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ABSTRACT

Flow cytometry (FCM) has been used for plant DNA content estimation since the 1980s; however, presently,  

the number of laboratories equipped with flow cytometers has significantly increased and these are used 
extensively not only for research but also in plant breeding (especially polyploid and hybrid breeding) and 
seed production and technology to establish seed maturity, quality and advancement of germination. A broad 
spectrum of horticultural and medicinal species has been analyzed using this technique, and various FCM 
applications are presented in the present review. The most common application is genome size and ploidy 
estimation, but FCM is also very convenient for establishing cell cycle activity and endoreduplication intensity 
in different plant organs and tissues. It can be used to analyze plant material grown in a greenhouse/field as well 
as in vitro. Due to somaclonal variation, plant material grown in tissue culture is especially unstable in its DNA 
content and, therefore, FCM analysis is strongly recommended. Horticultural species are often used as internal 
standards in genome size estimation and as models for cytometrically studied cytotoxic/anticancer/allelopathic 
effects of different compounds. With the growing interest in genome modification, increased application of 
FCM is foreseen.
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INTRODUCTION

Flow cytometry (FCM), commonly applied in 

multiparametric analysis in medicine, is most 

frequently used in plant sciences to establish only 

one parameter, the nuclear DNA content. Because 
of its advantages, such as high throughput, accuracy 
and resolution, negligible destructiveness to plants, 
as well as low operating cost per sample, it has 

replaced other methods of ploidy and/or genome size 
(GS) estimation in a large number of laboratories 
(Vrána et al., 2014). A few years ago, Bennett and 
Leitch (2011) reported that the proportion of all plant 
GS estimates using FCM was 85%, and, taking into 
account the recent popularity of this method, it is 

likely that this figure is significantly higher today.
FCM analyzes the optical properties of single 

particles/cells within a suspension. In the case of 
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plants, these particles are usually nuclei isolated by 

chopping an intact tissue/organ and stained with  
a fluorescent dye that intercalates or binds to DNA. 
Cells/nuclei pass in a fluid stream through a flow 
cell, intersect the focus of an intense light source 
(typically a laser), and absorb light. This light 
produces fluorescent signals, which are displayed 
as a histogram and/or a dot plot (Fig. 1; Vrána et 
al., 2014). A cytometer can be additionally equipped 
with light scatterers for side scatter (SSC) and 
forward scatter (FSC). SSC provides information 
on cell complexity and FSC on cell size. Some 
cytometers (sorters) can isolate particles of interest 

based on their physical or fluorescent parameters. 
The most common fluorochromes used for plant 
DNA staining are propidium iodide (PI; intercalating 
dye) and 4',6-diamidino-2-phenylindole (DAPI;  
a dye that binds to AT-rich regions of DNA).

Plant material typically used for FCM analysis 
is fresh young leaves, but any plant part containing 
intact nuclei can be used. In cases when fresh 
material is not available, dry leaves or seeds can 

be used, although these require some modifications 
in sample preparation and/or experience in the 
interpretation of histograms (Sliwinska et al., 2005; 
Suda and Trávníček, 2006; Razafinarivo et al., 
2012).

Even though nuclear sample preparation and 
FCM analysis of plant material are relatively easy 

and fast (Galbraith et al., 1983), there are some 
‘difficult’ species in which the cytosol contains 
compounds (secondary metabolites) that inhibit 

DNA staining and cause a stoichiometric error in 
FCM estimation of nuclear DNA content (Noirot et 

al., 2000). These compounds, mostly polyphenols, 
are present in some annual horticultural species, 

many shrubs and trees, and in most medicinal 

species. Helianthus annuus was one of the first 
species in which compounds were found to bias FCM 

measurement by interfering with PI intercalation 
into the DNA helix and/or with fluorescence (Price 
at al., 2000). The researchers proposed a special test 
for detecting the presence of staining inhibitors, 
which should be performed for any plant material 

that may contain such compounds. Modifications of 
the sample preparation procedure, such as changing 
the composition of the nuclei isolation buffer, 

incubation of the sample on ice for 30-60 min. 
before analysis, and/or spinning and resuspending 
the isolated nuclei, should be performed individually 

for any plant material containing staining inhibitors 
to obtain reliable results of FCM analysis. Loureiro 

et al. (2007), comparing two different nuclei 
isolation buffers for FCM analysis of a number of 
horticultural species, found that the one containing 

Figure 1. Histogram of PI fluorescence intensity (FL2; A) and dot plots on side scatter (SSC) versus PI fluorescence 
(B) and forward scatter (FSC) versus SSC (C) in the nuclei of young leaves of Daucus carota (sample) and Brassica 

napus (internal standard, 2C = 2.18 pg)
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1% polyvinylpyrrolidone (PVP-10) was more 
suitable for recalcitrant samples characterized by the 

presence of phenolic and mucilaginous compounds. 
Modifications used successfully for 11 woody 

Rosaceae species included the addition of PVP-10 
and/or β-mercaptoethanol at different concentrations 
to the nuclei isolation buffer (Jedrzejczyk and 
Sliwinska, 2010). Sadhu et al. (2016) established the 
nuclear DNA content of 24 ‘difficult’ species of the 
Zingiberaceae family, containing different active 
metabolites such as flavonoids, phenolic acids, and 
essential oils, using a buffer with compounds that 
stabilised pH (MOPS) and chromatin (spermine), 
chelated divalent cations (EDTA), and with 
antioxidants PVP and β-mercaptoethanol. In 
addition to the staining inhibitors, mucilages, which 
are polysaccharides present in some plant tissues, 

make sample preparation difficult; they attract 
nuclei and cause their clumping. GS estimation of 
five species belonging to the family Hyacinthaceae, 
characterized by high mucilage content, was 
established after modifications to the frequently 
used Galbraith’s isolation buffer (Galbraith et al., 
1983), by increasing pH and detergent concentration, 
and replacing sodium citrate with citric acid (Nath 
et al., 2014). Optimized protocols for sample 
preparation of 13 Viola and Hylocereus species, 

whose tissues are also rich in polysaccharides, were 

proposed by Cires et al. (2011) and Li et al. (2017), 
respectively. An alternative to modifying the sample 
preparation procedure is to find tissues/plant parts 
free of undesirable compounds, for example a seed 

(Sliwinska et al., 2005; Jedrzejczyk and Sliwinska, 
2010). Since not all researchers are aware of the 
above problems, the results of nuclear DNA content 

estimation should be regarded with caution when 
no modifications to standard preparation procedures 
have been applied for species known to be ‘difficult’.

Despite the difficulties in FCM analysis of some 
species, the method is widely used in taxonomy, 

ecology, evolutionary biology, polyploid and hybrid 
breeding, seed biology and technology, and in vitro 

cultures. In this review, recent literature (from the 
year 2000 to the present) on the applications of FCM 
in the analysis of the DNA content of horticultural 

and medicinal species is presented.

GENOME SIZE AND PLOIDY 
ESTIMATION

The nuclear genome is defined as the chromosome 

complement and its DNA, characteristic of a particular 

organism (Greilhuber et al., 2005). Knowledge of its 
size is important for the identification of species, 

verification of their taxonomic position, and 

identification of plant material cultured in vitro, the 

genome of which has been changed by somaclonal 

variation. It is an essential starting point for projects 
involving genome sequencing, for optimizing some 
molecular biology methods such as microsatellites 
and amplified fragment length polymorphism 
(AFLP), and for determining the number of 
clones in a genomic library (Leitch and Bennett, 
2007). It is also used for studying the role of the 

C-value (DNA content of a holoploid genome with 
chromosome number n; Greilhuber et al., 2005) in 

plant growth and development, and plant responses 

to environmental stresses. GS can be expressed in 
pg or Mbp (1 pg = 978 Mpb; Doležel et al., 2003).

