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FLOW BY MEAN CURVATURE OF CONVEX
SURFACES INTO SPHERES

GERHARD HUISKEN

1. Introduction

The motion of surfaces by their mean curvature has been studied by Brakke
[1] from the viewpoint of geometric measure theory. Other authors investigated
the corresponding nonparametric problem [2], [5], [9]. A reason for this interest
is that evolutionary surfaces of prescribed mean curvature model the behavior
of grain boundaries in annealing pure metal.

In this paper we take a more classical point of view: Consider a compact,
uniformly convex n-dimensional surface M = M, without boundary, which is
smoothly imbedded in R"*!. Let M, be represented locally by a diffeomor-
phism

F,:R"D> U — F(U)c M,c R*1,

Then we want to find a family of maps F(-,¢) satisfying the evolution
equation

%F(f, t)=AF(%,t), XeU,
F("O) = FO’

(1)

where A, is the Laplace-Beltrami operator on the manifold M,, given by
F(-,t). We have

AF(%,t)=-H(%,t)-»(%,1),

where H(-, t) is the mean curvature and »(-, ¢) is the outer unit normal on M,.
With this choice of sign the mean curvature of our convex surfaces is always
positive and the surfaces are moving in the direction of their inner unit normal.
Equation (1) is parabolic and the theory of quasilinear parabolic differential
equations guarantees the existence of F(-, t) for some short time interval.
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We want to show here that the shape of M, approaches the shape of a sphere
very rapidly. In particular, no singularities will occur before the surfaces M,
shrink down to a single point after a finite time. To describe this more
precisely, we carry out a normalization: For any time ¢, where the solution
F(-, 1) of (1) exists, let y(¢) be a positive factor such that the manifold M,
given by

F(x,t)=y(t)-F(Z,1)
has total area equal to | M), the area of M:

f_ dii = |M,| forall:.
Ml

After choosing the new time variable #(¢) = [ ¢?(7) dr it is easy to see that F
satisfies

g - X om 1. ~ . -
(2) ’a—;F(X,t)— ;F(x,t)+-’;h;F(x,t),
F("O) FO’
where

h= fM A2 dﬂ/ fﬁdﬁ

is the mean value of the squared mean curvature on M, (see §9 below).

1.1 Theorem. Let n = 2 and assume that M, is uniformly convex, i.e., the
eigenvalues of its second fundamental form are strictly positive everywhere. Then
the evolution equation (1) has a smooth solution on a finite time interval
0 <t < T, and the M,’s converge to a single point  as t - T. The normalized
equation (2) has a solution M; for all time 0 < { < oo. The surfaces M; are
homothetic expansions of the M,’s, and if we choose  as the origin of R**', then
the surfaces M; converge to a sphere of area |M,| in the C*-topology as t > 0.

Remarks. (i) The convergence of M; in any C*-norm is exponential.

(ii) The corresponding one-dimensional problem has been solved recently by
Gage and Hamilton (see [4]).

The approach to Theorem 1.1 is inspired by Hamiltons paper [6]. He evolved
the metric of a compact three-dimensional manifold with positive Ricci curva-
ture in direction of the Ricci curvature and obtained a metric of constant
curvature in the limit. The evolution equations for the curvature quantities in
our problem turn out to be similar to the equations in [6] and we can use many
of the methods developed there.

In §3 we establish evolution equations for the induced metric, the second
fundamental form and other important quantities. In the next step a lower
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bound independent of time for the eigenvalues of the second fundamental
form is proved. Using this, the Sobolev inequality and an iteration method we
can show in §5 that the eigenvalues of the second fundamental form approach
each other. Once this is established we obtain a bound for the gradient of the
mean curvature and then long time existence for a solution of (2). The
exponential convergence of the metric then follows from evolution equations
for higher derivatives of the curvature and interpolation inequalities.

The author wishes to thank Leon Simon for his interest in this work and the
Centre for Mathematical Analysis in Canberra for its hospitality.

2 Notation and preliminary results

In the following vectors on M will be denoted by X = { X'}, covectors by
Y = {Y;} and mixed tensors by T = {T;/}. The induced metric and the
second fundamental form on M will be denoted by g = {g,;} and 4 = {h,;}.
We always sum over repeated indices from 1 to #» and we use brackets for the
inner product on M:

(T, Sh) = 8,87 8" TiSs,  IT1P=(Ti. T}).

In particular we use the following notation for traces of the second funda-
mental form on M:
H=g"h;;, |A>=g%"h,h,,
C=g"g™hyh,h,;,  Z=HC— A"
By (-, -) we denote the ordinary inner product in R***. If M is given locally by
some F as in the introduction, the metric and the second fundamental form on
M can be computed as follows:

e )_(aF(x), BF(x))’ h,-j(f)=—(v(5c’) aZF(x))’ -

ax; > 9x,0x,

where »(X) is the outer unit normal to M at F(X). The induced connection on
M is given by
1 d d i}
Tk== St —g - L
ij 2g (axigjl+ axjgxl axlglj)
so that the covariant derivative on M of a vector X is
d

VjX' = iji + I‘jika.
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The Riemann curvature tensor, the Ricci tensor and scalar curvature are given
by Gauss’ equation

