields only after a few IY a near-
linear travel time variance. After 30IY, slowness correlation
reaches zero for all considered sY

2. The travel time variance
asymptotically reaches a linear form after about 60IY.
Because of decreasing of the slowness correlation with
increasing sY

2, the travel time variance reaches an asymp-
totic linear shape at a smaller distance for higher sY

2, which
is intuitively unexpected and principally enables more
efficient calculation of the longitudinal dispersion than in
the classical ‘‘temporal’’ Lagrangian approach [see de
Dreuzy et al., 2007].
[45] Figure 8d presents slope correlation for high hetero-

geneity cases sY
2 � 4. The slope correlation shows ‘‘hole

effect’’ with integral scale which converges to zero. Corre-
lation does not change significantly with increasing sY

2,
approaching zero correlation between 4 and 5IY. By defini-

tion of equation (5), transverse displacement variance as-
ymptotically reaches constant sill if integral scale of the
slope function converges to zero. Impact of the slope
correlation and transverse displacement variance on trans-
verse dispersion will be shown in section 8.

6.3. Distribution

[46] Eulerian and Lagrangian velocity pdf’s are illustrated
on a log-log plot in Figures 9a and 9b for a low and high sY

2.
Negative values of Eulerian longitudinal velocity are dis-
carded because pdf is significantly closer to the lognormal
than normal pdf. The two pdf’s are very similar for small
heterogeneity as assumed by first-order theory [Dagan,
1989], but significant differences arise for high heterogene-
ity (sY

2 > 3) (Figure 9b). Once again, the divergence of the vx
and w pdf’s with increasing sY

2 indicate preferential flow or
channeling [Moreno and Tsang, 1994; Cvetkovic et al.,
1996]: The Lagrangian velocity pdf reflects a higher pro-
portion of larger velocities pertinent to the trajectories. By
contrast, Eulerian velocity pdf reflects a significant part of
low velocities, since preferential flow channels occupy only
a relatively small portion of the domain. A lognormal
distribution appears to be a satisfactory model only in the
case of the small heterogeneity; deviations are significant
for mild and especially high heterogeneity due to enhanced
asymmetry of the simulated pdf (Figure 9b). Therefore
differences between Eulerian and Lagrangian velocity pdf,
as well as pdf deviations from the lognormal distribution,
are indicators of preferential flow and channeling.
[47] Slowness (a) pdf shows similar characteristics as the

Lagrangian velocity (w) pdf concerning its shape, deviations
from the lognormal distribution, and its tailing (Figures 9c
and 9d). Slope (b) pdf shows symmetric and nearly normal
distribution for low heterogeneity (Figure 9e). High hetero-
geneity (Figure 9f) causes strongly nonnormal behavior
implying a more uniform pdf and different shape of the

Figure 7. Correlation functions for all considered sY
2: (a) longitudinal Eulerian velocity in the x

direction, and (b) transverse Eulerian velocity in the y direction. Simulations 1–6 are used for all
variables (Table 1).
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Figure 8. Correlation functions for different sY
2 in the streamline longitudinal direction: (a) Langrangian

velocity for domain 64IY � 32IY, (b) slowness or inverse Langrangian velocity for domain 64IY � 32IY,
(c) slowness for domain 128IY � 64IY, and (d) slope for domain 128IY � 64IY. Simulations 1–6 are used
for all variables for Figures 8a and 8b. Simulations 7–8 and 10 are used for all variables for Figures 8c
and 8d.
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Figure 9. Velocity pdf’s in log-log scale: Eulerian and Langrangian velocity pdf for (a) sY
2 = 1 and

(b) sY
2 = 6, inverse Langrangian velocity or slowness (a) pdf for (c) sY

2 = 1 and (d) sY
2 = 6. Comparison with

lognormal distributions is also included. Pdf’s of slope (b) in semilog scale for (e) sY
2 = 1 and (f) sY

2 = 6.
Comparison with normal distributions is also included. Simulations 1–6 are used for Figures 9a–9d, and
7–8 and 10 are used for Figures 9e–9f.
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tailings in comparison with the normal distribution. Two
small peaks occur symmetrically and approximately at
±E(l), representing influence of the vertical flow (and also
backward flow) due to bypassing of low-conductivity
zones.

