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Abstract

We consider the problem of dynamic flow control of arriving packets into an infinite buffer.
The service rate may depend on the state of the system, may change in time and is unknown to
the controller. The goal of the controller is to design an efficient policy which guarantees the best
performance under the worst case service conditions. The cost is composed of a holding cost,
a cost for rejecting customers (packets) and a cost that depends on the quality of the service.
The problem is studied in the framework of zero-sum Markov games, and a value iteration
algorithm is used to solve it. We show that there exists an optimal stationary policy (such that
the decisions depend only on the actual number of customers in the queue); it is of a threshold

type, and it uses randomization in at most one state.

Keywords: Dynamic flow control, Markov zero-sum game, control of queueing networks.

1 Introduction

Game theoretical methods seem to be quite promising in the control of queueing systems in general

and Telecommunication systems in particular. In the latter, one often encounters situations where
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different users may have different objectives. Typically, each user would like to optimize some
performance measures related to his traflic, such as minimizing delays, maximizing his throughput
and minimizing blocking probabilities. The situation of game arrizes when the different users
cannot coordinate their actions, and the problem cannot be reduced to a single controller case.
This may happen either because the control is decentralized due to the nature of the network, or
simply because any user may be tempted to benefit on the expense of the others by choosing an

individual good policy.

There has been some work in applying game theory to control of queueing networks and control in
telecommunications. Among these are several papers that consider static control problems and thus
use static games: Marchand [8] considers optimal input control to a queueing system; Hsiao and
Lazar [4], Douligeris and Mazumdar [1, 2, 3], Mazumadar, Mason and Douligeris [11] consider the
problem of optimal flow control in a multiclass telecommunications environment; Mason and Girard
[9, 10] consider routing models; Shenker [12] studies the problem of optimal service allocation to

several users. Kalai and Zemel [5] consider a problem in networks that yield a cooperative game.

The main aim of this paper is to show how methods based on Markov games (also known as
stochastic games) may be applied to dynamic control in queueing networks. Two types of
problems may require game theoretical solution methods. The first is control under worst case
criterion. Any user, say user A, regards all the other users as one super-user. The aim of A is
to guarantee the best performance under the worst case behavior of the super-user. This kind of
problems may be solved using zero-sum Markov games. The second type of problems is when the
users try to find strategies that leads to Nash equilibrium. In that case every user has some strategy
(which may be more profitable than the one obtained from the worst-case criterion) and no user

can profit by deviating from his strategy unilaterally. In this paper we focus on a problem of the

first kind.

We consider one user who controls dynamically the flow of arriving packets into an infinite buffer.
The presence of other users as well as congrstion phenomena is modeled by allowing the service
rate to depend on the state of the system, and to change in time in a way that is unknown to
the controller. The goal of the controller is to design an efficient policy which guarantees the best

performance under the worst case service conditions. The cost is composed of a holding cost, a



cost for rejecting customers and a cost that depends on the quality of the service. A value iteration
algorithm is used to solve this problem in the framework of stochastic zero-sum game. We show
that there exists an optimal stationary policy (such that the decisions depend only on the actual
number of customers in the queue); it is of a threshold type, and it uses randomization in at most

one state.

The structure of the paper is as follows: in Section 2 we describe the model. Then basic tools for

solving the problem are described in Section 3, and the optimal policy is derived in Section 4.

2 The Model

Considered is a discrete-time single-server queue with an infinite buffer. We assume that at most
one customer may join the system in a time slot. This arrival (if any) is assumed to occur at
the beginning of the time slot (synchronized arrivals). At the beginning of each time slot, the
flow control mechanism, called player 2, chooses in the set A := {ay,a3}, 0 < a3 < a; < 1, the
probability of having one arrival in this time slot. Therefore, if action a; is chosen at time ¢ then a

customer will enter the system in [¢,¢ 4 1) with the probability a;, i = 1, 2.

At the end of each slot, a successful service of a customer occurs, if the queue is not empty, with
probability b € B = {b1, b3}, where by > by. (If the service fails the customer remains in the queue).
The value of b, which may represent the quality of service, may change in each time slot, and is
not known to player 2. The objective of player 2, to be described below, is to find a best strategy
under the worst case service conditions. We model the system as a zero-sum Markov game, where

player 1 controls the service quality.

