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Abstract

We describe a flow-based heuristic for optimal planning that
exploits landmarks and merges. The heuristic solves a lin-
ear programming (LP) problem that represents variables in
SAS™ planning as a set of interacting network flow prob-
lems. The solution to the LP provides a reasonable admissi-
ble heuristic for optimal planning, but we improve it consid-
erably by adding constraints derived from action landmarks
and from variable merges. Merged variables, however, can
quickly grow in size and as a result introduce many new vari-
ables and constraints into the LP. In order to control the size
of the LP we introduce the concept of dynamic merging that
allows us to partially and incrementally merge variables, thus
avoiding the formation of cross products of domains as done
when merging variables in the traditional way. The two types
of improvements (action landmarks and variable merges) to
the LP formulation are orthogonal and general. We measure
the impact on performance for optimal planning of each im-
provement in isolation, and also when combined, for a sim-
ple merge strategy. The results show that the new heuristic is
competitive with the current state of the art.

Introduction

We present three general domain-independent techniques
for improving flow-based heuristics for optimal planning.
Flow-based heuristics are heuristics defined by the solution
of a linear program (LP) that is solved for each state encoun-
tered during the search and that tracks the presence of flu-
ents throughout the application of actions in potential plans
(van den Briel et al. 2007; Bonet 2013). Flow-based heuris-
tics can be quite informative on some tasks as they are not
bounded by the optimal delete-relaxation heuristic A™. As a
result, they offer a broad open ground for development and
improvement. We partially explore this ground and show
how simple and meaningful ideas result in substantially im-
proved heuristics.

In our flow-based heuristic, we view planning as a set of
interacting network flow problems. Each variable of the
problem corresponds to a separate network flow problem
where nodes correspond to the values of the variable and
arcs correspond to transitions between these values. Inter-
action between these networks is because actions can im-
pact multiple variables. The flow-based heuristic counts
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occurrences of actions, yet ignores the ordering between
them. There are other LP-based heuristics for optimal plan-
ning (Katz and Domshlak 2010; Pommerening, Roger, and
Helmert 2013) but these are not flow-based heuristics. On
the other hand, Pommerening et al. (2014) present an unify-
ing framework for LP-based heuristics for optimal planning.

An LP formulation based on flow relations is described
by van den Briel et al. (2007). This work introduces a flow-
based heuristic, but does not incorporate it into a planning
system. The heuristic value at the initial state of several
benchmarks problems is reported. One important observa-
tion is that by merging variables the heuristic value can be
improved significantly, often achieving a heuristic value bet-
ter than A+. Bonet (2013), on the other hand, describes a
very similar LP formulation based on flow relations that is
derived from the state equation in Petri-nets. The LP for-
mulation is incorporated in an A* search algorithm and per-
forms very well in certain benchmark domains, but this LP
formulation does not exploit merging.

In this paper we build upon these two flow-based heuris-
tics by (1) automatically reformulating the planning problem
in order to strengthen the solution of the LP, (2) adding con-
straints derived from information contained in action land-
marks, and (3) by incorporating new variables and con-
straints obtained from merging variables. Our theoretical
results show that the improved heuristics are all admissible
and dominate well-known heuristics, while the empirical re-
sults show that the new heuristics are competitive with the
state of the art for optimal planning.

It is important to note that landmarks are state dependent
(landmarks that apply to one state may not necessarily apply
to another state). As a result, landmark constraints are added
and removed from the LP formulation each time we evaluate
a state. Constraints and variables obtained from merging
variables, on the other hand, apply to all states and therefore
are never retracted from the LP once added.

Whenever we create a new merged variable, we represent
it as a network flow problem just like all the other variables.
Since merged variables typically have many more values
than the variables it is composed of, representing the com-
plete network flow problem of each merged variable can be-
come quite costly. In this work we introduce the concept of
dynamic merging. Dynamic merging is dynamic in all ways,
meaning that we incrementally merge more and more vari-



ables, but also that we incrementally merge the variables.
Hence, throughout the process of dynamic merging, our LP
formulation may only make explicit a small fraction of the
network flow problem of a merged variable.

Dynamic merging allows us to be very selective with
merging and prevents us from having to create the cross
product of domains as done when merging variables in the
traditional way. Specifically, in this work we only merge
pairs of atoms (values), where one atom is the prevail con-
dition and the other atom is the effect precondition of an
action. The reason we target these pairs of atoms is that
the corresponding network flow constraint is likely going to
increase the solution value of the LP formulation, and there-
fore improve the estimate of the flow-based based heuristic.
The selection of which atoms to merge is performed by a
simple but effective merge strategy that analyzes and refines
the LP formulation until reaching a fix point.

After presenting the framework for planning and the base
formulation of the heuristic, we describe the incorporation
of constraints derived from action landmarks and from vari-
able merges. Results are presented throughout the paper to
observe the impact of each improvement, while results for a
final heuristic are presented at the end. The paper finishes
with conclusions and future work.

Planning Problems

A SAS™ planning problem with action costs is a tuple P =
(V, A, 50, Sx,c) where V is a set of variables, each variable
X € V with finite domain Dy, A is a set of actions, s, is
the initial state, s, is a goal description, and ¢ : A — N are
non-negative action costs.

A valuation is an assignment of values to variables in V.
When all variables are assigned a value it is a complete val-
uation, otherwise it is a partial valuation. The state model
for P is made of the states corresponding to all the different
complete valuations for the variables in V, with the initial
state given by s, and the goal states given by all the states
that agree with the partial valuation s,. For valuation s (ei-
ther complete or partial) and variable X, we denote the value
of X at s by s[X]. An atom for the problem P is a literal
of the form X = x where X is a variable and x € Dx; we
often abuse notation and say that such an atom p belongs to
s when s[X| = x. For atom p, Var(p) and Val(p) denote the
variable and value in p respectively.