For f low cytometric GS measurements, an 
internal reference standard (a plant with known 
nuclear DNA content, processed together with 
the sample) is needed (Fig. 1; Vrána et al., 2014). 
In many laboratories, horticultural species such as 
Petunia hybrida, Glycine max, Allium cepa, and 

Pisum sativum, which possess a stable genome size, 
serve as internal standards. Although FCM makes 
it relatively easy to establish nuclear DNA content, 

to date the GS of only about 3% of angiosperms 
has been reported. For important horticultural 
species, such as Brassica oleracea, Daucus carota, 

A. cepa, Cucumis sativus and many others, this 

characteristic was initially established in the 1970s 
and 1980s using Feulgen cytophotometry, and 
then re-established at the turn of the 20th and 21st 

centuries using FCM (Bennett and Leitch, 2012; 
Tab. 1).

Taxonomy, evolution, and ecology

The taxonomy of a number of families is complex, 
with species expressing strong morphological 
uniformity or few cytotypes (differing in ploidy 
or chromosome structure). FCM, often combined 
with molecular methods, is a good tool for the 
establishment/verification of the systematic position 
of a species. One of the families of great interest in 
terms of nuclear DNA content is the Orchidaceae, 
with almost 170-fold variation in GS; 1C-value 
varies from 0.33 pg in Trichocentrum maduroi 

to 55.4 pg in Pogonia ophioglossoides (Leitch et 

al., 2009). Recent reports on GSs have provided 
information to fill the phylogenetic gaps in this 
family (Lin et al., 2001; Bory et al., 2008; Rupp et 
al., 2010; Moraes et al., 2012; Jersáková et al., 2013; 
Tĕšitelová et al., 2013). With the aim of providing 
information for taxonomic studies, Favoreto et 

al. (2012) established the DNA content for 14 
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Bromeliaceae species and produced a dendrogram 
for members of the Pitcairnioideae, Tillandsioideae, 
and Bromelioideae. Their report was supplemented 
by Gitaí et al. (2014), who established the GS 
of 28 species from the family Bromeliaceae. 
Other horticultural genera on which systematic 
classification studies have been supported by 

GS measurements are the vegetables: Lactuca, 

Capsicum, Daucus (Koopman, 2000; Doležalova 
et al., 2002; Moscone et al., 2003; Tavares et al., 
2014; Nowicka et al., 2016), ornamentals: Rosa, 

Galanthus, Hemerocallis, Agapanthus, Lilium, 

Passiflora, Nerine, Dahlia, Fuchsia, Hydrangea, 

Nasturtium, Penstemon, Anthurium, Tulipa, Drimia, 

Cotoneaster (Yokoya et al., 2000; Saito et al., 2003; 
Zonneveld and Duncan, 2003, 2006; Zonneveld et 
al., 2003; Souza et al., 2004; Marasek et al., 2005; 
Temsch et al., 2008; Talluri and Murray, 2009; 

Morozowska et al., 2010; Mortreau et al., 2010; 
Broderick et al., 2011; Bliss and Suzuki, 2012; dos 

Santos et al., 2014; Abedi et al., 2015; Nath et al., 
2015; Rothleutner et al., 2016), and orchard crops: 
Ribes, Malus, Crataegus, Mespilus, and Olea 

(Chiche et al., 2003; Talent and Dickinson, 2005; 
Tatum et al., 2005; Brito et al., 2008). Although 
it is usually difficult to conduct FCM analyses on 
medicinal and culinary species (see Introduction), 
assessment of 2C was recently completed for: 
Curcuma, Salvia, Gentiana, Thymus, Ocimum, and 

66 traditional Chinese medicinal species (Leong-
Škorničková et al., 2007; Maksimović et al., 2007; 
Mishiba et al., 2009; Carović-Stanko et al., 2010; 
Koroch et al., 2010; Mahdavi and Karimzadeh, 
2010; Zhang et al., 2013; Rewers and Jedrzejczyk, 
2016). The collected C-values can be useful not 
only for taxonomic purposes but also for species 

Table 1. Genome sizes of major horticultural species established by Feulgen cytophotometry and re-established by 
flow cytometry (Plant DNA C-value Database; Bennett and Leitch, 2012)

Genus/species
2C DNA content (pg)

Latin name Common name

Allium cepa L.
A. porrum L.
A. sativum L.
A. schoenoprasum L.
Asparagus officinalis L.
Aster L.
Beta vulgaris L.
Brassica oleracea L.
B. rapa L.
Capsicum annuum L.
Cucumis melo L.
C. sativus L.
Daucus carota L.
Lactuca sativa L.
Petroselinum crispum (Mill.) Nyman ex A.W. Hill
Phaseolus coccineus L.
P. vulgaris L.
Pisum sativum L.
Prunus persica L.
Raphanus sativus L.
Rosa L.
Solanum melongena L.
Spinacia oleracea L.
Tulipa L.
Vicia faba L.
Zea mays L.

Onion
Leek
Garlic
Chives

Asparagus
Aster

Beetroot
Cauliflower/Cabbage
Chinese Cabbage
Pepper/Chili
Melon

Cucumber

Carrot

Lettuce

Parsley
Runner Bean
Common Bean
Pea
Peach
Radish
Rose
Eggplant
Spinach
Tulip
Broad Bean
Maize

28.73-34.80
45.30-65.30
31.45-35.70
15.25-32.70
2.70-6.67
3.25-21.43
1.50-2.60
1.25-1.80
1.08-1.60
5.50-10.85
1.05-2.50
0.75-2.10
1.00-4.00
5.30-6.61
3.95-8.60
1.35-3.50
1.00-3.70
7.60-11.85
0.55-0.66
0.90-2.90
0.25-3.05
1.95-2.50
1.65-2.69

24.70-120.90
22.85-54.80

4.7-12.6
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identification, germplasm conservation, and 
breeding.

Estimation of nuclear DNA content has also 

been used to resolve evolutionary questions. One 
of the interesting families, which includes not only 
the model species Arabidopsis thaliana but also 

important vegetables as well as ornamental and 
medicinal species, is the Brassicaceae. Based on 
the C-values of 185 Brassicaceae taxa, Lysak et al. 
(2009) concluded that GS in this family had not 
changed substantially over time and most likely 
evolved passively. They also suggested that there 
was a paradox between the maintenance of a narrow 

range of small GSs over a long evolutionary time 
and the evidence of genomic changes that could 
have led to genome obesity. Their study confirmed 
earlier observations by Johnston et al. (2005), 
who, after measuring the DNA content of 34 
Brassicaceae species and sequencing the ITS region 
(internal transcribed spacer region of DNA between 
the small and large ribosomal RNA genes) for 23 
taxa, had found that despite the evidence of species 

with decreases and increases in GS, including 
polyploidization, the evolution of this family’s GS 
had a conservative nature. Polyploidy, and also 
dysploidy (an increase or decrease in chromosome 

number as a result of structural rearrangements) 
as mechanisms of genome evolution have been 
suggested for Ocimum, Orchidaceae, Bromeliaceae, 
Colchicum, and Iridaceae (Bory et al., 2008; 
Carović-Stanko et al., 2010; Rupp et al., 2010; 
Trávníček et al., 2011; Moraes et al., 2012, 2015; 
Jersáková et al., 2013; Fridlender et al., 2014; Gitaí 
et al., 2014; Yeh et al., 2015). 