Actions a and b are assumed to be taken independently, based on the information on the current

state as well as the information of all past states and actions of both players.

We assume that a customer that enters an empty system may leave the system (with the probability

b) at the end of this same time slot.

Let X; denote the number of customers in the system at time ¢, t € IN, and A; and B; denote the

actions of players 2 and 1 respectively. The state space is denoted by X = {0,1,...}. Let M(Y) be



the set of probability measures on a set Y.

The transition law ¢ is:

ab,  ifz>l,y=a-1;
ab+ab, ifx>1,y=ux;
q(y|z;a;b):= < ab, o ifr>ly=a+1;

1—ab, ify=2a=0;

ab, ifez=0,y=1,
(for any number £ € [0,1], £ := 1 —&).
We define an immediate payofl

Clz,b,a):=c(z)+va+6D, (2.1)

forall z € X, a € A and b € B. C(#,b,a) is the cost that player 2 pays to player 1 when the state
is z, and the actions of the players are b and a. C generalizes a cost frequently encountered in the
literature on flow control models. In (2.1) ¢(z) is any real-valued nondecreasing convez function on
IN and 7 and @ are arbitrary real constants. We shall assume that c is nonnegative (i.e., if ¢(0) > 0)
and it is upper bounded by some polynome; ¥ < 0 and 6 > 0. ¢(z) can be interpreted as a holding
cost per unit time, ya as a reward related to the acceptance of incoming customer, and 6 as a cost

per quality of service. Let u be the policy of player 1 and v be the policy of player 2.

Let £ be fixed number in [0, 1). Define
Ve(w,u,v):= E“Y | > € C(Xy, By, A) | Xo =z, (2.2)
t=0

Define the following problem (Qg): Find u, v that achieve

Ve(z) := sup inf Ve(z,u,v), Vo e X. (2.3)
wel VEV

We know from Wessels [13] that there exists a pair of stationary policies (u*, v*) that achieves (2.3),

and

sup inf Ve(z,u,v) = inf sup Ve(z,u,v) = Ve(z,u™, v").
uelU veV veV yeU

Ve(z) is called the ¢-discounted wvalue of the game, and the policies (u*,v*) are called the optimal

policies. For a pair of stationary policies (u,v) let u, = {u.(1),u.(2)} € M(B), where u,(7) is



the probability of choosing b;; and v, = {v(1),v5(2)} € M(A), where v,(7) is the probability of

choosing a;, when (u,v) are used at state z.

It can be shown that the problem Q¢ becomes trivial when v > 0. In that case, the optimal action

of player 2 is always to choose ay. Similarly, if 8 < 0 then it is optimal for player 1 always to choose

by.

3 Preliminary Results

Let K be the set of all real-valued functions on X that are polynomially bounded. Let the operator

R:X x{1,2} x{1,2} x K — IR be defined as
R(z,i,5, f) = E[f(Xi1| Xy = ¢, By = i, Ay = j]
we get:

R(0,4,5,f) = (1—a;b;) f(0) + a;bi f(1);

R(z,i,5,f) = abif(w = 1)+ (a;0; + a;0) f(2) + ajbi f(w + 1); @ > 1.

Define the operator 5 : X x {1,2} x {1,2} x K — R as
S(‘T7i7j7f) = C’(ac,b“a]) + 5R($,Z,],f)
and let S(z, f) denote the matrix whose entries are S(z,1,7, f).

For any function D : Ax B — IR, a € M(A) and § € M(B) define

2 2
BDa = ZZ@%D((H,@]‘)

=1 j7=1

The value of the “matrix game D” is defined as val(D) := inf,enr(a) supPgenr(B) SDa and is known

to satisfy val(D) = supgepB)infaem(a) BDa.
Let T¢ : K — K be the DP operator associated with Qg:

Tef(z) :=val S(z, f),



for z € IN.