An action in SAS™ is a triple (Pre, Post, Prev) where the
precondition Pre, the postcondition Post and the prevail con-
dition Prev are all partial valuations, with the restrictions that
any variable X that gets a value in Pre must also get a value
in Post, and any variable X that gets a value in Prev must not
get a value in either Pre or Post. We assume the standard in-
terpretation of actions that defines applicability and the tran-
sition function res : A x S — S mapping applicable actions
and states into resulting states. If Pre and Post are defined on
a common variable X, we assume Pre[X] # Post[X] since
otherwise the condition on X should appear as a prevail and
not as an effect of the action. Typically, if Post is defined on
X then Pre is also defined, but this is not required. We say
that an action a is incomplete for X when X € Var(Post)
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Figure 1: Domain transition graphs for the two variables
pos(package) (left) and pos(truck) (right) in a simple lo-
gistics problem. In each DTG, the nodes represent the val-
ues of the variable, the arcs represent the transitions, and
the loop arcs represent action prevail conditions. The initial
state is indicated with a diagonal arrow and goal states are
marked with an extra circle.

but X ¢ Var(Pre), and that a is incomplete when it is in-
complete for at least one variable X.

A plan is a sequence 7 of actions that defines a path from
So to a goal state. Its cost is the sum of the costs for the
actions in 7, and it is optimal if it is a minimum-cost plan.

Domain Transition Graphs

Let P = (V, A, so, S«, ) be a planning problem. The do-
main transition graph (DTG) for a variable X € V is a la-
beled directed graph with nodes for each value in Dx and
a labeled arc for each transition in X, where each label cor-
responds to an action in the planning problem. Note, it is
possible for an arc to have multiple labels.

Formally, the DTG for variable X is the tuple Ax
<D§(7Lx,Tx> where D;( = Dx U {J_}, Lx = {CL
A : X € Var(Prev) U Var(Pre) U Var(Post)}, and Tx
D% x Lx x D% is the set of transitions (z, a, ') given by:

Tx = {(x,a,2"): X=x € Pre, X= 2’ € Post} U
{(L,a,x): X ¢ Var(Pre), X = x € Post} U
{(z,a,2) : X = € Prev}.

N m Il

The undefined value L is added as a state of Ax to account
for the incomplete actions for X. If no such action exist then
there is no need to consider the state L.

Figure 1 shows the DTGs for a simple logistics prob-
lem with one truck, one package, and two locations. Ini-
tially the package is at location 1, the truck is at location
2, and the goal is to have the package at location 2. This
problem can be formulated with the variable pos(truck) €
{1, 2} to indicate the position of the truck, and the variable
pos(package) € {1,2,T} to indicate the position of the
package, which is either at location 1 or 2, or the truck (7).

Let X and Y be two variables with domains D x and D+,
and DTGs Ax = (D%, Lx,Tx) and Ay = (D}, Ly, Ty)
respectively. The merging of variables X and Y gives the
variable Z = XY with domain Dy = {(z,y) : = €
Dx,y € Dy}. The DTG Az = (D%, Lz, Tz) for Z is the
parallel composition of Ax and Ay (cf. Driger, Finkbeiner,
and Podelski (2006)): D% = D% x D3, Lz = Lx U Ly,



and ((z,y),a, (2',y")) € Tz iff

(v,a,2") € Tx A (y,a,y’) € Ty, or (1)
(z,a,2')€Tx Ny=%y A a¢ Ly, or )
r=1"Aa¢Lx A (y,a,y) €Ty . 3)

In some cases, the DTG Az may contain transitions that are
impossible to occur as they correspond to valuations that are
mutex! with the precondition or postcondition of the action.
Hence, the parallel composition can be reduced by pruning
some of such transitions in a manner that resembles the con-
struction of constrained PDBs (Haslum, Bonet, and Geffner
2005). Indeed, the transitions given by case (1) are required
to satisfy X = z,Y = y /L Pre, those given by case (2) to
satisfy Y = y /L Pre and Y = y {1 Post, and those given by
case (3) to satisfy X = x /L Pre and X = x /L Post, where
v /L 1 means that the valuations v and . are non-mutex.

Flows and Base Model

A flow for a planning task P = (V| A, s,, 4, ¢) is a function
f : A — RT mapping action labels into non-negative real
numbers.

For a fixed atom p and action a, we identify 4 possible
behaviours of a on p: (1) p is produced by a if p € Post,
(2) p is consumed by a if p € Pre, (3) p is preserved by a if
p € Prev, and (4) p is irrelevant to a in other cases. These
behaviours are exhaustive and mutually exclusive for each
atom p and action a. Also an action a may produce an atom
p without consuming an atom ¢ on the same variable Var(p),
but this is only possible when a is incomplete for Var(p).

A plan 7 defines an integral flow f, where f,(a) is the
number of occurrences of a in 7. By analyzing the possi-
ble action behaviours on a fixed atom p, it is not difficult to
obtain the following flow balance equation (van den Briel et
al. 2007; Bonet 2013):

# times p is produced — # times p is consumed > A,

where A, is the “net difference” for p between the goal state
s, and the initial state s.; i.e.,

+1 ifso Epands, Fp,
Ap = —1 ifso Epands, #p,
0 otherwise .

The first statement in the definition of A, tells that p must
be produced more times than it is consumed as p must hold
at the goal state but does not hold at the initial state. The
second tells that p may be consumed at most one more time
than it is produced as it holds in the initial state but it is
not required to hold at the goal state. The final statement
covers the cases when s, and s, both the same value for
p as in both cases the required net difference is zero. The
constraint in the flow balance equation is an inequality and
not an equality because the presence of incomplete actions.
If no such actions exist, the inequality can be “promoted” to
an equality.