Ijkl hlkh hilhjk’
Ry = Hh, — hilgljhjk9
R=H?*— |4
With this notation we obtain, for the interchange of two covariant derivatives,
Vv, X" — v, X" = Rl X* = (hjhy — hyhi;) g7 XE,
Viv,Y, - vVvY, = Rijklg "Y,, = (hikhjl - hilhjk)glem'
The Laplacian AT of a tensor T on M is given by
Ar/;c = gmnv \v/ Tl

n’jko

whereas the covariant derivative of 7 will be denoted by VT = { v,T}; }. Now
we want to state some consequences of these relations, which are crucial in the
forthcoming sections. We start with two well-known identities.
2.1 Lemma. (i) Ah,; = v,v,H + Hh,g'"h, . — |A*h,,.
(ii) ‘A|A| = (h,j,vv H) + |vA|2 + Z
Proof. The first identity follows from the Codazzi equations .k, = vV, h,
= V,h,, and the formula for the interchange of derivatives quoted above,
whereas (ii) is an immediate consequence of (i).
The obvious inequality |VH|? < n|vA|* can be improved by the Codazzi
equations.
2.2 Lemma. (i) |[VA4|?> > 3/(n + 2) - |VH|.
(i) | V4|2 — |VH|*/n = 2n — 1)|VA|>/3n.
Proof. Similar as in [6, Lemma 11.6] we decompose the tensor VA:

Vihjk = + F,

ijk>

where

E

ik = p ¥ 2(ViH “ 8 T Vngik + Vv, H - gij)‘

Then we can easily compute that |E|? = 3|VH|>/(n + 2) and
<El/k’ ijk> = <Eijk’vihjk - Eijk> =0

i.e., E and F are orthogonal components of VA. Then

|vAI* > |E|* =

2
+2|le,

which proves the lemma.
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If M;; is a symmetric tensor, we say that M, is nonnegative, M,; > 0, if all
elgenvalues of M;; are nonnegative. In view of our main assumption that all
eigenvalues of the second fundamental form of M, are strictly positive, there is
some ¢ > 0 such that the inequality

(3) hij > eHg;;

holds everywhere on M,,. It will be shown in §4 that this lower bound is
preserved with the same ¢ for all M, as long as the solution of (1) exists. The
relation (3) leads to the following inequalities, which will be needed in §5.

2.3 Lemma. If H > 0, and (3) is valid with some ¢ > 0, then

() Z > ne?H?(|A|2 — H?/n).

(i) |V - H— V;H - by > 3H|VH|.

Proof. (i) This is a pointwise estimate, and we may assume that g,; = §
and

i

In this setting we have

Z=HC-|A*= é )(gn}) ('ix,?)z

=1

I
—_—
=
R
+
=
R
=

T

i<j
n
2 2
= Z"i"j("i - "j) > BZHZZ (k; — Kj) )
i<j i<j

and the conclusion follows since
1 2
|A|2 - = P Z ("i - "j) .
<
(i1)) We have
2
|V - H— V,H - hy)
1 1 2
= |Vihk1 “H—-3(v,H -hy+v,H-hy)—3(V,H hyy— V. H-h,)|
2 2
=|Vihy - H—5(V,H - hy+ Vv H-h))| + 5|V.H hy— V. H-h,|
2
> }|V.H - hy — vV, H-h,f,
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since V;h,,is symmetric in (i, k) by the Codazzi equations. Now we have only
to consider points where the gradient of the mean curvature does not vanish.
Around such a point we introduce an orthonormal frame e,,- - -, e, such that
e, = VH/|VH| Then

|VH|, i=1,

H =
Vi {0, i>2,

in these coordinates. Therefore

n
Y (viH-hy—vH- hi1)2
ik, I=1

A=

2

> §(ViH - hyy = VyH - hy,) + §(VoH - hyy — v, H - hzz)2
2

= 1h%,|vH|" > 1R vH',

since any eigenvalue, and thus any trace element of 4, is greater than ¢H.

3. Evolution of metric and curvature

In this and the following sections we investigate equation (1) which is easier
to handle than the normalized equation (2). The results will be converted to the
normalized equation in §9.

3.1 Theorem. The evolution equation (1) has a solution M, for a short time
with any smooth compact initial surface M = M, at t = 0.

This follows from the fact that (1) is strictly parabolic (see for example [3,
I11.4]). From now on we will assume that (1) has a solution on the interval
O0<t<T

Equation (1) implies evolution equations for g and 4, which will be derived
now.

3.2 Lemma. The metric of M, satisfies the evolution equation

d
(4) Egij = -2Hh

ij*

Proof. The vectors 0F /9x; are tangential to M, and thus

aF\_ o, (2, 0F\_(2, oF
¥ 3x, ’ =\ ax,” ax; | axj"’ ox; |’
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From this we obtain
d

Egij =

3F oF
ax

33 Lemma. The unit normal to M, satisfies dv/dt = VH.
Proof. This is a straightforward computation:

a_ (8, AF\OF , (8 9F\dF
= (at"’ axi) ox,® (”’ o ax,.) ox,®

i

9 oF ,. 0 oF
= — o= ij =
(V’ E)x,-(HV)) axjg ax,-H axjg VH.
Now we can prove
3.4 Theorem. The second fundamental form satisfies the evolution equation

%hu = Ah;; — 2Hh,.,g”"hmj + [A|2h,.j.
Proof. We use the Gauss-Weingarten relations
9°F « OF d oF
axdx; Yox, hijps ij = g™ ax,,

to conclude

8, _ 3 ¥F
0 Tar| axdx,”

@ F 8 . OF ,

= (axiax4(H”)’ ”) _(ax,.axj’ ax ax,, 8 )
32 G i OF

_axia)C»H-i-H(é—X_i(hjmg a_XI),V)

aF 9 . OF
k _ - Ll oim
(F'fa bt o H ok, 8 )

2
9 I‘kiH + Hh,, ’"’(I‘,‘,’ :F hyv, v)

- axiax Y ox,
= ViVjH - Hhilg hm;
Then the theorem is a consequence of Lemma 2.1.
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3.5 Corollary. We have the evolution equations:
d

(1) 5 H=AH+ |4)*H,

. d

(i) 571417 = Aj4|* - 2|v4|” + 2|4]",

_3_ 2_1 2)_ ( 2_1 2)__ ( 2_1 2)
(i) at(|A| nH = Al 4] nH 2{|wA| n|VH|

+2|A|2(|A|2 - ;11-H2).