We shall use the following tools for solving Q:

Proposition 3.1 (i) Vg satisfies

Ve(e) = TeVe() (3.4)

(ii) Let (u*,v*) be the stationary policies of player 1 and 2 respectively that achieve the sup and the
inf in the matriz game T¢Ve in (3.4). Then (u*,v*) are optimal for Q.
(iii) For every f € K

Tim T7f = Ve, (3.5)
Proof. The theorem follows from Wessels [13]). We show below that the contraction assumptions
there are indeed satisfied. We begin by establishing Assumption 2.1, which says that there exists
some bounding function g~ !(z) > 0 under which £R(=,i,j,u™ 1) is a contraction for all z,1,J, i.e.

there exists some a, 0 < a < 1 such that

£ R(z, i, j, i | < ap™ (), Vz,i,j (3.6)

Fix some a € A,b € B. Define ¢ := 1 — £~! and let

£t —ab—ab+ \/(ab +ab — £-1)2 — 4abab
2ab '

Ti=

This choice of r corresponds to a solution of {R(z,1,j,7") = r®, or equivalently,
abr® + (ab+ ab — £71)r + ab = 0. (3.7)

We have ( > 0 and hence r > 1. Indeed,

_(tabtab+ V(@b — ab)? + (2 + 2((ab + ab) L2 +abtabtlab-ab|

T =
2ab - 2ab

(3.8)

Choose some mumber o > 0 such that 1 < ar, and define the function p(z) := (ar)=*. It follows

from (3.7) that p(z) satisfies the following:

ER(z,d, 5,07 ") (w) — o~ (2) =



[ab(ar)? + (ab + ab — £71)(ar) + ab] £(ar)®! < 0, x>0

[ab(ar)? 4 (1 — ab — £ V) (ar)] E(ar)™t < [ab(ar)? 4 (ab+ ab — €71 (ar) + ab] £(ar)™t <0, =0

which establishes Assumption 2.1 in Wessels [13]. Next we show that Assumption 2.2 holds too.
The assumption states that the cost function is finite under the norm induced by the bounding

function p. More precisely, we need to show that

sup{C (e bya)lp(e)) < ox
The latter indeed follows from the fact that ¢(z) is polinomially bounded whereas p=!(z) grows
exponentially fast (since ar > 1). This establishes Assumption 2.2. The Theorem finally follows

from from Wessels [13] Theorem 3.1 and Section 4 there. g

4 The Optimal Policy

Proposition 3.1 is the main tool to establish the structure of the optimal policy, given in Theorem
4.2 below. It is used in the following way. We first guess the structure of an optimal stationary

policy. We then identify sufficient conditions that Vg should possess in order to ensure this structure
of the optimal policy; the connection between the optimal policy and V¢ is given in Proposition
3.1 (ii). We then use the “value iteration” technique, based on Proposition 3.1 (iii) to show that
Ve indeed possess the required properties. This is done iteratively: we show that there exists some
function f that possesses them. Then we show that if a function f has these properties then so
does T¢ f, and hence also T{' f for all n € IN. Finally we show that the latter implies also that
the limit as n goes to infinity also possesses these properties, and hence by Proposition 3.1 (iii) V¢

possesses the properties as well.

We begin the analysis by listing some properties that a function may possess. Properties MO and
IC bellow are shown in Theorem 4.1 to be sufficient for the optimal policy to have a threshold
structure. In order to establish these two properties, we need however to introduce six other

properties, which are used to prove that if a function f satisfies MO and IC then so does T f.

We shall say that f: X x {1,2} x {1,2} — IR satisfies assumption:



J1 if f(z,i,2)— f(z,7,1) is monotone nonincreasing in z for ¢ = 1, 2.
J2 if f(z,2,7)— f(z,1,j)is monotone nondecreasing in z for 7 = 1, 2.
J3 if f(z,1,1)— f(,2,1) < f(2,1,2) — f(,2,2) for z € X.

Ja il f(z+1,2,1)— fz +1,2,2) < f(z,1,1) — f(z,1,2) for = € X.
I5 if f(z+1,1,2)— fz +1,2,2) < f(z,1,1) — f(z,2,1) for z € X.

Jé if f(z4+2,4,2)— f(z+1,4,1) > f(z 4+ 1,7,2)— f(z,i, 1) forz € X, i =1,2.