7. Estimators for Asymptotic Longitudinal
Dispersion

[48] From the application perspective, the main interest is
predictive modeling of tracer transport, in particular the
possibility of relating a few key transport quantities to
measurable properties such as statistical parameters of the
hydraulic conductivity. The first-order theory provides a
robust predictive model for low to moderate lnK variances;
however, its limitations for highly heterogeneous porous
media are apparent for sY

2 > 1.
[49] Different conceptual strategies for modeling trans-

port in heterogeneous porous media have been presented in
the literature, such as the trajectory approach [Dagan, 1984;
Cvetkovic and Dagan, 1994a, 1994b], fractional diffusion
equation [Benson et al., 2000], nonlocal transport
approaches [Cushman and Ginn, 1993; Neuman and Orr,
1993], and continuous random walk methods [Scher et al.,
2002; Berkowitz et al., 2002]. In spite of these theoretical
advances, our main problem still remains understanding the
flow velocity and its Lagrangian variants (such as slowness)
and their relationship with the statistics of the hydraulic
conductivity. Here we shall focus our discussion on longi-
tudinal transport as quantified by the statistics of travel time,
in an attempt to provide simple and robust estimators first of
the slowness statistical properties, and then of the travel
time variance and the corresponding longitudinal dispersiv-
ity for highly heterogeneous media with sY

2 � 4.

[50] Dimensionless travel time variance can be described
asymptotically as

s2
tu

2

I2Y
! 2s2

au
2 Ia

IY

	 


x

IY

	 


: ð17Þ

We first recognize in Figure 6d that a reasonably good
estimator for slowness variance is a polynomial of the form

s2
au

2 ¼
s2
Y

4
þ
s4
Y

5
þ

s6
Y

500
: ð18Þ

Next, we compute the integral scale of Ia from correlation
function in Figures 8b and 8c to obtain a relatively simple
dependence of Ia on sY

2. Figure 10 indicates that the slowness
integral scale decreases with increasing heterogeneity
variability, converging to about (4/3)IY for sY

2 � 6. Note that
this is in contrast to what was assumed by Cvetkovic et al.
[1996] with resident injection mode for flow and advective
transport with sY

2� 4. As noted earlier, the decrease of Iawith
an increasing level of variability can be explained by
increasingly violent meandering, whereby the connectivity
of slowness in the longitudinal direction also decreases.
[51] The simplest model for capturing the exponential-

type curve in Figure 10 is

Ia

IY
¼ Aþ B exp �Cs4

Y

� �

: ð19Þ

where a best estimate in least square sense is A= 4/3, B = 3/2,
and C = 1/5.
[52] Combining the above two equations, we write equa-

tion (17) for asymptotic travel time variance in the final
form

s2
tu

2

I2Y
! 2

s2
Y

4
þ
s4
Y

5
þ

s6
Y

500

	 


4

3
þ
3

2
exp �

1

5
s4
Y

	 
	 


x

IY
: ð20Þ

Note that this asymptotic estimator is robust for high sY
2 due

to the near-linear dependence of travel time variance on
distance only after a few integral scales (due to small
correlation length of the slowness; Figures 9b and 9c). The
complete linear behavior of the travel time variance and
consequently asymptotic longitudinal dispersion is reached
at a double distance where slowness correlation approaches
approximately zero (equation (5)). Figures 8b and 8c show
that after around 30IY slowness correlation reaches zero
which means that after 60IY longitudinal dispersion
becomes equal to the asymptotic (macrodispersion) long-
itudinal constant coefficient.
[53] In view of the relationship between the longitudinal

dispersion coefficient and travel time variance (that is
typically used in the time domain with the variance of
particle position [Dagan [1989]),

lL

IY
¼

1

2

d s2
tu

2=I2Y
� �

d x=IYð Þ
; ð21Þ

Figure 10. Integral scale of the slowness (a) as a function
of sY

2. Simulations 1–6 are used (Table 1).
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the longitudinal dispersivity lL can now be expressed in the
dimensionless form combining equations (20) and (21) as

lL

IY
¼

s2
Y

4
þ
s4
Y

5
þ

s6
Y

500

	 