Proof. We get, from Lemma 3.2,

%H = %(g"’h,-,-) = g”%hi,- + 2Hg"g "y h
and the first identity follows from Theorem 3.4. To prove the second equation,
we calculate

iAZ = i(gikgﬂhuh )
ot ot YTk

= _4Hgimgknhmngﬂhijhk1

ij*

+2g"*g/h (Ah,; — 2Hh,,g™"h,, ; + |A%h,;)
= 2gikgjlhk1Ahij + 2|A|4’
Al4)? = g, v, (gP%g™"h 1) = 28798 R, AR, + 2| VA2,
The last identity follows from (ii) and
d

EHZ =2H(AH + |A]*H) = AH? — 2|vH|* + 2|4|*H*.

3.6 Corollary. (i) If dp, = p,(X) dx is the measure on M,, then p = ‘/det 8
and ou /0t = —H? - p,. In particular the total area |M,| of M, is decreasing.

(ii) If the mean curvature of M, is strictly positive everywhere, then it will be
strictly positive on M, as long as the solution exists.

Proof. The first part of the corollary follows from Lemma 3.2, whereas the
second part is a consequence of the evolution equation for H and the
maximum principle.

4. Preserving convexity
We want to show now that our main assumption, that is inequality (3),
remains true as long as the solution of equation (1) exists. For this purpose we
need the following maximum principle for tensors on manifold, which was
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proved in [6, Theorem 9.1}:

Let u* be a vector field and let g; j» M;; and N;; be symmetric tensors on a
compact manifold M which may all depend on time 7. Assume that N;; = p(M,,
8:;) is a polynomial in M;; formed by contracting products of M;; with itself
using the metric. Furthermore, let this polynomial satisfy a null-eigenvector
condition, i.e. for any null-eigenvector X of M;; we have N, X'X/ > 0. Then we
have

4.1 Theorem ( Hamilton). Suppose that on 0 < t < T the evolution equation

%MU. =AM, + u*v,M,;+ N,
holds, where N,; = p(M,;, g;;) satisfies the null-eigenvector condition above. If
M, > 0art =0, thenitremainssoon0 <t <T.

An immediate consequence of Theorems 3.4 and 4.1 is

4.2 Corollary. Ifh;; > Oatt =0, then it remains so for 0 <t < T.

Proof. SetM,,=h,,,u*=0and N,; = -2Hh,g""h,,, + |A|*h,,.

We also have the following stronger result.

4.3 Theorem. IfeHg,;; < h;; < BHg,;;, and H > 0 at the beginning for some
constants 0 < e € 1/n < B < 1, then this remains soon 0 <t < T.

Proof. To prove the first inequality, we want to apply Theorem 4.1 with

1y k

2
Mij=F_ e8> U =§gkIV1H,

N, = 2eHh;; — 2h,,g™h,;.

With this choice the evolution equation in Theorem 4.1 is satisfied since

h, HAh,,— h, AH
O (2u) 2R T T gy i
at H H2 im lj
h,. HAh,,— h,AH > h..
LA L. S A 7 Zij
A( H) 7D e VkHV,( H)'

It remains to check that N,; is nonnegative on the null-eigenvectors of M;,.
Assume that, for some vector X = { X'},

h,; X/ = eHX,.
Then we derive
N, X'X/ = 2eHh,; X'X/ — 2h,,g"'h; XX’
= 2¢°H?| X|* — 22 HY X|* = 0.

That the second inequality remains true follows in the same way after reversing
signs.
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5. The eigenvalues of A

In this section we want to show that the eigenvalues of the second funda-
mental form approach each other, at least at those points where the mean
curvature tends to infinity (for the unnormalized equation (1)). Following the
idea of Hamilton in [6], we look at the quantity

1 1 & 2
IAIZ—;H2=;Z('€i—Kj),

i<j

which measures how far the eigenvalues k; of 4 diverge from each other. We
show that |A4|?> — H?/n becomes small compared to H2.

5.1 Theorem. There are constants 8 > 0 and Cy < oo depending only on M),
such that

1
IA|2 _ _H2 < C0H2_8,
n

for all times 0 < t < T.

Our goal is to bound the function f, = (|4|> — H?/n)/H?"° for sufficiently
small 0. We first need an evolution equation for f,.

5.2Lemma. Leta =2 — o. Then, for any o,

9, 2(a—-1) .
at a—Afa+ H g vaquu
2 2
- H,,+2|Hvihk1— V.H - hyf

B %(MIZ _ %}ﬂ)[lez +(2 - a)|41%,.

Proof. We have, in view of the evolution equations for |4|? and H,

i _i ﬂ_ l 2-a
aile = at( A
_ HAJA)? — oJ4PAH
- Ha+1 -

2 ; a) Hl—aAH

2 2 N
HalvAI +(2 (X)lAl fo'



FLOW OF CONVEX SURFACES 247

Furthermore
vify = HV"lA‘:,,ﬂAlzv"H e - 9 pr-ag,g,
o~ B0y,
(5) - H““ (VA2 v,H) + a(a + 1) ' |vH|
12— a)(l ) |le

n

and now the conclusion of the lemma follows from reorganizing terms and the
identity

Vit H= V,H b [ = HYvAl +]a]'|vA] = ()], v,H)H.

Unfortunately the absolute term (2 — a)|4|%f, in this evolution equation is
positive and we cannot achieve our goal by the ordinary maximum principle.
But from Theorem 4.3 and Lemma 2.3(ii) we get

5.3 Corollary. For any o the inequality

(6) gt Af +£}.I__1_)<ViH’Vifa>_Ezﬁlg‘lez_‘_olAlZfo

holdson0 <t < T.