We shall say that f € K satisfies assumption:

IC if f(x) is integer-convex in x; equivalently, for any z € X,
fo+2)= fla+1) 2 o+ 1) - f(a). (4.1)
MO if f(z) is monotone nondecreasing in z, i.e. for any = € X,

flz+1)> f(z) (4.2)

Let (u(f),v(f)) be the stationary policies that achieve the sup and the inf in valS(z, f(z)) for all
z € X. For f = Vg we have in particular (u(f),v(f)) = (v*,v*). Any (u(f),v(f)) for which f
satisfies IC and MO, have the following threshold structure, where randomization occurs in most

at one state:

Theorem 4.1 Assume that f satisfies IC, MO. Then there exist m,,m, € X (that depend on f)

and stationary policies u,v, such that

(1,0) if © < my
) (qusqu)  if 2 =my and my = m,
ux(f) = (0,1) if £ = my and m, # m, (4.3)
(0,1) if x > my
(1,0) if x < my
) (@, @)  if 2 =my and my, =m,
va(f) = (0,1) if @ = my and my, # m, (44)
(0,1) if x > my,

where ¢y, q, € [0, 1] are some constants.



The proof of Theorem 4.1 relies upon the following technical lemmas:

Lemma 4.1 Let h: X U{—1} — IR be a nondecreasing function. Let (1,(3 € [0,1]. Then, for all

0< =z,
F(z) = Gh(z + 1) + Gh(z) — Gh(z) — Gh(z —1) >0 (4.5)
Proof.
F(z) > h(z) — Gih(z) — Gh(z — 1) = G[h(z) — h(z — 1)] > 0

Lemma 4.2 Assume that f satisfies IC, MO. Then, S(e, f) satisfies J1- J6, and for any i,j €
{1,2}, S(e,1,4, f) satisfies IC and MO.

Proof. We extend f: X — R to XU {-1} — IR, and set f(—1) = f(0). With this definition, f
satisfies IC and MO on X U {—1}, and (3.2) holds for = 0 too. (This extension will save us the

need to establish below the boundary conditions).

We begin by J1. For 0 < z,
S($7i727f)_ S(x7i717f): (aQ - al) [ﬁ/‘l'f{bl(f(x) - f('r - 1))"'52(][(35 + 1) - f(:L‘))}]

Since f satisfies IC, the term in curly brackets is monotone nondecreasing, and hence S(z,1,2, f)—
S(z,t,1, f) is monotone nonincreasing. This establishes J1. The proof of J2 follows the same

arguments.
Next we check J3. For 0 < z,

S(z, 1,1, f)— S(=,2,1,f) = [9(=, 1,2, f) — S(z,2,2, f)]

= —L(by —ba)(ar —ax)(f(z 4+ 1) = f(z) = f(z)+ f(z - 1))

< 0

since f satisfies IC. This establishes J3.



Next we check J4. For 0 < z,
S(z+1,2,1, f)= S(z+1,2,2, /)= [S(=, 1,1, f) = S(, 1,2, f)]
= —&lar - @) (oS +1) = f@)] +blf(z +2) = f(z +1)]
— [alf(z) = fle = D]+ B[ f(z + 1) = [(2)]))
< 0

where the last inequality follows from Lemma 4.1 with ¢; = b; and h(z) = f(z 4+ 1) — f(z), and

since f satisfies IC.
Next we check J5. For 0 < z,
S(z+1,1,2, f) = S(z+1,2,2, /)= [S(=, 1,1, f) = S(x,2,1, f)]
= —&(bi = by) (@lf(z +1) = @)+ @lf(e +2) = [z +1)
~[@/(2) = fl@ = D]+ arlf(z + 1) = f(2)]))
< 0

where the last inequality follows from Lemma 4.1 with ¢; = a; and h(z) = f(z + 1) — f(z), and

since f satisfies IC.

Next we check J6. For 0 < z,
S(z+2,1,2,f)— Sz +1,4,1, f) = [S(z+ 1,7,2, f) = S(z,1, 1, f)]

= ce+2)—clz+1)—clz+1)+c(z)+
E{bi [azf(z +2) + aaf(z + 1) — a1 f(z + 1) — a1 f()]

+bi [azf(x + 3) + aaf(x 4 2) — a1 f(2 + 2) — ar f(z + 1)]

—bi[az f(z + 1)+ azf(z) — a1 f(z) — a1 f(z — 1)]

—b; [asf(z+2)+ ayf(z+1)—ar f(z+1)— alf(x)]}

v

£ {bi la(f(z+2)— fle+ 1)+ ax(f(z+1)— f(z))

10



—ai(f(z+1) - f(z)) —a(f(z) - flz - 1))]}
+¢ {bi lax(f(z+3)— f(z +2)+ ax(f(z +2) - f(z 4+ 1))

—a(f(z+2) - f(z+ 1)) —a(f(z +1) - f(x))]}

>0

which follows by applying twice Lemma 4.1 with {; = a;; once with h(z) = f(z + 1) — f(z) for the
term in the first curly brackets, and once with h(z) = f(z+2)— f(z — 1) for the term in the second

curly brackets.