Establishment of the DNA content for 40 Malus 

genomes had led to the conclusion that polyploids, 
especially allopolyploids, could easily withstand the 

loss of certain amounts of DNA (Tatum et al., 2005). 
A tendency towards downsizing of the monoploid 
Malus genome with increased ploidy was observed. 
A similar tendency was found in Fuchsia, where 

polyploid species have considerably lower 1Cx-

values (DNA content of a monoploid genome with 
chromosome base number x; Greilhuber et al., 2005) 
than diploid ones (Talluri and Murray, 2009). The 
GS of Anthurium, which generally does not correlate 
with the chromosome count and phylogenetic 
relationships, in addition to polyploidization and 

chromosome reorganization or loss, depends on the 
amplification and reduction of repetitive elements 
(Bliss and Suzuki, 2012). Similarly, in the legume 
tribe Fabeae, the accumulation of repetitive DNA 

accounts for 85% of the genome size differences 

between the species (Macas et al., 2015). Also, 
as was concluded from the combined analyses of 

GS, f luorescence in situ hybridization (FISH), 
and BAC clone sequencing, genome evolution of 
Eucalyptus seems to be driven by local expansion 

of repetitive heterochromatin clusters (Ribeiro et 
al., 2016). Repetitive DNA can also be responsible 
for intraspecific variation. The 2C-value variation 
among cultivars of Curcuma longa was suggested 
to be due to different transposon expression and 
integration (Basak et al., 2017). In turn, the amount 
of DNA could provide information on the number 

of (retro)transposon copies present in a certain 

genotype, as determined for Iris species and hybrids 

using FCM together with dot blot hybridization and 
a genomic library screen, for the estimation of the 
copy number of IRRE (IRis RetroElement; Kentner 

et al., 2003).  
Traditionally, ploidy is estimated by chromosome 

counting. However, this method needs time-
consuming microscopic slide preparation, and 
counting can be difficult and unreliable, especially 
if the chromosomes are small and/or numerous. 
This method can be replaced by FCM if there 
is a plant of the same species of known ploidy 
available (a so-called external standard, processed 

separately from the sample), or if the Cx-value is 

known. An example of the first approach was used 
in establishing the ploidy of three Fragaria species 

and of a naturally occurred putative hybrid found 

in Germany, where the octoploid cultivated F. × 

ananassa served as an external standard (Nosrati 

et al., 2011). After checking its constancy among 
related specimens and making a comparison with 
established and previously published DNA amounts, 

the Cx-value was used to assign ploidy to 74 Rosa 

species (Roberts et al., 2009). Among the studied 
species, 2x, 4x, 5x, 6x, 7x, and 8x roses were found, 

which verified earlier reports.  
Chromosome counting in shrubs and trees can 

be especially problematic due to the difficulties 
in obtaining appropriate tissues in which to view 
mitotic figures. Talent and Dickinson (2005), 
measuring the nuclear DNA content of Crataegus 

and Mespilus species, confirmed that FCM can be 
more precise for establishing ploidy. To previously 
published ploidies, 2x, 3x, 4x, and 6x, they added 

evidence for 5x in Crataegus. Interesting ecological 
observations were made on the ploidy in Aster 

amellus in about 300 populations; each individual 
population consisted of only one basic ploidy 

(diploid or hexaploid), while only one mixed-

ploidy population was detected (Mandáková 
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and Münzbergová, 2006; Castro et al., 2012). 
Surprisingly, no intermediate tetraploid cytotype 
was found, which speaks for a lack of hybridization 
between the cytotypes, despite the close proximity 

of the populations of different ploidy.     
Some researchers claim that there is a relationship 

between GS and environmental conditions. For 
example, Knight and Ackerly (2002) examined 
variation in GS for over 400 plant species in 
California in relation to the mean July maximum 

temperature, January minimum temperature, and 

annual precipitation, and concluded that species with 

small GS predominate in all environments, while 
those with large genomes occur at intermediate July 
maximum temperatures, and decline in frequency 

at both extremes of the July temperature gradient, 
and with decreasing annual precipitation. Another 
example are species of Lilium, possessing giant 
genomes, in which GS correlates negatively with 
annual temperatures and precipitation (Du et al., 
2017).

Plant breeding

The flow cytometer has of late become an essential 
piece of equipment for modern plant-breeding 
companies because knowledge of plant DNA 
content is necessary in many breeding programmes/
technologies, e.g. those directly involving ploidy 
change in polyploid breeding. Polyploidization 
is usually accompanied by increased cell size, 

which leads to alterations in morphology that are 
favourable for horticultural plants. Polyploids are 
usually characterized by larger organs, an increased 
width-to-length ratio of leaves, and their deeper 
green colour or more compact growth habit (Shao 
et al., 2003). Induction of polyploidy is often applied 
to floral crops because plants with a higher ploidy 
usually produce larger flowers than diploids, their 
flowering period is longer, and sometimes their 
flowers have a deeper colour. Polyploids (usually 
tetraploids) are most often obtained in vitro or 

ex vitro by treatment with an antimitotic agent, 
and plants of desirable ploidy are selected using 
FCM. This approach was successfully performed 
for 3 Hibiscus species, Rhododendron hybrid R.  

× kosterianum, Syringa vulgaris × S. pinnatifolia,  

a few Rosa species, Gerbera jamesonii, 

Hemerocallis × hybrida, and Petunia axillaris (Rose 
et al., 2000; Väinölä, 2000; Van Huylenbroeck et 
al., 2000; Allum et al., 2007; Gantait et al., 2011; 
Crespel et al., 2015; Podwyszyńska et al., 2015; 
Regalado et al., 2017). The induction of artificial 
polyploidy can also increase the production of 

important medicinal compounds and for this reason 

was introduced into Ocimum basilicum, Thymus 

persicus, and Trachyspermum ammi (Omidbaigi 
et al., 2010; Tavan et al., 2015; Noori et al., 2017). 
However, the amount of nuclear DNA does not 
always correlate with the size of particular organs. 
Unexpectedly, among 17 Cucurbita sp. (C. pepo and 

C. maxima) cultivars, which encompassed the whole 

range of fruit types reported for pumpkin, both the 
miniature and jumbo types possessed the smallest 

genomes and cell size (Tatum et al., 2006).
FCM is also helpful in identifying intra- and 

interspecific hybrids in hybridization breeding. 
The advantage of FCM over observations of the 
morphological characteristics of mature hybrids 
is the possibility of performing DNA content 
measurements at the early stages of seedling 
development, or even using seeds. Knowing the 
ploidy is especially important for species like 
Musa ssp., cultivars of which are diploid, triploid 

or tetraploid, for the management of germplasm 
and breeding programmes (Nsabimana and van 
Staden, 2006). In Musa, in addition to different 
ploidies, aneuploids (plants with an under- or 

over-representation of one or more chromosomes) 

occur among the triploid populations, which are 
undesirable during vegetative propagation but can 
be used for gene isolation and mapping (Roux 
et al., 2003). It is difficult to detect them using 
FCM, but Roux et al. (2003) developed a reliable 
protocol based on the DNA index, which allowed 

determination of the percentage of DNA content in 
a plant of unknown ploidy in relation to a triploid 
one. Aneuploids also occurred after crossing 
diploid and triploid Asparagus officinalis, among 
them trisomics, which are useful for genetic studies 
(Ozaki et al., 2004). Similarly, aneuploids have been 
detected within the progenies of 3x-2x and 3x-4x 

backcrosses of Lilium hybrids (Lim et al., 2003). 
For some aneuploid plants, FCM has been combined 

with microscopic chromosome counting to confirm 
the exact chromosome number. Somatic aneuploidy 
also occurred in Vanilla hybrids; however, their 

pollen grains, in contrast to those of A. officinalis 

and Lilium hybrids, had a euploid chromosome 

number (Lepers-Andrzejewski et al., 2011).
The objective of interspecific hybridization is to 

transfer valuable traits for quality or biotic/abiotic 
resistance from wild to cultivated species, as well 

as to broaden the genetic diversity of the obtained 
breeding material, or to obtain hybrid plants with 
new, commercially interesting combinations of 
traits. Kamiński et al. (2016) introduced cytoplasmic 



Elwira Sliwinska 109

male sterility (CMS), a trait desirable in Brassica 

breeding, from CMS B. napus var. oleifera into  

B. rapa inbred lines. After confirming cyto-
metrically and morphologically the interspecific 
character of the hybrids, a valuable breeding line of 
CMS B. rapa genotypes was obtained. 