! Atoms p and ¢ are mutex if no reachable state makes both true.
Two partial assignments v and . are mutex if there are atoms p € v
and ¢ € p that are mutex.

Var(p) is a goal variable

pisn’t mutex with s,  p is mutex with s,

S0 Fp SoFp SoFp s Fp

LB, 0 1 -1 0
UB, oo/0 oo/ 1 oo /-1 oo /0

Var(p) is not a goal variable

pisn’t mutex with s,  p is mutex with s,

So Ep So Ep So Ep So Ep

LB, -1 0 -1 0
UB, /0 oo /1 oo /-1 /0

Table 1: Different cases defining the lower and upper bound
values on the flow balance equation for atom p.

The above flow balance equation for atom p = X = z is
formally cast as the equation over flows f: A — R™T:

LB, < Y. fla— > fla) <UB, &

(2’ a,2)eTx (z,a,2")eTx

where T'x is the set of transitions for the DTG A x for vari-
able X, and LB, and UB,, are lower and upper bounds for
the flow balance on p. Naively, LB, = A, and UB,, = oo
but tighter bounds can be obtained by a detailed account on
the relation between p, the goal and the actions. Indeed, we
consider two cases whether Var(p) is mentioned in the goal
or not (i.e., it is a goal variable), and subcases on whether
the initial state satisfies p and the goal is mutex with p. For
each case, Table 1 gives lower and upper bound values on
the flow balance equation for atom p. The table has two up-
per bound values for each case. Here we refer to the first
values; e.g., the lower and upper bounds for the equation for
atom p when Var(p) is a goal variable, s, F p and s, is mu-
tex with p is (—1, 00). It is easy to check that the values in
Table 1 subsume A,,.

The first upper bound values are all equal to co, and thus
impose no constraint on the flow, due to the presence of
incomplete actions that may produce an atom that already
holds in a given state. Under certain conditions the upper
bounds can be tightened. One such condition is when the
atom p refers to a variable X for which every action that
produces an atom X = x, consumes another atom X = z’
for x # 2’ and x, 2’ € Dx. In such a case, the second val-
ues in the table for the upper bound can be used in place of
the first values. As a result, when X is a goal variable or p is
mutex with the goal state, the constraints on the flow balance
equation for p become tight and collapse into an equality.
This is the promotion of inequalities to equalities described
by Bonet under the name of safeness-based improvement.

The bottom part of Table 1 shows that for non-goal vari-
ables Var(p) the bounds when p is non-mutex with s, are not
as tight as when p is mutex with s,. Thus, it makes sense to
analyze the input task P to deduce as much as possible the
atoms that are mutex with s,.. We perform this computation
in polynomial time by marking an atom p as mutex with s,
if either Var(p) is a goal variable and s, assigns a different
value to it, or there is an atom ¢ mutex with p with s, F q.



Domain LM-cut base Domain LM-cut base

airport (50) 28 20 parking-optl1 1-strips (20) 2 1
barman-optl 1-strips (20) 4 4 pathways-noneg (30) 5 4
blocks (35) 28 28 pegsol-08-strips (30) 27 28
depot (22) 7 7 pegsol-opt11-strips (20) 17 18
driverlog (20) 13 11 pipesworld-notankage (50) 17 15
elevators-opt08-strips (30) 22 9 pipesworld-tankage (50) 11 10
elevators-opt11-strips (20) 17 7 psr-small (50) 49 50
floortile-opt11-strips (20) 6 4 rovers (40) 7 6
freecell (80) 15 35 satellite (36) 7 6
grid (5) 2 1 scanalyzer-08-strips (30) 15 13
gripper (20) 7 6 scanalyzer-opt1 1-strips (20) 12 10
logistics00 (28) 20 15 sokoban-opt08-strips (30) 28 16
logistics98 (35) 6 2 sokoban-opt]1 1-strips (20) 20 15
miconic (150) 141 50 tidybot-opt11-strips (20) 13 5
mprime (35) 22 18 tpp (30) 6 8
mystery (30) 19 15 transport-opt08-strips (30) 11 10
nomystery-opt1 I-strips (20) 14 10 transport-opt11-strips (20) 6 6
openstacks-opt08-strips (30) 20 15 trucks-strips (30) 10 9
openstacks-opt11-strips (20) 15 7 visitall-opt1 I-strips (20) 10 17
openstacks-strips (30) 7 7 woodworking-opt08-strips (30) 16 12
parcprinter-08-strips (30) 18 28 woodworking-opt11-strips (20) 11 7
parcprinter-opt11-strips (20) 13 20 zenotravel (20) 12 9

Total (1396) 756 594

Table 2: Coverage results for optimal planning for the LM-
cut and base heuristics. Best results are highlighted.

Further, whenever there is a variable X such that all atoms
X =4d/,forz’ € Dx \ {z}, are marked as mutex with s,,
then X is marked as a goal variable and the goal is extended
with X = z. This computation is performed until reaching
a fix point as a preprocessing step.

The base LP model for the problem P = (V, A, so, 84)
is defined on the problem P’ that results of the preprocess-
ing performed on P. The LP has | A| variables, denoted by
f(a) for each action a € A, that define a flow for P. The
objective function is to minimize ), 4 c(a) x f(a), while
the constraints are the flow balance equations for all atoms
X = z for each variable X € V and value x € Dx, and the
non-negative constraints f(a) > 0 for each a € A. Except
for the preprocessing, this LP is the same as the one used by
Bonet (2013) to define the SEQ heuristic enhanced with 1-
safe information, while the plain SEQ heuristic corresponds
to this LP but with all upper bounds set to co as given by the
first values shown in Table 1. In both cases the solution to
the LP provides an admissible estimate for the optimal cost
and P has no solution if the base model is infeasible. The
base LP defines a heuristic A, Whose value at state s is
the cost of the solution of the LP for problem P[s, = s,
where P[s, = s| refers to the problem P but with the initial
state set to s. The intuition behind the following result is that
the base LP only considers the flow balance equation (4) for
each atom p which must be satisfied by any feasible plan.