The additional negative term in (6) will be exploited by the divergence
theorem:

5.4 Lemma. Letp > 2. Then for any 1 > 0 and any 0 < 6 < 3 we have the
estimate

ne* [ f2H>dp < (2np + 5) f — 77V vH| dp

(e = 1) [ 12794 dw.

Proof. Let us denote by A?, '; the trace-free second fundamental form

1
0 _ -
hij = hij - ngij'
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In view of Lemma 2.1(ii), the identity (5) may then be rewritten as
2
Af, = Ha(h,,,va> + 4wz
2«
+ Wivihkl'H — ViH hy| - ﬁfoAH
2—-a)(a—-1 -1
s2zellez Dy iopp 2l (on 0.
H
Now we multiply the inequality

<h,j,vv H)+ ;Iz—az

2(a—1) a
H <ViH’ Vifa) Hfo . AH
by 7! and integrate. Integration by parts yields

0> (p—1) [ fr%vyl dp+f =2 Zfr ldp

~2a=1) [ 127X Vifo O, H)dp

+2af H‘mfl’ Y hY, v,Hv,H)dp
D T pont
~(p = ) f Zerr (% VH - v,f,)dn

2 1
— P —fp-1
af —SAIVH du+ ap [ F127KVH, VL dn,
where we used the Codazzi equation. Now, taking the relations
1

@) ab < 2a +2nb, a<2,

o< B (wf = (14 - Sa7) = g
into account, we derive, for any 5 > 0,

7 Zdn < @up +9) [ sz VT dy

+07(p = 1) [ 27291 dp.

The conclusion then follows from Lemma 2.3(i) and Theorem 4.3.
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Now we can show that high L?-norms of f, are bounded, provided ¢ is
sufficiently smali.

5.5 Lemma. There is a constant C; < oo depending only on M, such that,
for all

(8) p > 1008_2, 8 3p—1/2

the inequality

1/p
(f f:’du) <G
M,

holdson0 < t < T.
Proof. We choose

C, = (|M0|+ 1) sup (supfa)
ce€[0,1,2]

and it is then sufficient to show

i)
9 [ ¢r
9) atff,d;LsO on0<t<T.

To accomplish this, we multiply inequality (6) by pf? ! and obtain
d _s 2
o [ f2an+p(p =) [ f7729f,) dp
vep [ oo Faf2 VA dp + [ Hf2 dy

<2a-1)p[ /2| VHIVLlde + op [ 141F7 dp,

where the last term on the left-hand side occurs due to the time dependence of
dp as stated in Corollary 3.6(i). In view of (7) we can estimate

1 -
2a~1)p [ Ff7 I VHIIVLIdp

_ 2
<ip(p -1 [ 27V dp+ 25

andsincep — 1 > 100672 — 1 > 472, |4} < H2 we conclude

ff" 1—Ile dp,

— 2 2 = gp-1
S [ rranssp(p-0) [ f2719s  du+ 3e2p [ Safe IVHI dp

< opf H*f}dp.
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The assumption (8) on ¢ and Lemma 5.4 yield
14 — p—2 p—1
o srdu+4p(p = 1) [ 12AAVEL du+ ep [ —ofe | OH d
—p1/2(2np + 5)/ —= /271 vH| dy

L aa CERV] Ik /A

for any 7 > 0. Then (9) follows if we choose = ep~1/2/4.
5.6 Corollary. If we assume

P> (2)2288_6, o< 1¢ L g3p1r2,

then we have

(faizan)” < c,
A

on0<gt<T.
Proof. 'This follows from Lemma 5.5 since

([ ase dﬂ)w - (ff,ﬁdu)l/p,

with

We are now ready to bound f, by an iteration similar to the methods used in
[2], [5]. We will need the following Sobolev inequality from [7].
8.7 Lemma. For all Lipschitz functions v on M we have

(/Mivln/n—ldu)"—l/n < c(n)(fMIVU|dp +f H\U|du)-

Proof of Theorem 5.1. Multiply inequality (6) by pf7; 1 where Jok
max( f, — k,0) for all k£ > k, = sup,, f,, and denote by A(k) the set where
f, > k. Then we derive as in the proof of Lemma 5.5 for p > 1002

1 2
= 2edu+5sp(p—1 Vil fEc*d
ath(k)f,k n+5p(p )fA(k)l fol £33 dp

<op[ HYIY,dy.
A(k)
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On A(k) we have

_ 2 2
Ip(p = DRIV = vie],
and thus we obtain with v = f? {2

9 3 2
= vidp + v dp<o H2fP dp.
3t )y, U fA(k)l | dp pfA(k) 17 du

Let us agree to denote by ¢, any constant which only depends on n. Then
Lemma 5.7 and the Holder inequality lead to

[ e

where

1/q 1/q

scnfM|VU|2du+c,,(/ H"dp.)Z/n(vaz"dp,) ,

supp v

{ n//(n - 2)’ n>2,
q =

< 00, n=2,
Since supp v € A(k), we have in view of Corollary 5.6

i

2/n
H"du) < k-ZP/"(
supp v

2/n
H"f? dp) < k=2p/nCEr/n,
A(k)

provided

n
P> 2%, o< E831)-1/2_

Thus, under this assumption we conclude for k > k; = k;(k,, C;, n, €) that

1/q
T
sup vdu + c,,fo (L(k) Uz"du) dt

[0, 7] “A(k)
T 2
< opf f H?f? dp dr.
0 JA(k)
Now we use interpolation inequalities for L”-spaces