The claim that S(e, ¢, , f) satisfies IC and MO is straight forward. g

Lemma 4.3 Assume that f satisfies IC, MO and define

1/ = inf {8(y,8,2, ) < S(y,i, 1, [)}, i = 1,2
yeX

. . . . .
lj T ylg;({s(yvlmﬁf) < S(y727]7f)}7 J = 172

Then (i) S(x,i,1,f) > S(z,4,2, ) iffe > 1], i =1,2; 5(2, 1,5, f) < 8(x, 2,5, ) iff e > 1], j = 1,2.

(i1) lf satisfy:

I <1y <1y +1 (4.6)

<l <+ (4.7)

Proof. (i) follows since S(e, f) satisfies J1 and J2.
Since S(e, f) satisfies J3, by Lemma 4.2, it follows that

{S(z,1,1,f)> S(2,1,2, )} = {S5(z,2,1, f) > 5(=,2,2, f)}

and hence the left inequality in (4.6). Moreover,

{5(z,1,2, /) < 5(2,2,2, )} = {S(z, 1,1, f) < 5(=,2,1, f)}

11



and hence the left inequality in (4.7). Since S(e, f) satisfies J4, by Lemma 4.2, it follows that
S+ 1,20, 0)> 5+ 1,2,2, )} > {8(. 1,1, /) > §(2,1,2, 1)}

and hence the right inequality in (4.6). Finally, since S(e, f) satisfies J5, by Lemma 4.2, it follows
that
{S(2, 1,1, ) € S(2.2,1, 1)} = {S(e + 1,1,2, /) < S(x +1,2,2, )}

and hence the right inequality in (4.7). This establishes (ii). g

Proof of Theorem 4.1: It follows from Lemma 4.3 that
(i) S(z,i,1,f)> S(x,i,2, f) for > I and any i € {1,2};
(i) S(z,i,1, f) < S(x,i,2, f) for & < IJ and any i € {1,2};
(iil) S(z,2,7, f) > S(x, 1,4, f) for z > I{ and any j € {1,2};
(

iv) 8(,2,5, 1) < S(x, 1,4, f) for « < 1] and any j € {1,2};

To obtain valS(z, f), we note the following: if S(z,¢,1,f) > S(«,4,2, f) for both 7 = 1,2, then
player 2 has a dominant policy, i.e. in state z it is optimal for him to choose action az (w.p.1). If
S(z,i,1,f) < S(z,t,2, f)for both ¢ = 1,2, then the dominant policy of player 2 when in state z is to
choose action a;. If S(z,1,7, f) < S(=,2,7, f) for both j = 1,2, then the dominant policy of player
1 when in state z is to choose action ag, and if S(z,1,7, f) > S(z,2,7, f) for both 7 = 1,2, then
the dominant policy of player 1 when in state z is to choose action ay. If player 1 has a dominant
policy of choosing action b; in state z, then (i) if S(z,¢,2, f) < S(z,¢,1, f) then the optimal policy
of player 2 in state z is ag, and valS(z, f) = S(z,1,2, f); (ii) if S(z,7,1, f) < 5(=,4,2, f) then the
optimal policy of player 2 in state z is a1, and valS(z, f) = S(z,t,1, f). If player 2 has a dominant
policy of choosing action a; in state z, then (i) if S(z,1,j, f) < 5(=,2, 7, f) then the optimal policy
of player 1 in state @ is b, and valS(z, f) = S(z,2,J, f); (ii) if S(z,2,7,f) < S(z,1,7, f) then the

optimal policy of player 1 in state z is by, and valS(z, f) = S(z, 1,15 f).

we consider the following three cases.

Case 1: I{ < 1J. Then

S(z,1,1, f) z <l
valS(z, f) =13 S(=,2,1,f) U <az<lf
S(z,2,2, f) I <

12



J 1
Hence, m, =15 > m, = [].