Theorem 1. The heuristic hpuse is admissible. This holds
whether the first or second upper bounds in Table 1

For illustration, let us consider the gripper domain that
consists of a two-armed robot that must transport a num-
ber of balls from room A to room B. The robot can move
from one room to another, and pick/drop balls into/from ei-
ther room and from either gripper. To pick a ball, the robot
must be at the ball’s room and the gripper must be holding

21f all operator costs are integral, the value of the solution for
the LP can be rounded up to the next integer without loosing ad-
missibility.

nothing. An instance of gripper with n balls can be formu-
lated with the variable pos(robby) € {A, B} that tells the
position of the robot, and variables pos(b;) € {L, R, A, B},
fort = 1,...,n, that tell the position of the balls, either
left (L) or right (R) gripper, or the room A or B. An action
like PICKLEFT(b;, A) has prevail pos(robby) = A, precon-
dition pos(b;) = A, postcondition pos(b;) = L, and all other
atoms as irrelevant. The flow balance equation for the atom
p = ‘pos(b;)=DB’is

f(DROPLEFT(b;,B)) + f(DROPRIGHT(b;,B))
— f(PICKLEFT(b;,B)) — f(PICKRIGHT(b;,B)) =1

since  DROPLEFT(b;, B) and DROPRIGHT(b;, B)} are
the actions that “produce” p, PICKLEFT(b;, B) and
PICKRIGHT(b;, B)} are the actions that “consume” p, and
ball b; is initially at room A and at room B in the goal.

In a first experiment we compare the effectiveness of Apyge
with respect to LM-cut (Helmert and Domshlak 2009), the
current state of the art for optimal planning, over a compre-
hensive benchmark of problems. Table 2 shows coverage re-
sults on each domain.> As can be seen, overall, LM-cut am-
ply dominates hpyse, yet the latter shows promising results on
some domains; specifically, on freecell, parcprinter, tpp, and
visitall. This and the following experiments are performed
with LPs that only contains lower bound constraints (i.e., the
UB,, values are set to infinity). As shown by Pommerening
et al. (2014), these constraints imply the upper bound values
in Table 1 (we come back to this issue below).

In the following, we explore different ways to improve the
estimates offered by the base model.

Landmarks

We first study the improvement suggested by Bonet (2013)
about adding constraints for the action landmarks of the
problem. An action landmark L, or just landmark, for a
task P = (V, A, so, $4,¢) is a subset of actions such that
every plan for P contains at least one action in L (Hoff-
mann, Porteous, and Sebastia 2004; Helmert and Domshlak
2009). Such a landmark implies the lower bound ¢(L) on
the optimal cost h* where ¢(L) = min,ecr, ¢(a). Given a
collection £ = {L;}? ; of landmarks, one can obtain an
estimate on A* in at least three different ways: (1) by com-
puting the maximum c¢(L;) over L; € L, (2) by comput-
ing a cost partitioning C = {¢;}?_, for £ and then forming
the sum he = .., ¢;(L;) (Karpas and Domshlak 2009),
or (3) by solving the hitting set problem for £ (Bonet and
Helmert 2010). These three estimates are admissible, give
values that are monotonically non-decreasing, but at increas-
ing computation costs.

A cost partitioning for £ = {L;}!, is a collection
C = {e}, of non-negative cost functions such that
> ci(a) < c(a) for every a € A. An optimal cost par-
titioning C* for £ is such that he~ > he for every other
cost partitioning C for £. An optimal cost partitioning and

3Al experiments were run with Fast Downward (Helmert 2006)
on AMD Opteron 6378 CPUs running at 2.4 GHz with time and
memory limits of 1,800 seconds and 2Gb respectively. The LP
solver is IBM CPLEX v.12.5.1.



Domain base f10 f20 Domain base f10 f20

airport (50) 20 26 25 parking-optl1-strips (20) 1 1 1
barman-opt1 1-strips (20) 4 4 4 pathways-noneg (30) 4 4 5
blocks (35) 28 28 29 pegsol-08-strips (30) 28 26 27
depot (22) 7 7 7 pegsol-optl 1-strips (20) 18 16 17
driverlog (20) 11 11 13 pipesworld-notankage (50) 15 16 11
elevators-opt08-strips (30) 9 9 18 pipesworld-tankage (50) 10 10 9
elevators-opt11-strips (20) 7 7 15  psr-small (50) 50 50 50
floortile-opt11-strips (20) 4 4 6 rovers (40) 6 6 7
freecell (80) 35 47 27 satellite (36) 6 6 7
grid (5) 1 2 1 scanalyzer-08-strips (30) 13 13 11
gripper (20) 6 7 5 scanalyzer-optl I-strips (20) 10 9 8
logistics00 (28) 15 14 20 sokoban-opt08-strips (30) 16 20 27
logistics98 (35) 2 3 6 sokoban-opt! 1-strips (20) 15 16 20
miconic (150) 50 57 140 tidybot-optl1-strips (20) 5 11 8
mprime (35) 18 20 20 tpp (30) 8 8 8
mystery (30) 15 16 16 transport-opt08-strips (30) 10 10 11
nomystery-optl 1-strips (20) 10 8 12 transport-optl1-strips (20) 6 5 6
openstacks-opt08-strips (30) 15 12 15  trucks-strips (30) 9 9 9
openstacks-opt11-strips (20) 7 7 7 visitall-optl 1-strips (20) 17 17 19
openstacks-strips (30) 7 8 7  woodworking-opt08-strips (30) 12 14 20
parcprinter-08-strips (30) 28 28 29 woodworking-optl1-strips (20) 7 9 15
parcprinter-opt11-strips (20) 20 20 20  zenotravel (20) 9 9 11