1/q0 a/q 1—a)
R R AT
A(k) A(k) A(k)

1l a

—=Z+(1-a),

9 4 ( )
with a = 1/¢, such that 1 < g, < g. Then we have

1/q0

(/T f v du dt) < cnopr H*fPdp dr
o Jaw 0 Jack)

i/r
1-1/r( T rror
<eor ([ [ Hzanar)
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where r > 1 is to be chosen and

T
A(k)| = dpdt.
G =" [,

Again using the Holder inequality we obtain

T 2-1/q,—1/r T
P dudt < copl|lA(k
[ [, fewda < caplaol ([T [

if we now choose r so large that 2 — 1 /g9, — 1/r = y > 1, then r only depends
on n and we may take

(10) p2re 20 o272
such that by Corollary 5.6
4 Y
Ik = k[ l4 ()| < Cy(n, €y, )| 4(k)]|

for all h> k > k,. By a well-known result (see e.g. [8, Lemma 4.1]) we
conclude

1/r
HYf7" dp dt) .

fo< ky +d, dr = szpmy“)”A(kl)”y_l

for some p and o satisfying (10). Since
[ du<im)<imy
A(ky)

by Corollary 3.6(i), it remains only to show that 7 is finite.
S8Lemma. T < oo.

Proof. The mean curvature H satisfies the evolution equation
%H —AH + HA|" > AH + %H%
Then let ¢ be the solution of the ordinary differential equation
de _ 1, -
ar = ¥ @0) = Hy,(0)>0.

If we consider ¢ as a function on M X [0, T'), we get
S (H=9)> A(H - 9) +~(H~ @)
such that by the maximum principle
Hze on0git<T.
On the other hand ¢ is explicitly given by
H_ (0
o(1) = L
1 -(/n)H2,(0) -t
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And since ¢ — oo as t — (n/2)H;2(0), the result follows. Moreover, in the
case that M, is a sphere, ¢ describes exactly the evolution of the mean
curvature and so the bound T < (n/2)H_2(0) is sharp. This completes the
proof of Theorem 5.1.

6. A bound on |VH|

In order to compare the mean curvature at different points of the surface
M,, we bound the gradient of the mean curvature as follows.
6.1 Theorem. For any 1 > O there is a constant C(n, My, n) such that

|vH| < 9H* + C(n, M,, n).

Proof. First of all we need an evolution equation for the gradient of the
mean curvature.
6.2 Lemma. We have the evolution equation

5| VHI = AT = 22 + 24l o]
+2(V,H - by, G HVR) + 2H( ,H, O
6.3 Corollary.
%|VH|2 < AlvH = 2 v?H]" + 4|A|vH] + 2H( v.H, v)4[*).
Proof of Lemma 6.2. Using the evolution equations for H and g we obtain
%|VH|2 - %(g"fv,-Hv,H)

=2H(h,;,v,H - V;H) + 2g"'v,(AH) - V;H
+2gv,(H|4|") v, H.
The result then follows from the relations
AlvHI = 2g*A(V,H) - v,H + 2|vHT,
A(v.H) = v, (AH) + g'v,H(Hh,,; — h;,8™"h,;).

6.4 Lemma. We have the inequality
2 2 2

d (|VH| )<A(|vH| |vH]|

R NG Py ALl 7

=\ 5 7 + 2< v,H, vi|A|2>.

+ 3|A|2(
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Proof. We compute

o (|vH\ _ HA|vH[] —|vH[AH 2
o\ H | H? H

2

|v?H|

|vH|’

+3|A|2( o

) + 2< v,H, v,.|A|2>,

4

2 2 2
A(IVHI )=HA|VH] —|VH[AH 2 V|

H H? H3|
4
- E(HV,-V]H, ViHVjH>,

and the result follows from Schwarz’ inequality. We need two more evolution

equations.
6.5 Lemma. We have
(i) %H3 =AH? - 6HlvH|2 + 314" B,
0 2 1., 2 1., _2n-—1) 2
(ii) a:(("“' “H )H)gA((|A| ~H )H) 22 Hjval

+clval + 3|A|2H(|A|2 - %Hz),

with a constant C, depending on n, Cyand 8, i.e., only on M.
Proof. The first identity is an easy consequence of the evolution equation
for H. To prove the inequality (ii), we derive from Corollary 3.5(iii)

1
i<(|A|2 - 1H2)H) = A((|A[2 - lHZ)H) - 2H(|vA|2 - —lvmz)
9t n n n
_2< v,H, v,(]AI2 - %H2)>
2 1,
+3|4| H{|A] —;H .
Now, using Theorem 5.1 and (7) we estimate

2 <v,-H, v,.(|A|2 - %HZM = 4|(v,H - hQ, v,h2)|

< 4|vH||hY | |vA|

< 4nCY2H 2|y 4|

2An—-1
<22V pioaP + c(n, G, 8)|vAT,

and the conclusion follows from Lemma 2.2(ii).
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We are now going to bound the function
IvHl
/= H
for some large N depending only on n and 0 <71 < 1. From Lemmas 6.4 and
6.5 we obtain

+ N(|A| )H + NG,|A| = nH?

2
af < Af+ 3|4| (‘VII;I' )+2< v,H, v,-|A|2>
2 2(n 1)
+67]H|VHI '—3—H|VA,

+aNGA| + 3NlA|2H(|A|2 - —HZ) — 34’ H?.