Case 2: Il < /. Then

S(z,1,1,f) z <l
valS(z, f) =13 S(x,1,2,f) lIf <z <1}
S(z,2,2, f) <z

Hence, m, = l{ < m, = 1}.
Case 3: I} > 1/, and I > IJ. Then it follows from (4.6) and (4.7) that m, = m, = I}, ¢, ¢, € [0,1],

and

S(z,1,1,f)  w<lf
valS(z, f) =< S(z,uz, vy, f) « =11
S(2,2,2,f) U<

where wr = {qu, G} and v = {qv,qy}. Note that in fact randomization occurs only in Case 3

and only if I{ = IJ < I£ = I{. The other possibilities in case 3 (for which ¢, = ¢, = 0) are (i)

H=tl=t =4+ G)l==1=1{ —1and (i)l =l =1 =1].

Lemma 4.4 Assume that [ satisfies 1IC, MO. Then T¢ f salisfies IC and MO.

Proof. It follows from Wessels [13] Section 4 that T¢ f € K. Denote:
I1 = {z: 2 < min{m,, m,} — 2},
12 = {z : min{my, m,} < & < max{m,,m,} — 2},

I3 = {z: z > max{my, m,}}.

It follows from Lemma 4.3 that (4.1) holds for € I; U I; U I5. In order to check in the remaining

states, we distinguish between the 3 cases described in the proof of Theorem 4.1.

Denote

F(z)=wvalS(z+2,f)—valS(z+ 1, f) — [valS(z + 1, f) — valS(z, f)],

For either
(i) case 1 and = = min{m,, m,} — 2, (i.e. z =I{ —2), or

ii) case 2, = max{my, my} — 2, (i.e. =1L —2), and m, =1y <l — 1 = m, we have
2 1 2

F(.T):S(.’E—|—2,2,],f)—S(.’E—|—1,1,],f)—[S(fE-}-1,1,],f)—5($,1,],f)]

13



v

S($+2717j7f)_ S($+1717]7f)_ [S(.’E—|— 1717j7f)_5($717j7f)]

> 0

where the last inequality is due to Lemma 4.3, j = 1 for (i) and j = 2 for (ii). In case 2, if

¢ = max{my,m,} —2 =14 -2 and m, =1 =1 —1 = m, — 1 then we have

Flz)=5@+2,2,2,f)— S(z+1,1,2, /)= [S(z+ 1,1,2, f) — S(=, 1,1, f)]
> S(x—l—?,l,?,f)— S(Cc—}— 1,1,1,f)— [S(w—l— 1,1,2,f)— S(:C,l,l,f)]

> 0

where the last inequality follows since S(z, f) satisfies J6.

For either
(i) case 1, 2 = min{my, m,} — 1, (i.e. 2 =l = 1),and my, =1 > 1§ =1 =m, — 1, 0r
(ii) case 2, & = max{m,,m,} — 1, (i.e. # =& — 1), we have
Flz) = 85(x+2,2,5, /)= Sz + 1,2,5, /) = [S(&+ 1,2,5, ) = §(x, 1,5, f)]
> S@+2,2,5f)-5@+1,2,5,0)-[9(x+1,2,5, ) = 5(z,2,5, )]
> 0

where the last inequality since by Lemma 4.3, S(z, f) satisfies J6; j = 1 for (i) and j = 2 for (ii).

In case 1, if 2 = min{m,,m,} — 1= l{ — 1, and m, = l‘QI = l{ — 1= m, — 1 then we have

Flz)=5@+2,2,2,f)— S(z+1,2,1, )= [S(z+ 1,2,1, f) — S(=, 1,1, f)]
> S(z+2,1,2,f)—S(=+1,1,1, /)= [S(z+1,1,2, f) = S(x, 1,1, f)]
> 0
where the last inequality follows since, by Lemma 4.3, S(z, f) satisfies J6.
For either
(i) case 2 and = = min{m,, m,} — 2, (i.e. z =1J —2), or

(ii) case 1, z = max{m,, m,} — 2, (i.e. z =1 —2), and m, =1 >l +1 = m, + 1 we have

Flz)=5(z+42,4,2,f)— S(e+ 1,4, 1, f)— [S(a+ 1,4, 1, f) — S(a,4, 1, f)]

v

Sz +2,4,2,f) = S(z+1,4,1, f) = [S(z+ 1,%,2, f) = S(z,1,1, f)]

0

v
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where the last inequality follows since, by Lemma 4.3, S(z, f) satisfies J6, ¢ = 2 for (i) and i = 1
for (ii). (For case 1, if = max{m,,m,} —2 =1J — 2, and m, = = + 1 = m, + 1 we have the

situation described above (4.8)).