4

3
þ
3

2
exp �

1

5
s4
Y

	 
	 


: ð22Þ

Because of a linear dependence of st
2 with distance, in

particular for increasing sY
2, dimensionless longitudinal

dispersivity in (22) depends only on log conductivity
variance. Salandin and Fiorotto [1998] and de Dreuzy et al.
[2007] presented analysis of dispersivity for 2-D case with
exponential covariance, whereas Janković et al. [2003] and
Fiori et al. [2006] considered dispersivity for 2-D and 3-D
cases with non-Gaussian heterogeneity structures, where
longitudinal dispersivity was determined as a function of
time. We can directly compare equation (22) with first-order
theory [Dagan, 1989] (lL = sY

2) and recent simulations
results for normalized longitudinal asymptotic effective
dispersivity of de Dreuzy et al. [2007]; their average fitted
curve lL = 0.7sY

2 + 0.2sY
4 compares reasonably with our

estimator (22), especially for high heterogeneity around
sY
2 = 4 (Figure 11). Small deviations occur for mild

heterogeneity (sY
2 = 1–2) and extremely high heterogeneity

(relative error for sY
2 = 8 is around 14%). Furthermore, these

results also agree with the recent study of Dentz and
Tartakovsky [2008] who showed that the classic first-order
theory using two-point closure scheme is insufficient for the
correct calculation of the longitudinal dispersion and
significantly underestimates the macrodispersion value for
high heterogeneity (sY

2 > 4).
[54] It is worthwhile noting that the ‘‘spatial’’ travel time

approach can provide an asymptotic longitudinal dispersiv-
ity using a relatively small domain, in comparison with the
‘‘temporal’’ position approach which requires a larger
domain (e.g., Janković et al. [2003], where hundreds of

integral scales in 2-D and 3-D were used, or de Dreuzy et al.
[2007], with 2-D simulations in an approximately 1600IY �
800IY domain). For each control plane, all slow and fast
streamlines are integrated and considered through the travel
time distribution, covering all temporal scales; this requires
long time simulations but in relatively small domains.
‘‘Temporal’’ concept is computationally more demanding
because it requires a similar number of fast and slow
streamlines and therefore a similar number of data for all
lag times. However, in highly heterogeneous porous media
there are only few percent of slow streamlines (reflected by
the tail of the travel time pdf, Figure 4) and displacement
statistics for large times exhibit significant fluctuations and
uncertainties. Therefore particle position analysis requires
large domains and number of streamlines to include all time
lags and enable reliable statistics [de Dreuzy et al., 2007].
[55] To test equation (22) and assess the nature of the

dispersion process, we shall use the mean and variance of
travel time (20) in the inverse Gaussian model defined by

ft ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
t t=tð Þ3

q exp �
t � tð Þ2

2 s2
tt=t

 !

: ð23Þ

Equation (23) is the solution of the advection-dispersion
equation for a semi-infinite domain and injection in the flux
[Kreft and Zuber, 1978]. A comparison is made for different
variances sY

2 at a few selected distances in Figures 12a–12d.
[56] From low to moderate variability (sY

2 � 3), inverse
Gaussian pdf reproduces reasonably well the actual pdf
(Figure 12a) in particular for x/IY � 10. For high heteroge-
neity (sY

2 > 3) and small distances from the source area
(x/IY � 20), inverse Gaussian pdf deviates from the simu-
lated pdf in the first part of the breakthrough curve.
However, with increasing distance, the difference between
simulated and modeled curves decreases, while after around
40IY the inverse Gaussian pdf reproduces well the peak and
later part of the experimental pdf (Figures 12b–12d). A
second set of simulations with larger longitudinal domain of
100IY shows similar deviations between the actual travel
time pdf and ADE approximation. We observe that transport
in highly heterogeneous porous media is non-Fickian for the
first 40IY (100IY). Qualitatively, ADE solution as well as
lognormal distribution cannot fully reproduce the features of
the simulated travel time pdf in highly heterogeneous
porous media. We therefore conclude that the first two
moments are not sufficient for a complete description of
the travel time distribution for high sY

2 and distances up to
40IY (100IY) [e.g., Bellin et al., 1992; Cvetkovic et al., 1996;
Woodbury and Rubin, 2000].