Since (1/n)H? < |A4|* < H?, |VH|* < n|vA|*> and n < 1 we may choose N
depending only on n so large that

af < Af+ 2NGH* + 3NH3(|A| - —H2) - énHS
By Theorem 5 1 we have
2NC,H* + 3NH3(|A| - —HZ) < 2NG;H* + 3NC,H*®

< %an + C(n,8,n,Cy, Cy)
and hence 3f/0t < Af + C(n, M,).
This implies that max f(¢) < max f(0) + C(n, M,)¢, and since we already

have a bound for T, f is bounded by some (possibly different) constant
C(n, M,). Therefore

|VHI < nH* + C(n, My)H < 25H* + C(n, M,)
which proves Theorem 6.1 since 7 is arbitrary.

7. Higher derivatives of A

As in [6] we write S =T for any linear combination of tensors formed by
contraction on S and 7T by g. The mth iterated covariant derivative of a tensor
T will be denoted by v™7T. With this notation we observe that the time
derivative of the Christoffel symbols I‘j’k is equal to

9, _1 3 3 2
Er[k 58{ 31 8k + Vi 38t~ Vil 3784k }

= -g"{v,(Hhy) + Vi (Hhy) = v,(Hhy )} = A% VA,
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in view of the evolution equation for g = {g;,}. Then we may proceed exactly
as in [6, §13] to conclude
7.1 Theorem. For any m we have an equation

2 \omal = Alymal - 2l

+ Y VA*xVA*VA*V, A
i+jt+k=m

Now we need the following interpolation inequality which is proven in [6,
§12).

7.2 Lemma. If T is any tensor and if 1 < i < m — 1, then with a constant
C(n, m) which is independent of the metric g and the connection I we have the
estimate

f ,Vilem/idﬂ <cC. mlsxllem/i_l)f IVmT|2dP»-

This leads to
7.3 Theorem. We have the estimate

dtf |4l dy+2f |vm+ufdp< C- max |A1f lvmd|’ dy,

where C only depends on n and the number of derivatives m.
Proof. By integrating the identity in Theorem 7.1 and using the generalised
Holder inequality we derive

d

dtf |v 4| dp.+2f |v ) dp

i if2m amss i/2m
< {f |v Al } {f |vial™ d }
e k/2m , 12
AL 1l ) [ roalan)
M,
with i + j + k = m. The interpolation inequality above gives

/i i/2m - ) i/2m

ml —i/m

{f |v4| } < C - max|4] {f |v™4| dp.} ,
M,

and if we do the same with j and k, the theorem follows.
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8. The maximal time interval

We already stated that equation (1) has a (unique) smooth solution on a
short time interval if the uniformly convex, closed and compact initial surface
M, is smooth enough. Moreover, we have

8.1 Theorem. The solution of equation (1) exists on a maximal time interval
0 <t <T< ooandmax, |A|? becomes unbounded as t approaches T.

Proof. Let 0 <t < T be the maximal time interval where the solution
exists. We showed in Lemma 5.8 that T < oo. Here we want to show that if
max M[|A|2 < C for t = T, the surfaces M, converge to a smooth limit surface
M. We could then use the local existence result to continue the solution to
later times in contradiction to the maximality of 7.

In the following we suppose

(11) max A< C on0<t<T,

and assume that as in the introduction M, is given locally by F(X, t) defined
for Xe UCR" and 0 <t < T. Then from the evolution equation (1) we
obtain

IF(%, 6) ~ F(Z,0)| < ["H(%,7) dr

for 0 < 6 < p < T. Since H is bounded, F(-, t) tends to a unique continuous
limit F(-,T)ast - T.

In order to conclude that F(-, t) represents a surface M, we use [6, Lemma
14.2].

8.2 Lemma. Let g;; be a time dependent metric on a compact manifold M for
0 <t <T< . Suppose

d<C<ow.

[ mexls
max | 7=g;;
o M At &; j
Then the metrics g, ;(t) for all different times are equivalent, and they converge as
t — T uniformly to a positive definite metric tensor g, ,(T) which is continuous

and also equivalent.
Here we used the notation

2
x af 0 d

= okl — o || =
g8 (atgtj)(atgkl)'

In our case all the surfaces M, are diffeomorphic and we can apply Lemma 8.2
in view of Lemma 3.2, assumption (11) and the fact that T < oo. It remains
only to show that M is smooth. To accomplish this it is enough to prove that

‘i
3 8is
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all derivatives of the second fundamental form are bounded, since the evolu-
tion equations (1) and (4) then imply bounds on all derivatives of F.
83Lemma. If(11) holdson0 <t < Tand T < o0, then|V"™A| < C,, for all
m. The constant C,, depends on n, My and C.
Proof. Theorem 7.3 immediately implies

J o4l dp<c,,
M,

since the inequality dg/0¢ < cg on a finite time interval gives a bound on g in
terms of its initial data. Then Lemma 7.2 yields

[ lvmaf u<c,,
M,

for all m and p < oo. The conclusion of the lemma now follows if we apply a
version of the Sobolev inequality in Lemma 5.7 to the functions g,, = | v 4|

Thus the surfaces M, converge to My in the C®-topology as t = 7. By
Theorem 3.1 this contradicts the maximality of T and proves Theorem 8.1.

We now want to compare the maximum value of the mean curvature H,, to
the minimum value H,_, as ¢ tends to T. Since |4|> < H?, we obtain from
Theorem 8.1 that H_,, is unbounded as ¢ approaches T.

8.4 Theorem. Wehave H , /H ;. — last —> T.

Proof. We will follow Hamiltons idea to use Myer’s theorem.

8.5 Theorem (Myers). If R;, > (n — 1)Kg;; along a geodesic of length at
least mK ~1/2 on M, then the geodesic has conjugate points.