After measuring the DNA content of the parental 
species and of four artificial hybrids between 

different Fuchsia species, it was found that the 

amount of DNA in the hybrids was intermediate 

between those of the parental species (Talluri 
and Murray, 2009), which confirmed that this 
characteristic could be used to quickly identify them. 
Similarly, after crossing several Rhododendron 

species and hybrids, differing in flower colour, 
plants of intermediate DNA content were obtained 

(Eeckhaut et al., 2003). Likewise, artificially 
produced interspecific Dahlia hybrids possessed 

intermediate C-values close to those expected in 

relation to the DNA content of their parents (Temsch 
et al., 2008). In contrast, out of nine interspecific 
hybrids between four Capsicum species, only 

one, (C. chinense × C. baccatum)F
1
,
 
possessed  

a nuclear DNA content intermediate between and 

different from both parents. In some hybrids, it 
was similar to the mother species, and naturally, 

if both parent species had a similar genome size, 
the hybrid was identical in DNA content and had 

first to be identified using biometric characteristics 
after it produced fruits (Olszewska et al., 2007). 
Knowledge of DNA content has been important for 
the breeding of Sarcococca spp.; after performing  
a number of interspecific crosses between 19 species 
and cultivars, Denaeghel et al. (2017) concluded 
that neither different ploidies nor genome size was  
a complete barrier to hybridization. Broad scale 
FCM surveys applied to crosses of Vaccinium 

species differing in ploidy has led to the conclusion 
that V. corymbodendron either possesses no ploidy 

barriers to hybridization or possesses genomic 
dosage factors that differ from species belonging to 
the section Cyanococcus (Ehlenfeldt and Ballington, 
2017). The performed crosses demonstrated that it 
was possible to combine 3x V. corymbodendron 

germplasm with 4x, 6x, and 8x germplasm, which 
opened up new possibilities for the breeding of this 
species.

Estimations of nuclear DNA content and ploidy 
are also important for rootstock breeding, especially 
of Citrus (Seker et al., 2003). In this genus, the 
rootstock is obtained from seeds containing one 
zygotic and several somatic embryos, which can 
lead to partial apomixis and polyploidization of the 

offspring. Thus, the production of true-to-type Citrus 

rootstock requires establishing the DNA content. 
Also, somatic embryos occur in A. officinalis, 

and FCM analysis of juvenile phylloclades have 

revealed that some of them are apomictic haploids; 

after chromosome doubling such plants can be  
a valuable breeding material (Zenkteler et al., 2012). 
Analysis of the ploidy of seedlings does not always 
provide accurate information on the pathway by 

which reproduction of the plant occurs. However, 
it can be easily determined by FCM using seeds, 
by establishing the ploidy of the embryo and 
endosperm (Matzk et al., 2000). Studies by Matzk 
et al. (2000), among others, confirmed that the 
mode of reproduction of horticultural species such 

as A. cepa, Beta vulgaris, B. napus, and Zea mays 

was obligate sexual. Using this approach, various 
kinds of apomixis were detected in populations 
of fruit crops such as Malus and Rubus (Kron and 

Husband, 2009; Šarhanová et al., 2012), ornamental 
species Crataegus and Rudbeckia bicolor (Talent 
and Dickinson, 2007; Musiał et al., 2012), herbs 
Hypericum perforatum and Arnica cordifolia 

(Matzk et al., 2001; Kao, 2007), and different species 
of Allium (Specht et al., 2001). FCM was also used 
in supporting microscopic and/or molecular studies 
on reproductive strategies of Aronia melanocarpa, 

Townsendia hookeri, and Sorbus spp. (Persson 
Hovmalm et al., 2004; Thompson et al., 2008; 
Meyer et al., 2014; Hajrudinović et al., 2015).

IN VITRO CULTURES

FCM is broadly used in tissue culture of 

horticultural and medicinal plants (Tab. 2). It is 
well known that somaclonal variation occurs during 
in vitro culturing of plant material (for review see 
Bairu et al., 2011). The cause of this variation 
can be mutations, chromosome rearrangements 
and aberrations, or polyploidization. Somaclonal 
variation often changes the morphology of the plants 
produced in vitro and therefore can be detected 

visually; however, for more precise analysis 

both molecular methods and FCM are currently 

applied. Micropropagation, commonly used for 
the production of uniform material (clones), has to 

guarantee genetic stability of the final product, and 
one of its indicators is ploidy/GS. To verify this, 
chromosome counting, and lately more commonly, 
FCM is used (Tab. 2). Ploidy instability is especially 
likely when plantlets are regenerated via callus. In 
this tissue, a considerable number of cells with 

higher than 2C DNA content often occur, and they 
can initiate regeneration of polyploid plants (Thiem 
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Table 2. Use of FCM in tissue cultures of horticultural and medicinal species. M, micropropagation; H, haploid/double 
haploid production; P, polyploid production; Pr, protoplast culture/fusion; Er – hybridization with embryo rescue; T, 
transformation; AC, anticancer compound testing

Genus/species Type of culture Reference
Actinidia deliciosa M, P Góralski et al., 2005
Aeschynanthus radicans M Cui et al., 2009
Allium cepa H Martínez et al., 2000; Alan et al., 2007
Anthurium andreanum M Gantait and Sinniah, 2011
Asparagus officinalis P Carmona-Martín et al., 2015; Regalado et al., 2015
Bacopa monnieri M Largia et al., 2015
Capsicum H Olszewska et al., 2014; Nowaczyk et al., 2015
Carica papaya P Clarindo et al., 2008
Chaenomeles japonica P Stanys et al., 2006
Chrysanthemum M Lema-Rumińska and Śliwińska, 2009, 2015; Naing et al., 2013
Citrus H, P, Pr, Er, T Cabasson et al., 2001; Navarro et al., 2003; Wu and Mooney, 2002; 

Scarano et al., 2003; Fanciullino et al., 2005; Guo and Grosser, 2005; 
Guo et al., 2006; Aleza et al., 2009, 2010; Grosser and Gmitter Jr, 2011; 
Cardoso et al., 2014

Cocos nucifera M Sandoval et al., 2003
Colocynthis citrullus M Ntui et al., 2009
Copiapoa tenuissima M Lema-Rumińska, 2011
Coriandrum sativum M Ali et al., 2017
Cucumis M, H, T, Er Gémes-Juhász et al., 2002; Lotfi et al., 2003; Akasaka-Kennedy et al., 