8. Preasymptotic Behavior of the Transverse
Dispersion

[57] Transverse dispersion was analyzed with respect to
the first-order theory [e.g., Dagan, 1989], second-order
theory [Hsu et al., 1996], numerical simulations in
multi-Gaussian formations for low and high heterogeneity
[Salandin and Fiorotto, 1998; de Dreuzy et al., 2007], or
recently in non-Gaussian highly heterogeneous fields
[Janković et al., 2003]. These analyses presented that
transverse dispersion in 2-D fields for pure advection

Figure 11. Asymptotic longitudinal dispersion as a func-
tion of sY

2.
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increases in time until it rapidly reaches a maximum value
and then slowly decreases to zero. This behavior was
proved for low as well as high heterogeneity [de Dreuzy
et al., 2007]. A convenient measure of transverse disper-
sivity can be obtained from the second transverse displace-
ment moment (sh

2) in analogy with the longitudinal
dispersivity (equation (21))

lT

IY
¼

1

2

d s2
h=I

2
Y

� �

d x=IYð Þ
: ð24Þ

Letting x/IY ! 1 and using equation (5), equation (24)
transforms to the following asymptotic form:

lT

IY
¼ s2

b

Ib

IY

	 


: ð25Þ

Therefore asymptotic transverse dispersion depends only on
the second moment of the slope function, more precisely, on
its variance and integral scale. Figure 8d shows that integral
scale of the slope function converges to the zero, which
means that transverse macrodispersion value also goes to
zero as in the ‘‘temporal’’ Lagrangian approach. However,
we can show only preasymptotic behavior because
asymptotic distance outperforms our current computational
capacity. Figure 13 presents preasymptotic behavior of the
transverse dispersion (domain 128IY � 64IY) within the first
60IY in which maximum value is reached after only 4–5IY,
followed by a decreases for sY

2 � 4, but with a slower rate
for increasing sY

2.

9. Discussion

[58] The most important consequence of the high hetero-
geneity is changing the flow patterns in the form of

Figure 12. Comparison between actual AFMCM travel time pdf and inverse Gaussian pdf (ADE
solution) for three different control planes and four considered sY

2 in log-log scale: (a) sY
2 = 1, (b) sY

2 = 4,
(c) sY

2 = 6, and (d) sY
2 = 8. Simulations 1–6 are used for all cases (Table 1).
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preferential flow channels, which is reflected by a signifi-
cant difference between Eulerian and Lagrangian velocities
(Figures 9a and 9b). Preferential flow channels connect
highly conductive zones and concentrate the main portion of
the flow rate to few flow paths. Therefore Lagrangian
velocity records the higher values, in contrast to the Euler-
ian velocity which contains a significantly larger fraction of
low velocities [Cvetkovic et al., 1996]. Both pdf’s exhibit
strongly nonlognormal behavior.
[59] High heterogeneity also introduces significant changes

to the correlation structure of all Eulerian and Lagrangian
flow variables (vx, vy, w, a, and b). For example, vx, w, and
a have essentially the same correlation structure for low
heterogeneity. High heterogeneity affects strongly the cor-
relation structure for vx, w, and a due to increasingly
dramatic meandering and consequently decreases correla-
tion length and integral scale, except for the Lagrangian
velocity w, which attains a nonzero correlation over many
log conductivity integral scales due to persistency of chan-
neling. On the other side, vy and b shows the ‘‘hole effect’’
and its integral scale in the longitudinal direction converges
to the zero. This paper focuses on the second moment of
advective transport with respect to the covariance of slow-
ness and slope which completely determines travel time and
transverse displacement variances by equation (5) which in
turn completely defines longitudinal (equation (21)) and
transverse dispersion (equation (24)) as common measures
of plume spreading (ADE). Furthermore, correlation of the
slowness and slope as well as its integral scales determines
asymptotic dispersion behavior and plays a key role in the
advective transport as quantified by the travel time approach
[Dagan et al., 1992].
[60] Travel time variance results of the present study with