To apply the theorem we need

8.6 Lemma. Ifh,; > eHg,; holds on M with some 0 < & < 1/n, then

2172
R, > (n—1)e’H’%,,.
Proof of Lemma 8.6. 'This is immediate from the identity
R,;=Hh;;— h;,8g™"h,;.

Now we obtain from Theorem 6.1 that for every > 0 we can find a
constant ¢(n) with |VH| < i9°H? + C(n) on 0 < ¢t < T. Since H,,, becomes
unbounded as ¢ — T, there is some § < T with C(n) < In*HZ,, att = 6. Then
(12) |VH| < n°H;,,
at time ¢ = . Now let x be a point on M,, where H assumes its maximum.
Along any geodesic starting at x of length at most n'H;! we have H >

(1 —-n)H,_,,. In view of Lemma 8.6 and Theorem 8.5 those geodesics then
reach any point of M, if n is small and thus

(13) Hmin = (1 - n)Hmax on MO'
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Since H_;, is nondecreasing we have
H, . (t)>3H,, (0) on<t<T,

and hence the inequalities (12) and (13) are true on all of § < ¢t < T which
proves Theorem 8.4.

We need the following consequences of Theorem 8 4.

8.7 Theorem. We have ( H2_ (7)dT = 0.

Proof. Look at the ordinary differential equation

3
A= Hing  8(0) = Hyy

We get a solution since H2,, is continuous in ¢. Furthermore we have

%H = AH +|A’H < AH + H2_H,

and therefore
d
S (H —g) < A(H - g) + Hiu(H - g).

So we obtain H < g for 0 < t < T by the maximum principle, and g — oo as
t — T. But now we have

[ Hau(7) d7 = 108{8(1)/8(0)} > 00 a5t T,

which proves Theorem §.7.
8.8 Corollary. If, as in the introduction, h is the average of the squared mean

curvature
h= sz/ dp.,

then

j(')Th(T)dT = 0.

Proof. This follows from Theorems 8.4 and 8.7 since H2,, < h < H2,,.

8.9 Corollary. We have|A|>/H* —1/n > Oast - T.

Proof. This is a consequence of Theorem 5.1 since H_;, — oo by Theorem
8.4.

Obviously M, stays in the region of R"*! which is enclosed by M, for
t, > t, since the surfaces are shrinking. By Theorem 8.4 the diameter of M,
tends to zero as t — T. This implies the first part of Theorem 1.1.
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9. The normalized equation

As we have seen in the last sections, the solution of the unnormalized
equation

d
(1) o F=AF=-Hy

shrinks down to a single point £ after a finite time. Let us assume from now
on that O is the origin of R"*!. Note that O lays in the region enclosed by M,
for all times 0 < ¢ < T. We are going to normalize equation (1) by keeping
some geometrical quantity fixed, for example the total area of the surfaces M,.
We could as well have taken the enclosed volume which leads to a slightly
different normalized equation. As in the introduction multiply the solution F
of (1) at each time 0 < ¢ < T with a positive constant {(¢) such that the total
area of the surface M, given by

F(,0)=4(1)- F(-,1)
is equal to the total area of M|,

(14) f di=|M) on0O<t<T.
MI

Then we introduce a new time variable by
(1) = ft Yi(7) dr
0
such that 87/9t = ¢?. We have
g,= ‘Pzgij, 7112, =yh,;,
H=y7H, |47 =yl

and so on. If we differentiate (14) for time ¢, we obtain

Now we can derive the normalized evolution equation for F on a different

maximal time interval 0 < 7 < T

oF
or

OF _, (3¢ oF
§¢2—¢2{§F+¢5}

- A5+ LhF
n
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as stated in (2). We can also compute the new evolution equations for other
geometric quantities.
9.1 Lemma. Suppose the expressions P and Q, formed from g and A, satisfy

dP/9t = AP + Q, and P has ‘degree’ a, that is, P = *P. Then Q has degree
(a — 2)and

|
[»2]
'ﬁl

+0+

[« 5]
™~
:lQ

Proof. We calculate with the help of (15)
ai) — a—1 a‘l/ a
7 { ' P + ¢ }
= -2l &1 o @
v LﬁP+¢AP+¢Q>
A~ ~ P ~
= —hP + AP + Q.
The results in Theorem 4.3, Theorem 8.4 and Corollary 8.9 convert unchanged

to the normalized equation, since at each time the whole configuration is only
dilated by a constant factor.

9.2 Lemma. We have

7|2
(iii) 171;|_2 - % ast - T
Now we prove
9.3 Lemma. There are constants Cy and Cs such that for0 <t < T

0<C’4< min<ﬁmax<C5<°°'
Proof. The surface M encloses a volume ¥ which is given by the divergence
theorem
1 PR
n+1 f M Fy dp.

Since the origin O is in the region enclosed by M; for all times as well, we have
that F7 is everywhere positive on M;. By the isoperimetric inequality we have

<t

i< it =

n
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On the other hand we get from the first variation formula
" 1/ ~, = . .
M| = 18] = — [ A(F5) dp < Honey - Vi,

which proves the first inequality in view of Lemma 9.2(ii). To obtain the upper
bound we observe that in view of A, ;> eH .. 8, , the enclosed volume ¥ can be
estimated by the volume of a ball of radius (eH ;)™

Vi < e, (eH,) "7
The first variation formula yields

. n

.z n+1 n+1

which proves the upper bound again in view of Lemma 9.2(ii).
9.4 Corollary. T = o.

Proof. We have dt/dt = y* and H? = y"2H? such that
fTin(i) di = fTh(T) dr =
0 0

by Corollary 8.8. But by Lemma 9.3 we have # < H2_, < C? and therefore
T = o0.