Total (1396) 594 630 749

Table 3: Coverage results for optimal planning for the base
heuristic extended with constraints from landmarks. The
column f10 refers landmarks computed using the Weak-
Zhu-Givan method, while f20 to landmarks computed using
the LM-cut method. Best results are highlighted.
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Figure 2: Number of expanded nodes and value at initial
state for the base LP and f20 across common solved tasks.

its value can be computed in polynomial time by solving a
simple LP (Karpas and Domshlak 2009).

The heuristic LM-cut can be understood as a method to
compute a collection £,y of landmarks and a cost partition-
ing Cpyc. LM-cut’s value at the initial state is h¢,,,. while for
other states s, it is the value for the task P[s, = s|. We de-
note with £, yc[s] the collection of landmarks computed by
LM-cut for state s.

There are other algorithms for computing landmarks
(Keyder, Richter, and Helmert 2010; Zhu and Givan 2003).
In practice, however, it is relative expensive to compute a
fresh set of landmarks for every state encountered during
the search. One way to speed up such computation, at the
cost of missing some landmarks, consists in first obtaining
a collection L for the initial state, and then keeping track of
the landmarks that get satisfied along the paths from s, to
the reachable states s, with the aim of obtaining a collec-
tion for such a state s equal to the initial collection minus
the landmarks that get satisfied along the paths leading to s.
This is the method employed by the LA heuristic (Karpas
and Domshlak 2009). For a method A for computing land-
marks, we refer to this speed up by Weak-A.

Let us now focus on how to use a collection of landmarks
L to improve the values given by the base LP. A landmark
L for state s says that any plan for s must contain at least
one action in L. Thus, L directly induces a constraint of
the form ) ., f(a) > 1 on any flow f for P. Since the
collection of landmarks depends on the state, the induced
constraints cannot be permanently added to the LP. Rather,
the constraints are added before solving the LP for the state
and retracted afterwards. If A is a method for computing
landmarks, we denote with £ 4[s] the collection computed
by A on state s, and with h{l_ the heuristic that results of
solving the base LP extended with the set Constr(L a[s]) of
induced constraints. From now on, we say that a constraint
(or set of constraints) is admissible if the flow f;. of any plan
7 satisfies the constraint (or constraints in the set). We have

Theorem 2. The set Constr(La[s]) is admissible for
P[s, = s] and thus h;ﬁue is an admissible heuristic. Further,
h,‘:}”e dominates h* where h', is the heuristic that assigns to
state s the value of the optimal cost partitioning for L 4[s].

. LM-cut
In particular, hy7 ™" > Ry cw = Pim-cur-

Table 3 shows the overall performance of A* when us-
ing the base LP and the base LP extended with constraints
for landmarks computed with the Weak-Zhu-Givan method
(column f10) and the LM-cut method (column f20). As can
be seen, there is a noticeable jump in the number of solved
problems in both cases: for f10 the jump is 36 from 594 to
630, while for f20 the jump is 155 from 594 to 749. The
coverage of a stronger heuristic, however, does not neces-
sarily dominate the weaker heuristic. The experiments are
performed with a time cutoff and the stronger heuristic usu-
ally requires more time; e.g., for scanalyzer-08, the base LP
solves 13 tasks while f20 solves 11. Hence, the big jump
in number of problems solved is due to better heuristic esti-
mates for states. This is clearly seen in the scatter plots in
Figure 2 for the number of expanded nodes* and the value at
the initial state for the tasks solved by both heuristics.

Merges

The idea of merging variables for obtaining better heuristics
may have originated from planning with pattern databases
(Edelkamp 2001). The idea got more traction when, in the
same year, Helmert, Haslum, and Hoffmann (2007) intro-
duced the merge-and-shrink heuristic and van den Briel et al.
(2007) introduced a flow-based heuristic similar to the one
described in this paper, that exploits merging. While both
works apply merging, they perform it in different ways.

In merge-and-shrink, variables are literally merged away.
For example, after merging variables X and Y into the vari-
able XY, only one variable exists, which is variable XY.
In the heuristic by van den Briel et al. no variable is ever re-
moved. Hence, after merging variables X and Y into XY,
three variables remain, X, Y, and XY . The reason for not
removing variables X and Y is that they can still be used in
other merges. For example, we may only be interested in the

“Total number of expansions before last f-layer. Points with
zero value omitted since plot is in log scale.
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Figure 3: The solution of the base LP shown on top of the
DTGs for the simple logistics example using highlighted
arcs and action labels.

\&— DRIVE(T, 2,1) ——
DRIVE(T, 1,2) —>
LoAD(P, T, 1) UNLOAD(P, T, 1)
<«— DRIVE(T,2,1)
~—— DRIVE(T}, 1,2) —>

UNLOAD(P, T, 2) ILOAD(P.T.Z)

Figure 4: Single state variable obtained from merging
the variables in the example. Only the highlighted nodes
merge(1,1) and merge(T,2) are added to the LP formu-
lation using dynamic merging. The solution to the LP after
adding the two merges is shown using highlighted arcs and
action labels, and it yields the perfect value of 4.

merged variables XY and X Z, yet if we had to merge vari-
ables away, we would be forced to create the merged vari-
able XY Z whose size may be much bigger than the com-
bined sizes of XY and X Z. In terms of our LP formulation,
constraints corresponding to XY and X Z can both improve
the heuristic value, and thus it is beneficial to consider both.
Constraints corresponding to XY Z also improve the heuris-
tic value, but this requires many more constraints in the LP.