in-flux injection, and those of Cvetkovic et al. [1996] with
resident injection, expose a very important influence of the
injection mode to the advective transport [Demmy et al.,
1999]. In the flux injection mode, initial Lagrangian veloc-

ity distribution is the flux weighted Eulerian velocity pdf,
which is equal to the asymptotic Lagrangian velocity pdf
[Le Borgne et al., 2007]. It means that Lagrangian velocity
pdf is the same at each control plane, which implies that
Lagrangian velocity, as well as slowness and slope, is
statistically stationary with constant mean and variance,
while correlation depends only on separation distance
(section 6).
[61] Contrarily, resident injection mode exhibits nonsta-

tionarity of Lagrangian velocity close to the source line
since it transforms from initially Eulerian velocity distribu-
tion to the asymptotic Lagrangian distribution. Le Borgne et
al. [2007] proved that in multi-Gaussian fields after around
100IY (practically around 20IY), particles ‘‘loose memory’’
of the initial velocity, which means that in both injection
cases an asymptotic Lagrangian velocity distribution is
equal to the flux-weighted Eulerian velocity pdf and does
not depend on the injection mode. Demmy et al. [1999]
showed that travel time deviations between different modes
occur even for sY

2 < 1, while Cvetkovic et al. [1996] showed
that for high heterogeneity (sY

2 > 3) travel time variance
changes from the concave to the convex form increasing
considerably values within the first 7–12IY, after which a
similar slope as for the variance in the flux injection mode is
exhibited (compare their Figure 7 and our Figure 3). This
preasymptotic behavior is closely related to the velocity
conditional correlation of Le Borgne et al. [2007] because
many particles injected in low-conductivity zones require
sufficient distance to reach preferential flow channels which
carry a large part of the plume. Therefore longitudinal
dispersion in resident injection mode rapidly increases within
the first 7–12IY, reaching the maximum value that is higher
than the asymptotic value, and then gradually decreases to the
asymptotic value estimated by equation (22).
[62] Most related studies (including this work) discuss

flow and transport in multi-Gaussian heterogeneity struc-
tures which are completely characterized by first two
moments and lack of correlation for low and high conduc-
tivity values. Many field experiments show that multi-
Gaussian field may not be realistic, mainly due to neglecting
significant correlation of highly connected zones (e.g.,
MADE-1 and MADE-2 tracer test [Boggs et al., 1992]).
Moreover, differences between multi-Gaussian and some
selected non-Gaussian fields are discussed with respect to
the travel time [Gomez-Hernandez and Wen, 1998], macro-
dispersion [Wen and Gomez-Hernandez, 1998], mass trans-
fer [Zinn and Harvey, 2003], and especially influence of the
highly connected conductivity zones on flow and transport
analysis [Zinn and Harvey, 2003; Liu et al., 2004; Knudby
and Carrera, 2005]. Particularly, Gomez-Hernandez and
Wen [1998] and Zinn and Harvey [2003] argue that first
arrivals can be 10 times faster in non-Gaussian fields which
are important for risk assessment, for instance. Moreover,
Wen and Gomez-Hernandez [1998] proved that even in a
case of low heterogeneity, macrodispersion could be con-
siderably different in non-Gaussian fields. Furthermore,
presented results show asymmetry of the travel time and
velocity distributions is enhanced compared with the log-
normal distribution for large sY

2, implying that the classical
analytical first-order theory, which is based on assuming
equality of Eulerian and Lagrangian velocities, is robust
only for sY

2 < 1, especially in the presence of arbitrary non-

Figure 13. Preasymptotic transverse dispersion for high
heterogeneity as a function of x/IY. Simulations 7–8 and 10
are used (Table 1).
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Gaussian and highly heterogeneous fields. Thus the first two
moments are insufficient, and higher moments are needed in
order to reproduce the enhanced skewness of the pdf,
kurtosis, and particularly prediction of the tailing.
[63] An estimator for longitudinal dispersion (22) for

multi-Gaussian fields is in reasonable agreement with
estimator of de Dreuzy et al. [2007]. Recently, Fiori et al.
[2008] discussed arguments why their own estimator for
non-Gaussian fields overestimates the one of de Dreuzy et
al. [2007] for high heterogeneity (sY