For either
(i) case 2, = min{my, m,} — 1, (i.e. 2 =1 —1),and my, = > IJ + 1 =m, + 1,

(ii) case 1, z = max{m,,m,} — 1, (i.e. @ = I — 1), we have

Flz)=5(z+4+2,4,2,f)— S(e+ 1,4, 1, f)— [S(e+ 1,4, 1, f) — S(z,1, 1, f)]
2 S($+27i727f)_S(‘T—I_Lialyf)_[S($+17i727f)_S($7i717f)]

> 0

where the last inequality follows since, by Lemma 4.3, S(z, f) satisfies J6, ¢ = 2 for (i) and ¢ = 1
for (ii). (For case 2, if 2 = min{m,,m,} —1 =1/ —1,and m, = I{ =1/ + 1 = m, + 1 then we are

back in the situation described above (4.8)).

It remains to check Case 3. Denote & = (1,0), 63 = (0,1). For z = m,, —2=m, —2 =1l — 2 we

have

F(z) = ups25(x + 2, flvgsa — S(e+ 1,1,1, f) = [S(z+ 1,1,1, f)— S(z, 1,1, f)]
> S +2, f)vere— S+ 1,1,1, /)= [S(z+1,1,1, f)— S(=, 1,1, )]
= @{S+2,1,1,f)-S(z+1,1,1,/)—[S(=+1,1,1, f)— S(=,1,1, )]}

+¢{S(z+2,1,2, /)— S(z+1,1,1, f)— [S(=+ 1,1,1, f) = S(z,1,1, )]}

v

@{S(z+2,1,2,f) = S(z+1,1,1, /)= [S(=+ 1,1,2, f) - S(=,1,1, )]}

> 0
where the last inequality follows since, by Lemma 4.3, S(z, f) satisfies J6,
Forx:mu—lzmv—l:l{—lwehave

F(.f) = S(.T—|—2,2,2,f)— 2U$+1S(.’E—|— 17f)7)z+1 ‘|‘S($,1,1,f)

Z S($+272727f)_uz+15($+17f)61_ul‘-}'ls(x—}_17f)62+5($71717f)

vV

@{S(z+2,2,2, f)—S(z+1,1,1,f)— S(z+1,1,2, )+ S(z,1,1, )}
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+q{S(z+2,2,2,f)— S(z+1,2,1, )= S(z+ 1,2,2, )+ S(=,1,1, f)}

> q{S(+2,1,2,f)—=S(z+1,1,1, /)= S(z+1,1,2, f) + S(=,1,1, f)}
+q{S(z+2,2,2,f)— S(z+1,2,1,f)— S(z+ 1,2,2, /) + 5(=,2,1, f)}
> 0

The last inequality follows since, by Lemma 4.3, S(z, f) satisfies J6. This establishes that S(e, f)

satisfies IC.

In order to prove that valS(e, f) satisfies MO, it suffices to show that valS(1, f) > valS(0, f),

since we already established that S(e, f) satisfies IC. Indeed,

valS(1, f)—valS(0, f) = S(1,uy,v1, f) — S0, ug, vo, f)

> 5(1,ug, vy, f) = 5(0,ug,v1, f) 2 0
The last inequality follows since, by Lemma 4.3, S(z, f) satisfies MO. g

We are now ready to prove the main result.

Theorem 4.2 The optimal value Vi satisfies MO and I1C, and the optimal policies (u*,v*) have

a threshold structure described by Theorem 4.1.

Proof. Choose f(z) = 0,Vz € X. By repeated application of Lemma 4.4, it follows that e r
satisfies MO and IC, n = 1, 2, ...; moreover, lim,,_. Tgnf satisfies MO and IC, n = 1,2,.... Hence

by Proposition 3.1 V¢ satisfies MO and IC, and the proof is established by applying Theorem 4.1.

Acknowledgement: I wish to thank Jerzy Filar for many fruitful discussions and for introducing

me into stochastic game.
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