In our flow-based heuristic we do not remove any vari-
ables after merging, but unlike van den Briel et al.’s ap-
proach we allow for dynamic merging, which enables us to
only partially merge variables in order to manage the num-
ber of variables and constraints that are added to the LP. Dy-
namic merging is probably best explained by focussing on
the atoms rather than on the variables. With dynamic merg-
ing we are merging only selected pairs of atoms p and g,
where Var(p) # Var(q), rather than creating the cross prod-
uct of variable domains.

Dynamic merging has some overlap with the idea of creat-
ing conjunctions of atoms to boost both admissible and non-
admissible heuristics (Haslum 2012; Keyder, Hoffmann, and
Haslum 2012). These works, however, are syntactic as they
translate a given task P into another task P’ that has addi-
tional atoms representing the merged values. Our approach
is different as we perform an efficient (polytime) merging
that creates new variables and constraints for the LP with-
out the need to construct another task P’, which in the case

of Haslum increases exponentially in size, or in the case of
Keyder, Hoffmann, and Haslum has conditional effects.

Let us illustrate the idea of dynamic merging with the lo-
gistics example introduced in Figure 1, and whose solution
to the base LP is highlighted in Figure 3. The two actions in
the LP solution are LOAD(P, T, 1) and UNLOAD(P, T}, 2),
which are indicated using bold labels and thicker arcs. The
heuristic estimate for the initial state is 2, yet the minimum
distance to the goal is 4 as the truck would have to drive to
location 1 to load the package and drive back to location 2
to unload it. The weak estimate is caused by the prevail con-
ditions of the actions LOAD(P, T, 1) and UNLOAD(P, T}, 2),
and because the goal does not impose any constraint on the
final location of the truck. One way to boost the estimate
is to merge the two variables into a single variable with a
domain of size 6 (cf. Figure 4).

Dynamic merging allows us to explicate selected values
of a merged variable without the need to explicitly form the
cross product of the variables. For example, we may choose
to explicate the value (pos(package) = 1, pos(truck) =1)
of the merged variable (pos(package), pos(truck)). To do
so, we extend the LP with a constraint corresponding to the
flow balance of the merged value (merge for short) being
explicated. The constraint takes into account the producers
and consumers of the merge; e.g., the action LOAD(P, T, 1)
consumes the merge while UNLOAD(P, T, 1) produces it.
However, we also need to keep track of actions that could
produce or consume the merge. These potential producers
and consumers are naturally captured in the parallel compo-
sition of the DTGs as they appear as multiple transitions with
the same action label (cf. Figure 4). Under dynamic merg-
ing the product is only partially explicated by creating (using
Equations 1-3) the nodes and transitions in the product DTG
that are incident on the merge. For example, when the merge
(pos(package) =1, pos(truck) =1) is explicated, only the
merge and the values (pos(package) =T, pos(truck) =1)
and (pos(package) = 1,pos(truck) = 2) in the product
are created, along with the transitions between them. Of
these transitions, LOAD(P, T, 1) (resp. UNLOAD(P, T, 1))
consumes (resp. produces) the merge as it destroys (resp.
creates) the merge once applied. On the other hand, the
action DRIVE(T', 2,1) (resp. DRIVE(T, 1,2)) is a potential
producer (resp. consumer) as it creates (resp. destroys) the
merge only when it is applied at a state that does not satisfy
(resp. satisfies) the merge.

In the LP formulation, the flow balance equation for the
merge is defined as before by Equation 4, except that the
transitions for the potential producers/consumers are associ-
ated with new variables that are called action copies. In the
example, there is an action copy for each transition labeled
with a drive action in Figure 4. These new variables however
do not vary freely in the LP as they are linked to the origi-
nal action variables in the problem. This ensures that each
execution of an action copy is linked to an execution of the
original action. Indeed, if Copies(a, Z) is the set of copies
for action a in the product DTG for Z, the link constraint for

ain Z is:
flay = > fld).

a’ €Copies(a,”Z)



As an illustration, let us explicate the merge m; =
(pos(package) =1, pos(truck) =1} in the example. First,
a partial DTG for the product of the DTGs for the vari-
ables pos(package) and pos(truck) is created, along with
the copies d 1 and d o for the actions DRIVE(T', 2, 1) and
DRIVE(T, 1, 2) respectively. Second, the LP is extended
with the flow balance equation for the merge:

LB,, < f(UNLOAD(P,T,1))+ f(d21)
— f(LOAD(P,T,1)) — f(d12) < UB,,.
Finally, the LP is extended with the link constraints:
f(DRIVE(T, 1,2)) = f(di,2),
f(DRIVE(T,2,1)) > f(d2n).

If we explicate mo = (pos(package) =T, pos(truck) =2)
after m,, the solution of the LP gives the perfect value of
4 as it includes the load and unload actions for the pack-
age plus the two drive actions that are needed in the plan.
The load and unload actions appear because the net flow
on p = pos(package) = 2 must be 1: UNLOAD(P,T,2)
gets inserted as it produces p while LOAD(P, T, 1) appears
as it produces pos(package) = T which is consumed by
the unload action. On the other hand, the load action con-
sumes m; which is not true initially. Thus, the copy ds 1 of
DRIVE(T), 2, 1) that produces m; gets into the solution, and
similarly for the copy of DRIVE(P, 1,2) that produces ms,
as my is consumed by UNLOAD(P, T, 2).