2 > 6). They put forward
two main arguments: (1) different heterogeneity structure
and (2) possible numerical error due to the approximation of
travel time tailings [Fiori et al., 2008, Figure 5]. Our
Figure 4 confirms that in multi-Gaussian fields, travel time
pdf tailings can be computed very accurately without signif-
icant statistical fluctuations; consequently, accurate calcula-
tions of the travel time variance can be obtained for estimator
(22). Multi-Gaussian fields do not contain extremely slow
streamlines which travel only in low-conductivity zones and
produce very large travel times and therefore higher travel
time variance and longitudinal dispersion. We can conclude
that the main reason for this estimator difference between our
results and de Dreuzy et al. [2007] on the one side, and Fiori
et al. [2006, 2008] on the other is the difference in hetero-
geneity structure [de Dreuzy et al., 2008].
[64] The Lagrangian theory developed for travel time

analysis using the distance along the mean flow as an
independent variable (x/IY) [Dagan et al., 1992; Cvetkovic
et al., 1992, 1996] is strictly applicable only if the longitu-
dinal velocity component is positive at all points such that
the longitudinal displacement X(t) is monotonically increas-
ing. In the present study, we extend the conceptual frame-
work (section 3) consistent with Monte Carlo simulations
which can accurately describe even backward flow through
the control plane and found that there is an increasing
fraction of negative longitudinal velocities or backward
flow components for increasing sY

2. The exact fractions
are given in Table 4. Backward flow occurs on trajectories
which bypass extremely low permeable zones. For high
heterogeneity with sY

2 = 8, there is almost 5% of the
negative Eulerian and Lagrangian velocities.
[65] Figure 14 presents quantitative analysis of the influ-

ence of the backward flow for sY
2 = 6. Figures 14a and 14b

shows travel time and transverse displacement variance and
perfect agreement between MC simulations and equation (5)
using the covariance of the slowness and slope. This agree-
ment proves the validity of conceptual framework, definition
of the slowness and slope, and its weak stationarity. If we
remove all streamline points with negative horizontal veloc-
ity from the statistics in equation (5), it is possible to calculate

related variances without influence of the backward flow.
Figure 14a indicates that backward flow yields around
5% higher travel time variance because trajectories bypass
extremely low-conductivity zones, but on average, the
Lagrangian velocities in backward flow are smaller than
mean velocity which produces larger travel times and
therefore larger variance. Nevertheless, influence of the
backward flow is more important for the transverse dis-
placement variance (Figure 14b), increasing it around 16%
due to significant influence of the vertical component of
Lagrangian velocity. Note that MC simulations record
all multiple travel time passages and backward flow, but
calculate only first time passages at the control plane
(equations (1)–(6)). A general framework for transport
analysis suitable for relating particle position and travel

Table 4. Percentage of the Negative Velocity (Backward Flow)

for Eulerian and Lagrangian Velocitya

sY
2 p(vx, w < 0) � 100%

0.25 0
1 10�4

2 0.060
4 1.411
6 2.713
8 4.819

aSimulations 1–10 are used.

Figure 14. Influence of the backward flow for high-
heterogeneity case sY

2 = 6 through (a) travel time variance
obtained by AFMCM (domain 128IY � 64IY) and
covariance of the slowness function (b) transverse displace-
ment variance obtained by AFMCM (domain 128IY � 64IY)
and covariance of the Lagrangian slope function.
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time pdfs with multiple crossings is the continuous time
random walk method [Berkowitz et al., 2002; Scher et al.,
2002], which could be used for further studies of backward
flow effects.
[66] This work clearly emphasizes the need for further

scrutiny of the early arrival times. The simulated travel time
pdf’s exhibit the tendency of delayed first arrival compared
with the lognormal and inverse-Gaussian distributions, a
behavior that in part is due to a limited number of realiza-
tions. An earlier arrival as predicted by the two-parameter
models considered (ADE and lognormal) is conservative
from, say, a risk assessment perspective; however, the
overestimation may be rather extreme when considering
strongly decaying contaminants. In such cases, a relatively
small difference in early arrival may result in dramatic
differences in the peaks. Thus there is a need from both
theoretical and application perspectives to gain a better
understanding on how to accurately model early arrival
[Margolin and Berkowitz, 2004]; one interesting possibility
is to consider joint space, time, and velocity statistics in a
random walk model [Le Borgne et al., 2008]. The key
challenge for applications is to relate in an effective way
early arrival statistics to structural properties of the lnK
field.