HaL [ (F3) Bdi > —=H-LIM,|,

10. Convergence to the sphere

We want to show that the surfaces M; converge to a sphere in the C*-
topology as f — oo. Let us agree in this section to denote by 8 > 0 and C < oo
various constants depending on known quantities. We start with

10.1 Lemma. There are constants 8 > 0 and C < oo such that

[l - Larap < ceov
it n

Proof. Let f be the function f = |4]>/H? — 1/n which has degree 0. Then
we conclude as in the proof of Lemma 5.5 that, for some large p and a small §
depending on &,

%/Pdﬁ <-8f frlal’di+ [ (h— )77 dg,

since 3/3f dji = (h — H?*)dji. In view of Lemma 9.2(ii) and Lemma 9.3 we
have for all times ¢ larger than some 7,

g;ffpdﬁs—sfff’dﬁ
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with a different §. Thus
ff” dji < Ce %,

where C now depends on 7, as well. The conclusion of the lemma then follows
from the Holder inequality | M;| = | M,| and Lemma 9.3.
Now let us denote by & the mean value of the mean curvature on M:

i e/

10.2 Lemma. We have
[

Proof. In view of the Poincaré inequality it is enough to show that
[ |vH|? dji decreases exponentially. Note that the constant in the Poincaré
inequality can be chosen independently of 7 since we got control on the
curvature in Lemma 9.2 and Lemma 9.3. Look at the function

_|vAP 1
H

|;-t
'\
nlt
[V
|
I3
[\*)
QL
=
N
Q
®

+ N(|A| HZ)H

where N is a large constant depending only on n. The degree of g is -3, and
from the results in §6 we obtain

%’f <Az + 3nN|d) (|A[ - lH2) - 3h~

for all times larger than some 7,. Here we used that the term

. - 1 -~ I .
<ViH’ Vi(lA|2 - ;H2)> = 2<ViH Y, Vih21>

becomes small compared to H|VA|?> as f— oo s1nce RO = (14)? -
H?/n)'/?tends to zero. Now using Lemma 10.1 and C, < H < C; we conclude
forf > 1,

d%/gdﬁs —8/gdﬁ+ Ce-8f+f(iz—1§r2)gdﬁ.

Since (A — H?) - 0 as f = oo by Lemma 9.2(ii), we have for all ¢ larger than

some {,
d Si 5 g~
_df{e fgdp. Ct} <0,

- ~
[ B g < ce®

and therefore
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with some constants C and 8 depending on ,, and the conclusion follows from
C,<H<C,

To bound higher derivatives of the curvature, we need another interpolation
inequality [6, 12.7].

10.3 Lemma. If T is any tensor on M, then with a constant C = C(n, m)
independent of the metric g and the connection I' we have the estimate

i/m
fM Iv Tl dp < c{fM lv'”T|2du} {fM |T|2dp}

forO< i< m.
We start with Theorem 7.3. The estimate

1-i/m

%f. [vmd i+ 2 |vml dg

2 -2
<C- A "A| dji
max 4] [ | 7d[" di

carries over to the normalized equation since both sides stretch by the same
factor, and we have max|4| < CZ. Let us now introduce the tensor £ = { E; i3
given by

L 1._

Eij = hij - ;hgij'

Then v”4 = v™E for all m > 0 and the right-hand side of (16) can be
estimated by Lemma 10.3:

mil® = m+1 712 g~ m/AmeD L
[ vl dp<ci [ |vml d [ \ET ap
M M M

By Young’s inequality this is less than

1/(m+1)

Cnf vl dp+ Co B di
M M
for any n > 0. Choosing 1 such that Cn < 2 we derive from (16)
d -2 L2
Etzf,;,lval di < CfM|E} dji.

But
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and both integrals decrease exponentially by Lemmas 10.1 and 10.2. Thus we
have proven

10.4 Lemma. For every m we have [y |V™A|*?dji < Con0 < < oo witha
constant depending on m.

From Lemma 7.2 we deduce immediately that higher L?-norms of | v 4| are
bounded as well:

[ vl dgp<c,,,
M

and a version of the Sobolev inequality in Lemma 5.7 applied to the function
E, =|v™A4)|? yields max ; |v™4| < C for a constant C < oo depending on m.
Now we can prove

10.5 Theorem. There are constants 8§ > 0 and C < oo such that
AP - %ﬁz < Ce-¥

Proof. We denote by A the traceless second fundamental form
] - - 1 -~
— [30 _ 17
4= {hu} = {h,.j - anij}
such that |A:|2 = |A|> — H?/n. Since |V"'A:| is bounded we conclude from

Lemma 10.3

Y
< C.e

m

ea 2 1., 1Am+1)
[ lomdldi< e, f1A - ~f*dp
M

in view of Lemma 10.1. Then we have from Lemma 7.2
[ 1vrdl dii< G, e,
M

and the conclusion follows once again from the Sobolev inequality.

Theorem 10.5 is the crucial estimate from where we can proceed exactly as in
Hamiltons paper [6, §17] to conclude

10.6 Lemma. There are constants § > 0 and C < oo such that

() Hpox — Hoyo < Ce™™,
(ii)

(iii) max|v™] < Ce ', m>0.
M

s o~ 1. .
hiH — —hg,| < Ce™™,

All surfaces M; stay in a bounded region around © since Lemma 9.3 implies
a bound on the diameter of M,-. Moreover, by Lemma 9.2(ii) and (iii) we can
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pinch M: arbitrarily close between an interior and an exterior sphere if f is
large. This already shows that M; converges to a sphere in some weak sense.

We have the evolution equation
9 . 2. -
P nhgij 2Hh

ijo

and we conclude from Lemma 10.6(ii) and Lemma 8.2 that the metrics g, ;( 1)
converge uniformly to a positive definite metric g, (o) as t = co. By Lemma
10.6(iii) the metrics also converge in the C*-topology and thus g, (c0) is

smooth. Finally, g;.(c0) is the metric of a sphere by Theorem 10.5. This
completes the proof of Theorem 1.1.
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