In summary, the basic operation when implementing dy-
namic merging is to merge two atoms p and ¢ for differ-
ent variables into the atom merge(p, ¢). This operation par-
tially creates or extends the DTG for the product of the two
variables, creates the flow balance equation for the merge,
and creates or updates the link constraints for the action
copies that are incident on the merge. The link constraint
for an action a gets updated when performing the dynamic
merging of p and ¢ when new copies for a are created.

If M is a set of merges, we write h{y!, to denote the
heuristic that results of explicating all the merges in M. It
follows that dynamic merging can be done efficiently and
always results in admissible estimates:

Theorem 3. Let M be a set of merges. Then, the set of con-
straints for M is admissible and hme is admissible. Fur-
ther, the resulting LP has at most a linear increase (in the
size of |M|): at most nm new variables (action copies) and
n(m + 1) constraints are added to the LP where n = | M|
and m = |A|.

Informally, the admissibility of !, follows from the ad-
missibility of Apyse. Note that, constraints in Ay, are flow
balance constraints on each atom p and constraints obtained
from explicating all the merges are flow balance constraints
on atoms merge(p, q) € M, which are both satisfied by any
feasible plan. The set of merges M introduces a number of
variables and constraints. Each merge in M introduces at
most one action copy variable for each action, one flow bal-
ance constraint, and at most one constraint for each action
linking the action copies with the original action.

Dynamic merging is a lossless operation as a full merge
can be computed through a sequence of dynamic merges:

Theorem 4. Let X and Y be two variables and M be the
set of merges for every value of the variable XY . Then,
hIP) = hpase[Pxy ] where bt [P] is the hixt, heuris-

tic for task P and hpgse|Pxy| is the hpase heuristic for task
Pxvy, which is P extended with the variable XY .

In the rest of this section, we describe a simple domain-
independent strategy for merging, and present some results.

A Simple Merge Strategy

The two key questions for merging are: when to merge?
and what to merge? Here we adopt a simple merge strategy
that (1) only performs dynamic merging at the root node of
the A* search tree and (2) only considers merges between
pairs of atoms, where one atom is a prevail condition and
the other atom is a precondition of an action. We recognize
that this strategy is by no means comprehensive and believe
that there is ample opportunity to try other, more involved,
merge strategies in future work.

Our merge strategy is as follows. We create the base
model at the root node of the A* search tree and solve it.
For each unmarked action a that appears in the solution
we check if the action has any prevail conditions. If so,
we mark the action and explicate merge(p, ) for all atoms
p € Prev(a) and ¢ € Pre(a). In this way the prevail condi-
tions that do not play a role in the constraints become active.
After all such merges are explicated, a new solution for the
LP is computed and the whole process is repeated until the
solution contains no unmarked actions with prevail condi-
tions. Since at least one action is marked at each iteration,
this process terminates in at most | A| iterations.

Consider the example shown in Figure 3 whose solution is
f(LoaD(P,T,1)) =1 and f(UNLOAD(P,T,2))=1. Both
these actions have prevail conditions which provide candi-
dates for merging. The first action has prevail pos(truck)=
1 and precondition pos(package) =1, while the second has
prevail pos(truck) =2 and precondition pos(package) =T.
Hence, the simple merge strategy explicates the merges
my = merge(1,1) and mg = merge(T,2) (cf. Figure 4)
yielding the perfect heuristic.

Putting All Together: Landmarks and Merges

Before combining the improvements given by the con-
straints for landmarks and the simple merge strategy, we
evaluate the benefits of the latter with respect to the base
model. The column f01 in Table 4 shows coverage results
for the base LP improved with the simple strategy for dy-
namic merging. As can be seen, f01 provides a significantly
higher coverage and, in some domains, the increase in the
number of problems solved is significant; e.g., gripper, lo-
gistics, mprime and woodworking. In gripper, for example,
f01 is able to solve all the instances in a backtrack free man-
ner as the resulting heuristic is perfect. Scatter plots compar-
ing the number of expanded nodes and the values at the ini-
tial state for the base LP and f01 are shown in Figure 5. In
some cases f01 does not result in an improvement over the
base LP, which is often due to the presence of actions with
no prevail conditions in the initial solution making the sim-
ple merge strategy to terminate without updating the base



Domain LM-cut  hfy base fOl f10 f11 f20 f21 Domain LM-cut hfy base fO1  f10 f11  f20 f21
airport (50) 28 28 20 22 26 22 25 22 parking-optl1-strips (20) 2 1 1 1 1 1 1 1
barman-opt11-strips (20) 4 4 4 — 4 — 4 —  pathways-noneg (30) 5 5 4 4 4 4 5 5
blocks (35) 28 28 28 28 28 28 29 29 pegsol-08-strips (30) 27 27 28 28 26 206 27 27
depot (22) 7 7 7 6 7 5 7 5 pegsol-optl 1-strips (20) 17 17 18 18 16 16 17 17
driverlog (20) 13 13 11 15 11 15 13 15 pipesworld-notankage (50) 17 16 15 13 16 15 11 13
elevators-opt08-strips (30) 22 19 9 21 9 21 18 21  pipesworld-tankage (50) 11 9 10 10 10 10 9 10
elevators-opt1 1-strips (20) 17 16 7 17 7 17 15 17  psr-small (50) 49 49 50 50 50 50 50 50
floortile-opt11-strips (20) 6 6 4 2 4 2 6 5 rovers (40) 7 7 6 6 6 7 7 7
freecell (80) 15 15 35 33 47 28 27 29 satellite (36) 7 7 6 6 6 6 7 7
grid (5) 2 2 1 2 2 2 1 2 scanalyzer-08-strips (30) 15 13 13 12 13 11 11 11
gripper (20) 7 6 6 20 7 20 5 20 scanalyzer-optl I-strips (20) 12 10 10 9 9 8 8 8
logistics00 (28) 20 20 15 22 14 22 20 22 sokoban-opt08-strips (30) 28 28 16 18 20 20 27 27
logistics98 (35) 6 6 2 7 3 7 6 10 sokoban-optl1-strips (20) 20 20 15 15 16 16 20 19
miconic (150) 141 141 50 58 57 140 140 141 tidybot-optl1-strips (20) 13 13 5 1 11 1 8 1
mprime (35) 22 22 18 24 20 24 20 25 tpp(30) 6 6 8§ 11 8 11 8 10
mystery (30) 19 18 15 20 16 20 16 17 transport-opt08-strips (30) 11 11 10 10 10 100 1 11
nomystery-opt!1 I-strips (20) 14 14 10 14 8 14 12 14  transport-optl 1-strips (20) 6 6 6 5 5 5 6 6
openstacks-opt08-strips (30) 20 17 15 10 12 10 15 10 trucks-strips (30) 10 10 9 10 9 12 9 11
openstacks-opt11-strips (20) 15 12 7 5 7 5 7 5 visitall-optl 1-strips (20) 10 10 17 17 17 17 19 19
openstacks-strips (30) 7 7 7 7 8 7 7 5 woodworking-opt08-strips (30) 16 16 12 25 14 28 20 28
parcprinter-08-strips (30) 18 18 28 30 28 30 29 30 woodworking-optll-strips (20) 11 11 7 18 9 20 15 20
parcprinter-opt1 1-strips (20) 13 13 20 20 20 20 20 20 zenotravel (20) 12 12 9 13 9 13 11 13