10. Conclusions

[67] In this paper we present flow and travel time ensem-
ble statistics based on a new simulation methodology
(AFMCM) which was developed by Gotovac et al.
[2009]. As a benchmark case, a two-dimensional, steady
flow, and advective transport was considered in a rectangu-
lar domain characterized by multi-Gaussian heterogeneity
structure with an isotropic exponential correlation and lnK
variance sY

2 up to 8. Lagrangian transport was analyzed
using travel time and transverse displacement statistics
given as functions of the longitudinal distance x [e.g.,
Shapiro and Cvetkovic, 1988; Cvetkovic et al., 1996].
Moreover, in-flux injection mode is considered [Demmy et
al., 1999].
[68] The main conclusions of this work can be summa-

rized as follows:
[69] 1. Results confirm earlier findings for flow and travel

time statistics for sY
2 < 4, indicating the first-order model is

robust for sY
2 � 1; for larger sY

2 we find a few new features.
[70] 2. Even for high sY

2, the transverse displacement
variance retains the form predicted by the first-order results,
but with significant underestimation of the first-order model
prediction.
[71] 3. Travel time variance exhibits an almost perfectly

linear dependence with distance for high sY
2, but with

values several times higher than predicted by first-order
expressions; this suggests a relatively simple relationship
for estimating a constant longitudinal dispersivity, lL
(equation (22)).
[72] 4. The Lagrangian and Eulerian velocity statistics

and correlation functions diverge for increasing sY
2 due to

channelized flow, with the pdf of w shifted to the higher
values and with increasing/more persistent correlation. Both
pdf’s are strongly nonlognormal for high heterogeneity,
while asymptotic Lagrangian velocity pdf is equal as a
flux-averaged Eulerian velocity distribution.

[73] 5. Pdf of h is non-Gaussian for all sY
2 and control

planes close to the injection source line with higher portion
of zero values. However, distribution of h seems to
converge to a Gaussian distribution even for high sY

2 after
x/IY = 20 (Table 3).
[74] 6. Pdf of t was found to be asymptotically power

law with lowest exponent being 1:3 for x = 10IY and sY
2 = 8;

the slopes increase (become steeper) for increasing distance.
Comparison of the experimental pdf with inverse Gaussian
pdf (ADE solution) in a semi-infinite domain as well as with
lognormal distribution shows that transport in highly hetero-
geneous porous media may deviate from these models for
the first 40(100)IY, in particular, regarding the first arrivals.
Thus the first two moments are insufficient for complete
description of travel time arrivals, peak, and tailings.
[75] 7. Correlation of slowness decreases with increasing

sY
2 implying that after 60IY travel time variance attains a

linear shape and reaches asymptotic longitudinal dispersion
estimated by equation (22); correlation of slope exhibits a
‘‘hole effect’’ with integral scale converging to zero which
appears that the asymptotic transverse dispersion converges
to zero as predicted by de Dreuzy et al. [2007].
[76] There are a number of open issues, the resolution of

which may take advantage of the proposed AFMCM
approach. Larger domains, as well as three-dimensional
domains, could be studied with a comparable accuracy as
in this study, if, say, Gaussian covariance structure for lnK is
assumed, rather than an exponential one. Another important
topic is incorporating pore-scale dispersion in the simula-
tions where the semianalytical basis of the AFMCM may
offer several advantages for incorporating, say, random
(Brownian) steps between streamline; in particular, the
derivative @h(x;a)/@a, where a is the initial location, quan-
tifies the relative distance between streamlines important for
establishing criteria for random steps. The statistics of a and
b presented in this work can be a starting point for
constructing random walk models for longitudinal and
transversal dispersion in high heterogeneous media; to this
end, a better understanding on how to define relevant steps/
segments is of interest, as well as the relevance of segment
to segment correlation [e.g., Painter et al., 2008]. Finally,
we emphasize the need to further study early particle arrival
in highly heterogeneous porous media. To this end, one
viable approach would be the derivation of higher-order
moments using AFMCM and a reconstruction of the pdf by
means of the maximum entropy principle [Christakos,
2000]; such analysis is currently in progress.