2004; Nuñez-Palenius et al., 2006; Sebastiani and Ficcadenti, 2016
Cucurbita M, Er Ananthakrishnan et al., 2003; Lee et al., 2003; Šiško et al., 2003
Cyclamen M, Pr Schmidt et al., 2006; Borchert et al., 2007; Prange et al., 2012
Cymbidium M Teixeira da Silva et al., 2006
Daucus carota H, T Deroles et al., 2002; Kiszczak et al., 2011
Dianthus acicularis M Shiba and Mii, 2005
Eryngium M Thiem et al., 2013; Kikowska et al., 2014,  2016
Eucalyptus globulus M Pinto et al., 2004,  2011
Eulophia nuda M Nanekar et al., 2014
Fragraria × ananassa M Forni et al., 2001
Gentiana M, Pr Rybczyński et al., 2007; Fiuk and Rybczyński, 2008; Mikuła et al., 

2008; Tomiczak et al., 2015, 2016, 2017
Inula verbascifolia M Sliwinska and Thiem, 2007
Ipomoea batatas T Deroles et al., 2002
Lathyrus M Ochatt et al., 2013
Lilium × formolongi Pr Horita et al., 2003
Malus domestica Pr, Er, T Maddumage et al., 2002; Gonai et al., 2006
Manihot eslulenta P Zhou et al., 2017
Musa M Roux et al., 2001; Escobedo-GraciaMedrano et al., 2014
Oenothera paradoxa M Sliwinska and Thiem, 2007
Olea M Lopes et al., 2009; Brito et al., 2010
Paris polyphyla AC Yan et al., 2009
Passiflora cincinnata M Pinto et al., 2010
Pelargonium Pr, T Nassour et al., 2003; Hassanein and Dorion, 2005; Hassanein et al. 2005 
Physalis ixocarpa H Escobar-Guzmán et al., 2009
Pisum sativum H Ribalta et al., 2012
Plantago asiatica M Makowczyńska et al., 2008
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and Sliwinska, 2003; Makowczyńska et al., 2008; 
Slazak et al., 2015; Tomiczak et al., 2016). 

Polyploidization in vitro by the application of 

antimitotic compounds has already been mentioned 

in the previous section. Another interesting way of 
obtaining polyploids, using in vitro cultures, was 

detailed by Góralski et al. (2005). They used the 
endosperm of Actinidia deliciosa seeds as explant 

material and, after callus formation, obtained 

triploid plants, which traditionally are produced 

by crossing diploid and tetraploid plants. Equally 
important as producing polyploids is haploid and 
double-haploid production, which can shorten 

the time to obtain homozygous lines for hybrid/
heterosis breeding by a few years (Gałązka and 
Niemirowicz-Szczytt, 2013). Haploids have lately 
been produced via andro- or gynogenesis in such 
horticultural species as A. cepa, Capsicum ssp.,  
C. melo, C. sativus, D. carota, Physalis ixocarpa,  

P. sativum, Prunus ssp., Pyrus ssp., S. lycopersicum, 

V. vinifera (Tab. 2). In all those species, the ploidy 
of the produced plants was checked using FCM. It 
is worth mentioning that FCM is a unique method 
for detecting mixoploidy during (double) haploid 
production.

Biotechnological methods are also applied to 
produce interspecific hybrids, and, as in traditional 
hybridization, FCM is often helpful in verifying the 
hybrid status of the resultant material. Two main 
in vitro techniques, embryo rescue and protoplast 

fusion, are used to cross species that otherwise 

cannot be successfully crossed. Gonai et al. (2006), 
after pollinating pistils of Pyrus pyrifolia with pollen 

of Malus domestica, cultured the fertilized embryos 

in vitro and obtained intergeneric shoots with  
a DNA content intermediate between the parents. 
Embryo rescue was also used to obtain hybrids 
between different Cucurbita species, and in all of 

them the relative nuclear DNA content confirmed 
successful hybridization (Šiško et al., 2003). In 
contrast, after embryo culture and regeneration of 
a hybrid between C. sativus and a wild Cucumis 

species, C. hystrix, about 7% of the obtained plants 
possessed double the expected amount of DNA and 

were considered as chromosome-doubled F
1
 hybrids 

(Chen et al., 2002). Another unexpected genome 
composition occurred after crossing Primula 

sieboldii with P. obconica and rescuing the hybrid 
embryos (Kato et al., 2001). In addition to normal 
diploid hybrids, two types of triploids were found, 

of which four had two genomes of P. sieboldii and 

Table 2 continued.

Genus/species Type of culture Reference
Primula Er Kato et al., 2001
Prunus H, P Peixe et al., 2004; Vujović et al., 2012
Pueraria lobata M Sliwinska and Thiem, 2007
Punica granatum P Shao et al., 2003
Pyrus M, H, Er Bouvier et al., 2002; Kadota and Niimi, 2002; Sun et al., 2011; Gonai et 

al., 2006
Raphanus sativus M Curtis et al., 2004
Rosa Er Abdolmohammadi et al., 2014
Rubus chamaemorus M Thiem and Sliwinska, 2003; Sliwinska and Thiem, 2007
Scutellaria AC Parajuli et al., 2009
Solanum M, H, Pr, T Collonnier et al., 2001; Bartoszewski et al., 2003; Ellul et al., 2003; 

Seguí-Simarro and Nuez, 2007; Xing et al., 2010; Szczerbakowa et al., 
2011

Solidago M Sliwinska and Thiem, 2007
Spathiphyllum wallisii P Eeckhaut et al., 2004
Teuricum scorodonia M Makowczyńska et al., 2016
Tricyrtis hirta M Nakano et al., 2006
Ullucus tuberosus P Viehmannová et al., 2012
Vigna subterranea M Koné et al., 2007
Viola uliginosa M Slazak et al., 2015
Vitis vinifera M, H, P Lima et al., 2003; Leal et al., 2006; Yang et al., 2006; Prado et al., 2010
Ziziphus jujuba P Gu et al., 2005; Shi et al., 2015
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one of P. obconica, and one had one genome of  
P. sieboldii and two of P. obconica. These examples 
illustrate well the necessity of checking ploidy/GS 
after using in vitro cultures for zygotic interspecific 
hybridization. However, the variation in ploidy 
and genome composition of the obtained material 
is much higher when using somatic hybridization 
(protoplast fusion). This technique has been 
applied extensively to Citrus breeding for ploidy 
manipulation, mostly to generate allotetraploids 
and autotetraploids (as by-products) for interploid 

crosses, e.g. to obtain seedless triploids or to 
provide tetraploid somatic hybrid rootstock (for 
review see Grosser and Gmitter Jr., 2011). Somatic 
hybridization has also been used for this genus to 
manipulate chloroplast and mitochondrial genomes, 
using C. deliciosa as an embryogenic parent and 
C. sinensis or C. paradisi as a mesophyll parent 

(Cabasson et al., 2001). After analyzing the nuclear 
DNA content and nuclear and mitochondrial DNA 

restriction fragment length polymorphism (RFLP), 
the regenerated diploid plants were assumed to be 
alloplasmic hybrids, or cybrids. Solanum, too, is 

a genus often subjected to protoplast fusion with 
the objective of producing synthetic allopolyploids. 
Somatic hybrids between S. melongena and  

S. aethiopicum were produced by electrofusion of 

protoplasts in order to transfer resistance against 
Ralstonia solanacearum from S. aethiopicum 