Total (1396) 756 736 594 683 630 766 749 785

Table 4: Coverage for LM-cut, optimal cost partitioning, and several variants of the flow-based heuristic. Variants f1z and f2x
refer to addition of landmark constraints, and variants fx1 refer to the use of dynamic merging. Best results are highlighted.
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Figure 5: Number of expanded nodes and value at initial

state for base LP and f01 across common solved tasks.

LP. This shortcoming, however, is due to the merge strategy
and not on the general idea of dynamic merging.

The table also contains results for the optimal cost parti-
tioning for the LM-cut landmarks in column App.cy. This
heuristic dominates LM-cut but, as seen, does not improve
its coverage because it requires more time to compute.

Our final experiments show the improvements achieved
with dynamic merging over different flow-based heuristics.
These experiments correspond to the columns marked with
fz1 that extend the heuristics for the columns marked with
f20 by using the simple merge strategy. The best heuristic is
the one for the column f21 that corresponds to base LP for-
mulation extended with the constraints for the LM-cut land-
marks and the constraints obtained by using the merge strat-
egy. As can be seen, the overall coverage for f21 jumps by
36 from 749 to 785 with respect to f20, by 102 with respect
to f01, and by 29 with respect to LM-cut. As said above,
these experiments correspond to LPs that only contain lower
bounding constraints of the flows for each atom or merge as
the upper bounding constraints are redundant (Pommeren-
ing et al. 2014). However, this redundancy only holds when
the constraints for all the atoms in any given DTG appear in
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Figure 6: Number of expanded nodes and value at initial
state for LM-cut and f21 across common solved tasks.

the LP, something that does not hold when performing dy-
namic merging. We thus conducted another experiment in
which the lower and upper bounding constraints for flows
are added to the LP, and obtained a coverage for the f21
heuristic of 798 problems solved, which is 13 more prob-
lems than the coverage of 785 reported in Table 4.

Scatter plots showing number of expanded nodes and the
heuristic value at the initial state for commonly solved prob-
lems with respect to LM-cut are shown in Figure 6, and a
plot comparing the solution time is shown in Figure 7.

While the number of expanded nodes for f21 is less than
for LM-cut, it typically requires more time. This seems
to indicate that spending more time to calculate a stronger
heuristic is beneficial for this set of benchmarks. Note, how-
ever, that this result is dependent on the time cutoff, which
is currently set at 30 minutes (the same time cutoff that has
been used in the past international planning competitions).

Conclusions and Future Work

We have shown how a basic flow-based heuristic for optimal
planning can be strengthened substantially by using three
simple ideas: (1) the automatic reformulation of the input
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Figure 7: Time spent by A* for finding a solution when using
LM-cut and f21 across common solved tasks.

problem to extend the goal description, (2) the addition of
constraints for actions landmarks, and (3) performing de-
tailed partial merging, that we call dynamic merging. The
result is a very strong admissible heuristic that is competi-
tive with the state of the art for optimal planning.

The first two ideas were suggested by Bonet (2013) in or-
der to cope with goal descriptions involving few atoms and
the prevail conditions that do not play an active role in the
base LP formulation, yet Bonet does not provide a hint on
how to do the reformulation in a domain-independent man-
ner, and does not evaluate the impact of the information con-
tained in the landmarks. The idea of dynamic merging is
novel, but it does shows similarities with some of the re-
cent syntactic transformations aimed at boosting standard
heuristics (Haslum 2012; Keyder, Hoffmann, and Haslum
2012). Implementing a domain-independent and successful
strategy for dynamic merging is quite a challenge. We tried
a simple strategy that only considers the prevail conditions
of the actions that become active in the solution of the LP,
but it is clear that there are other opportunities for develop-
ing more complex and better strategies. Likewise, in this
work, we only perform dynamic merging on atoms p and
q that belong to the original problem and do not attempt to
build more complex merges involving three or more atoms.
We believe that flow-based heuristics provide a rich area for
future research and important advances in the field. In par-
ticular, we plan to extend this work by designing better and
more powerful merge strategies that may include the forma-
tion of complex merges. On the theoretical side, it is an open
question to identify the real power of flow-based heuristics
in relation to other heuristics, yet a first result in this direc-
tion is given by Pommerening et al. (2014).
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