Appendix A: Inner Computational Domain for
Transport Simulations

[77] Figure 1 shows a 2-D computational domain for
steady state and unidirectional flow simulations using three
sets of simulations defined on domains 64IY � 32IY (nY =
8 collocation points per integral scale, nh = 32), 128IY �
64IY (nY = 4, nh = 16), and 64IY � 128IY (nY = 4, nh = 16)
with 500 MC realizations (Table 1). These resolutions are
selected according to the accuracy and convergence analysis
of Gotovac et al. [2009]. In each flow realization there are
around 2.1 � 106 head unknowns that present our current
computational limit.
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[78] The influence of the boundary conditions on the
nonstationarity of the Eulerian velocity statistics in case of
low and mild heterogeneity was studied by Rubin and
Dagan [1988, 1989] analytically and Bellin et al. [1992]
numerically. Both of these studies concluded that flow
criterion says that an inner computational domain should
be removed at least 2–3IY from the no-flow and constant
head boundaries in order to ensure stationary Eulerian
velocity statistics (e.g., constant velocity variance). Salandin
and Fiorotto [1998] and Janković et al. [2003] performed
the same analysis in case of high heterogeneity, where
typically more than 10IY were used (Figure 1). Following
these works, we perform a similar analysis using AFMCM
and present the results in Figure A1. We can conclude that
the inner longitudinal domain should be removed by 12–14IY

from the constant head boundaries in order to obtain constant
longitudinal variance (Figure A1a). Transverse Eulerian
velocity variance along the transversal direction is presented
for all three used domains (Figures A1b–A1d). The inner
transversal domain should be removed by 10–16IY from
the no-flow boundaries, while this distance increases for
increasing of the transversal domain. Note that all three
domains yield similar Eulerian flow statistics.
[79] Transport simulations are performed in the inner

domain in order to avoid nonstationary influence of the
flow boundary conditions. Source area (or line, y0) is
located in the middle of the left side of the inner domain.
Therefore we define transport criterion that there are no
streamlines injected in the specified source line which exit

Figure A1. Influence of the flow boundary conditions presented through (a) longitudinal velocity
variance along x direction for domain 64IY � 32IY, (b) transverse velocity variance along y direction for
domain 64IY � 32IY, (c) transverse velocity variance along y direction for domain 128IY � 64IY,
and (d) transverse velocity variance along y direction for domain 64IY � 128IY, for different sY

2, nY = 4,
and nh = 16 (simulations 1–10; see Table 1).
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from the inner domain. Since section 5, Figure 5, and Table 3
present that transverse displacement is nearly normal for
x/IY > 20, transport criterion in transverse direction can be
presented as (Figure 1)

y0 þ 2 ymax ¼ y0 þ 6sh xinnerð Þ � yinner: ðA1Þ

Figure A2 presents travel time and transverse displacement
variance for sY

2 = 8 and all three sets of simulations. All

three domains yield comparable travel time variances, while
differences occur only due to different lnK resolutions
(Figure A2a). On the other side, transverse displacement for
a domain 64IY � 32IY is affected by boundaries because
variance is 30% smaller than in the other two cases
(Figure A2b). Therefore flow and transport criteria define
that flow domain 64IY � 32IY and corresponding inner
domain 40IY � 24IY for sY

2 � 2, flow domain 128IY � 64IY
and inner domain 100IY � 52IY for sY

2 = 4 and 100IY � 46IY
for sY

2 = 6, and flow domain 64IY � 128IY and inner domain
40IY � 96IY for sY

2 = 8 enable consistent flow and transport
analysis free of any boundary influence, although long-
itudinal flow and travel time results are the same for all
domains (see Table 1). According to the criterion (A1),
Figure A3 shows that y0 = 12IY is sufficiently large to yield a
travel time variance independent of the source size.
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