(Collonnier et al., 2001). Cytometric analysis of 
the ploidy of the regenerated plants revealed that 
as much as 75% of the regenerants were diploids 
instead of the expected tetraploids, and only the 

remaining 25%, considered as putative hybrids, 
were subjected to molecular analyses to verify 

their hybrid status. Szczerbakowa et al. (2011) 
performed repeated fusion of protoplasts of 7x and 

8x interspecific hybrids S. nigrum + S. tuberosum 

and diploid S. tuberosum clones in order to enlarge 
the S. tuberosum input into the hybrid genome. 
Unfortunately, the newly synthetized allopolyploids 

possessed only slightly more nuclear DNA than the 
parental hybrids, instead of the expected addition of 

the entire S. tuberosum genome, and the amount of 
DNA was different in different hybrids. Studies by 
Tomiczak et al. (2017) confirmed the occurrence of 
variations in DNA content in calli and plants after 

electrofusion of cell suspension-derived protoplasts 

of diploid Gentiana kurroo and leaf mesophyll-

derived protoplasts of tetraploid G. cruciata. They 
reported that polyploidization occurred at the 

early stage of post-fusion culture, and during the 
subsequent four years of in vitro culture gradual 

elimination of nuclear DNA, mixoploidy, and high 
genetic instability were observed. 

The amount of DNA transferred during genetic 
transformation is too small to be detected by FCM. 
However, in some transformation experiments the 
method is used for ploidy estimation. Indeed, the 
occurrence of diploid and tetraploid transformants 

of C. melo, Pelargonium spp., and S. lycopersicum 

(Bartoszewski et al., 2003; Ellul et al., 2003; 
Akasaka-Kennedy et al., 2004; Hassanein et al., 
2005) confirm the recommendation to check the 
ploidy of transgenic plants before using them in 
further research or introducing into a breeding 
programme. As in micropropagation and somatic 
hybrid production, this especially applies when 

callus or protoplasts are used for transformation. 
Guo and Grosser (2005) confirmed this when they 
fused mesophyll protoplasts of gfp-transformed 

C. sinensis with embryogenic callus-derived 
protoplasts of C. reticulate to visually screen 

somatic hybrids. GFP-expressing embryoids 
obtained via hybrid callus were verified by FCM 
and simple sequence repeat (SSR) analyses to be 
diploid cybrids or tetraploid somatic hybrids. After 
the transformation of M. domestica protoplasts with 

gfp, another ability of FCM, counting of protoplasts/
cells, was used (Maddumage et al., 2002). This 
made it possible to determine the efficiency of 
polyethylene glycol-mediated transformation at 
different temperatures. Deroles et al. (2002) used 
yet another application of cytometry, estimation of 

nuclear DNA condensation, to determine if this was 

connected with the efficiency of transformation of 
D. carota cell cultures; such a relationship, however, 

was not found.

THE CELL CYCLE AND 
ENDOREDUPLICATION

Proliferating cells pass through four phases during 
the cell cycle: G

1
, the period of cell growth during 

which the nucleus possesses a 2C DNA content; S, 
where DNA replication takes place, which results 
in a doubling of DNA content to 4C; G2, a second 

growth period during which a nucleus retains its 
4C DNA content; and M, mitosis, when DNA is 
equally divided into two daughter nuclei. Cells 
that leave the cell cycle enter the quiescent G

0
 state 

usually from the G
1
 phase, and thus they possess 

2C DNA (Fig. 2A). Differentiating cells of some 
plant tissues/organs (e.g. endosperm, cotyledons, 
vascular tissues) go through repeated rounds of 
DNA replication that are not followed by mitosis 

(endocycles), resulting in endopolyploid (>4C) cells 
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(Fig. 2B). This process is called endoreduplication 
and occurs in most angiosperms (for review see 
Breuer et al., 2014). Since both the mitotic cell cycle 
and endoreduplication are characterized by changes 
in nuclear DNA content, they can be studied by 

FCM (Fig. 2).

Seed science and technology

One of the most common applications of studying 
the cell cycle by FCM is to follow the physiological 
status of seeds during development, maturation, 
and germination/priming (Sliwinska, 2009 and 
references therein). Studies, performed mostly on 
C. annuum, S. lycopersicum, and B. vulgaris seeds, 

have revealed that the ratio between 4C (G2) and 

2C (G
0
/G

1
) cells increases when the cell cycle is 

activated, which occurs at the early stages of seed 
development and during Phase II of germination (the 
phase that precedes radicle protrusion). In contrast, 
during seed maturation, when the cell cycle ceases, 
the proportion of G2 cells decreases, and in some 

species only G
0
/G

1
 cells are present in dry mature 

seeds (e.g. Cichorium endiva or Lactuca sativa). 
Therefore, the 4C/2C ratio (the proportion between 
the number of nuclei with 4C DNA and the number 
of nuclei with 2C DNA) has been recommended to 
seed producers as a helpful marker in establishing 
optimal seed harvest time and for monitoring 
the progress of seed priming/conditioning (post-

harvest hydration treatments of seeds to improve 

germination or seedling growth). This ratio has also 
been found to be a good indicator of deterioration 
and the extent of enhancement of deteriorated Lens 

culinaris seeds by matriconditioning (Sadowski 
and Sliwinska, 2007). In studies on the quality  
of G. max seeds harvested from nematode 

(Meloidogyne javanica)-infected mother plants, 

estimation of the 4C/2C ratio revealed that during 
germination the cell cycle was activated more slowly 
in these seeds than in those from uninfected plants 

(Forti et al., 2015). This confirmed the inhibitory 
effect of plant nematode infection on subsequent 
germination of the progeny. 

In the seeds of some species, in addition to 2C 
and 4C cells there occur those with a higher DNA 
content (endopolyploid). During development, 
endoreduplication occurs mostly in the endosperm, 

but also in the embryo (with different intensities 
in different tissues/organs, depending on the 
species). The most extensively studied by FCM 
is the endosperm of Z. mays (Dilkes et al., 2002; 
Dante et al., 2014, and references therein). In this 
species (and also in other cereals), high mitotic 
activity is observed at the beginning of endosperm 
development; however, at later stages, mitosis 
ceases and the number of nuclei undergoing 
endoreduplication greatly increases; the DNA 
content in some can reach 768C. The starchy 
endosperm cells of Z. mays subsequently undergo 
programmed cell death (PCD), and the DNA 
content cannot be measured by FCM because 

of the destruction of nuclei. A different pattern 
of endoreduplication occurs in C. sativus. The 
DNA content in endosperm cells of this species 

reaches its maximum, 96C, about three weeks 
after pollination, and then the proportion of cells 

of high ploidies gradually decreases (Rewers et al., 
2009). At harvest time, only 3C and 6C living cells 
are present, and those with a higher DNA content 
probably underwent PCD during seed development, 
like in Z. mays. In C. sativus embryos there is much 

lower endoreduplication (up to 16C) than in the 
endosperm. However, in some species belonging 

Figure 2. Histograms of relative DNA content in the nuclei of Arabidopsis thaliana young leaf (A) and hypocotyl (B); 
peaks correspond to the particular phases of mitotic cycle (A) or endoreduplication state (B)
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to the Fabaceae family, where the endosperm is 

totally resorbed during embryo development, the 
cotyledons become the major storage organs, and 
they contain large, highly endopolyploid cells (Pal 
et al., 2004; Rewers and Sliwinska, 2012). The 
ploidy of some cotyledon cells of Phaseolus vulgaris 

at harvest can reach 128C. Endoreduplication 
intensity in the Fabaceae cotyledons depends on 

their type (persistent, non-persistent, haustorial) and 

can mark seed maturity. In contrast to the highly 
polysomatic (possessing somatic cells of different 
ploidies, including endopolyploid ones) species of 
the Fabaceae family, during the development of 
seeds of the orchid, Phalaenopsis aphrodite subsp. 
formosana, the cells possess, almost exclusively, 2C 
or 4C DNA, with only a small proportion (0.4-3.5%) 
of 8C cells (Jean et al. 2011). 

During germination, two strategies seem to drive 
axis elongation and the protrusion of radicle through 
the seed coat. In polysomatic species, it is supposed 
to be endopolyploidization of cells (which coincides 

with their elongation; Sliwinska et al., 2009), and 
in non-polysomatic (possessing no endopolyploid 
cells) cell divisions. Indeed, during Phase II of 
germination, i.e. before radicle emergence from the 
seed, in most of the studied polysomatic species the 

proportion of endopolyploid cells increases, and 

the intensity of endoreduplication is different in 
different regions of the embryo axis (Rewers and 
Sliwinska, 2014). In species with epigeal seedling 
establishment (i.e. the cotyledons emerge above 
the ground following germination), such as P. 

vulgaris and C. sativus, endoreduplication during 
germination is highest in the transition zone (the 
region where the hypocotyl and radicle are joined), 
and in hypogeal species (i.e. the cotyledons remain 
below the ground after germination), e.g. P. sativum 

and L. culinaris, in the hypocotyl. For polysomatic 
species, the 4C/2C ratio is not recommended as  
a marker of seed maturity and germination/
priming; instead, the ∑>2C/2C ratio, which 
includes also endopolyploid cells, should be used. 
Another coefficient for establishing endopolyploidy, 
proposed by Barow and Meister (2003), is the 
cycle value, which indicates the mean number of 

endoreduplication cycles per nucleus.

Plant growth and development

Endopolyploidy usually coincides with an increase 
in cell size and is, therefore, typical of storage 
cells and those expressing high metabolic activity; 
it is species- and organ/tissue-specific (Tab. 3). It 
occurs during development of such organs as leaves, 

flowers, fruits, and roots. Barow and Meister (2003), 
studying endopolyploidization in different organs 
of 54 seed plant species, including horticultural 
ones, concluded that the major factor determining 
the intensity of endoreduplication is the taxonomic 

position of the species. However, life cycle, genome 
size, and organ type are also important. They also 
suggested that endopolyploidization is a means 
of growth acceleration of a plant species growing 
in niches where there is a requirement for fast 

development. It has been suggested that growth 
by endoreduplication is more economical than that 

involving mitotic divisions because it does not 
require cytoskeleton rearrangements, chromosome 
segregation, or disruption and re-synthesis of 
the nuclear envelope (Pirrello et al., 2014). Thus, 
controlling endoreduplication can be agro-
economically important. However, its functional 
role in plant growth and development is still vague, 
and FCM should be helpful in deciphering it.

An increase in endoreduplication during 
development is evident already in the young 
seedling. In B. oleracea, polysomaty was observed 

in the hypocotyl, cotyledons, and root as early as 

immediately after radicle protrusion, and during 
first leaf production the proportion of endopolyploid 
cells in these organs considerably increased, 
although not to the same extent in different organs 
(Kudo and Kimura, 2001a). FCM analysis of  
B. oleracea seedling leaves revealed that while in the 
youngest leaves only 2C and 4C cells were present, 
in mature leaves some cells of the midrib and 

petiole had undergone one endocycle and possessed 
8C DNA. Similarly, progressive endoreduplication 
was observed during seedling development of 
Allium fistulosum, Raphanus sativus, and Spinacia 

oleracea (Kudo and Kimura, 2002a; Kudo et al., 
2003, 2004).

For ornamental plants, the size of the flowers 
is a commercially-important trait. Agulló-Antón 
et al. (2013) showed a positive correlation between 
endopolyploidy, cell size and petal size of Dianthus 

and suggested that this could be used in breeding 
programmes aimed at obtaining cultivars with 
large flowers. Different parts of the flowers of  
a number of orchid species have been cyto-

metrically analyzed (Tab. 3). Since orchids are 
currently mostly propagated by tissue culture, they 
are exposed to somaclonal variation, which can 

result in morphological changes to their flowers. 
Analysing somaclonal variants of Phalaenopsis, 

Lee et al. (2016) found that the degree of 
endoreduplication in the petals and flower stalks 
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Table 3. Endopolyploidy in different organs/tissues of horticultural species as established by FCM

Genus/species Organ/tissue Highest 
DNA content 

Reference

Allium fistulosum Leaf 16C Kudo et al., 2003

Brassica oleracea Shoot tip
Leaf

Cotyledon

Hypocotyl
Petal
Sepal
Carpel

Root

4C
16C
16C
16C
32C
16C
8C

16C

Kudo and Kimura, 2001a, 2001b, 2002b

Capsicum annuum Leaf

Fruit

4C
256C

Ogawa et al., 2010; Olszewska et al., 2014

Cymbidium Leaf

Petal
Ovary
Pedicel
Stalk
Rhizome

4C
16C
8C

16C
16C
16C

Fukai et al., 2002

Delosperma cooperi Leaf

Internode
Petaloid staminodes
Sepal
Root

8C

8C

16C
16C
8C

Braun and Winkelmann, 2016

Dianthus Leaf

Petal
Sepal

32C
32C
32C

Agulló-Antón et al., 2013

Hylocereus undatus Flower

Fruit

16C
16C

De Menezes et al., 2016

Lampranthus Leaf

Cotyledon

Internode
Petaloid staminodes
Sepal
Root

16C
16C
16C
16C
16C
16C

Braun and Winkelmann, 2016

Malus × domestica Leaf

Fruit

4C
8C

Malladi and Hirst, 2010

Phalaenopsis Protocorm
Leaf

Petal
Flower stalk

16C
8C

16C
16C

Jean et al., 2011; Lee et al., 2016

Pisum sativum Cotyledon

Hypocotyl
Root
Pod wall

32C
16C
8C

16C

Lagunes-Espinoza et al., 2000; Rewers and 
Sliwinska, 2014

Portulaca grandiflora Leaf

Sepal
Petal
Filament

Anther

Stigma + style

64C
64C
32C
32C
16C
16C

Mishiba and Mii, 2000
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was higher in the variants than in control plants, 
and this corresponded with the diameter of the 

petal and the thickness of different organs, traits 
potentially desirable in orchid breeding. When 
applying FCM to analyse orchids, one must be 
aware, however, that in some Orchidaceae species 
partial endoreduplication occurs, which makes 
interpretation of the histograms challenging (Brown 
et al., 2017).

One of the best recognized endoreduplication 
patterns in a fruit is that of S. lycopersicum 

(Pirrello et al., 2014, and references therein). During 
development, pericarp cells undergo intensive 
endoreduplication, reaching as high as 512C DNA 
(Cheniclet et al., 2005). Studies of the fruits of 
20 S. lycopersicum lines displaying a wide fruit 
weight range revealed a strong positive correlation 
between endopolyploidy, cell size and fruit weight. 
Surprisingly, in the pericarps of all the studied lines, 
a similar cell layer number and cell size occurred at 

anthesis, which suggests that polyploidy-associated 
cell expansion is the mechanism determining the 

final fruit weight. Ogawa et al. (2010) performed 
a similar experiment on the fruits of 12 Capsicum 

genotypes that differed in size and weight. 
Endoreduplication up to 256C was found in the 
pericarp, and the number of endocycles correlated 

with pericarp thickness, fruit diameter and fresh 
weight. Endoreduplication also plays an important 
role in the development of C. sativus fruit (Fu et al., 
2010). The recognition of the controlling mechanism 
for fruit growth can be useful in plant breeding and 
our understanding of the establishment of fleshy 
fruit quality traits (Pirrello et al., 2014).

Studies have also been conducted on the 
inf luences of some environmental factors on 

endoreduplication. The importance of light in 
controlling endoreduplication intensity has been 
investigated the most thoroughly. Light, or its 
absence, appears to be a crucial factor for the 

regulation of endoreduplication intensity in the 
hypocotyl of polysomatic horticultural species 

such as R. sativus, C. sativus, S. lycopersicum, and 

S. oleracea; in dark-grown hypocotyls, enhanced 

Table 3 continued.

Genus/species Organ/tissue Highest 
DNA content

Reference

Raphanus sativus Shoot tip
Leaf

Cotyledon

Hypocotyl
Root

4C
8C

16C
32C
32C

Kudo and Kimura, 2002a

Solanum lycopersicum Sepal
Ovary
Fruit

32C
8C

512C

Cheniclet et al., 2005; Pirrello et al., 2014

Spathoglottis plicata Leaf

Root
8C

8C

Yang and Loh, 2004

Spinacia oleracea Leaf

Cotyledon

Hypocotyl
Root

64C
32C
32C
32C

Kudo et al., 2004

Vanda Leaf

Stem
Petal
Sepal
Pedicel
Aerial root

Terrestrial root

32C
2C
2C
2C
2C
16C
32C

Lim and Loh, 2003

Vanilla plantifolia Young leaf
Mature leaf

Stem
Seed

16E*

64E
64E
64E

Brown et al., 2017

*Due to partial endoreduplication, C-value was replaced by E-value according to endoreduplication state
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endopolyploidization accompanies their elongation 
(Amijima et al., 2014; Tanaka et al., 2016). In  
B. oleracea hypocotyls grown in darkness, about 
10% of cells underwent an additional endocycle 
(reaching 32C), while in light-grown hypocotyls, 
cells with such a high DNA content were not 
detected (Kudo and Mii, 2004). In contrast, in 
the cotyledons of R. sativus and C. sativus, which 

expanded more in light than in darkness, the 
proportion of endopolyploid cells was higher in 
the light-grown seedlings (Tanaka et al., 2016). 
Low temperature decreased the growth rate 
and the rate of transition from a lower to higher 
C-value during the development of flowers of two 
orchid species (Lee et al., 2007). However, the 
distribution of the cells with different ploidies in 
fully-developed flowers was similar regardless of 
the growth temperature, and the authors concluded 
that the longer growth period ‘compensated’ for 
the decreased endoreduplication transition rate at 

low temperature. Another stress growth condition, 
water deficit, inhibited both cell division and 

endoreduplication in developing endosperms of Z. 

mays kernels (Setter and Flannigan, 2001).

Effect of cytotoxic compounds/elements
Another application of FCM is studying the effect of 
different cytotoxic compounds, often demonstrating 
allelopathic or anticancer activity, on the cell cycle 

or induction of PCD. The common strategy is to 
treat root meristems of a model plant with an extract 

of a plant species showing such activity and then 
study its effect by combined FCM and microscopic 
analyses. Using this strategy, Sánchez-Moreiras et 
al. (2008) found that benzoxazolin-2(3H)-one, an 
allelopathic compound produced by Secale cereale, 

retarded the cell cycle in L. sativa root meristems 

by blocking the G2/M checkpoint. Similar effects 
on A. cepa root tips were induced by extracts of 

the medicinal plants Rhodiola rosea, Taxus baccata, 

and T. brevifolia (Majewska et al., 2000, 2003, 
2008). Roots of A. cepa were also used to determine 

the mode of action of cyanamide, an allelochemical 

produced by Vicia villosa (Soltys et al., 2011). This 
compound caused changes such as inhibition of the 
cell cycle and modifications to the arrangement of 
the cytoskeleton, which, in turn, decreased A. cepa 

root growth rate. In the cyanamide-treated roots of 
Z. mays, in addition to a reduction in the frequency 

of cell divisions, the proportion of endopolyploid 

cells increased (Soltys et al., 2014). Application of 
plant hormones (usually to in vitro cultures) can 

also influence the cell cycle and endoreduplication. 

Treatment of Doritaenopsis cell suspension with 

2,4-dichlorophenoxyacetic acid (2,4-D) caused an 
arrest of the cell cycle at G2 phase and increased the 

proportion of endopolyploid cells, especially those 

with 8C DNA (Mishiba et al., 2001). 
Anti-cancer activities of compounds produced 

by plants can also be studied by direct treatment 

of human/animal cells and FCM-based analysis of 
apoptosis and the cell cycle. Such studies have been 
performed on the anti-cancer effects of Scutellaria 

extracts using human malignant gliomas, breast 
carcinomas, and prostate cancer cells (Parajuli et al., 
2009), and the lung adenocarcinoma mouse cell line 
has been used to study the cytotoxicity of steroid 

saponins produced by Paris polophylla (Yan et al., 
2009). 

FCM makes it also possible to study the 
effects of heavy metals on the cell cycle and 

endoreduplication. Fusconi et al. (2006) treated  
P. sativum roots with cadmium (Cd) and observed 

a progressive reduction in 2C and an increase in 
4C nuclei, while the proportion of 8C nuclei was 
stable. This coincided with the blocking of mitosis 
and consequently an decrease in root growth.

CONCLUSIONS

FCM is broadly used for DNA content estimation 

in horticultural and medicinal species because it is 

fast, relatively cheap, accurate and convenient, and 

does not require any special preparation or a large 
amount of plant material. Even if a laboratory is 
not equipped with a flow cytometer, fresh material, 
which is the most suitable for analysis, can be sent 

by courier to an FCM laboratory and arrive within 

1-2 days. Dry material, which is also useful for DNA 
content estimation, can be sent over any distance 

and stored without concern for its deterioration; 

this makes FCM analysis easily available for any 
laboratory. The necessity to establish DNA content 
has become obvious not only to researchers but 

also to plant breeders and seed producers. The most 
common application of FCM is establishing genome 
size and ploidy, which is helpful in studying species 
taxonomy, evolution and ecology, as well as being 
invaluable for polyploid and hybrid breeding. It is 
also important when biotechnological methods, 
such as micropropagation, haploid production, 
somatic hybridization, and transformation are 

used. Somaclonal variation that occurs in tissue 
cultures causes genetic instability of the plant 
material produced in these artificial conditions, 
and FCM is one of the methods which can detect 

changes in DNA at any stage of culturing, even 
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very early ones. Since genome size can relate to 
environmental conditions, its determination can 

be informative in studies of global climate change. 
Not only ploidy, but also the distribution of cells 

with different ploidies in certain organs/tissues is 
important for broadening our knowledge of plant 
genetics and physiology. Monitoring the cell cycle 
and endoreduplication by FCM is used to follow 

seed development, maturation, and advancement 

of germination as well as plant growth. Knowledge 
on the control of endoreduplication intensity in 

horticultural plants can potentially be used to 

improve commercially important traits such as the 

size of flowers or fleshy fruits. In medicinal plants, 
FCM can be applied to increase the production 

of desirable bioactive compounds, including 
their production in bioreactors. This technology 
also provides a useful approach in the study of 

allelopathic or anticancer effects of cytotoxic 

compounds. With the development of new ways to 
make genome modifications, FCM will doubtless be 
of increasing importance in the coming years.
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