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Abstract Bacteria often live in biofilms, which are microbial communities surrounded by a
secreted extracellular matrix. Here, we demonstrate that hydrodynamic flow and matrix
organization interact to shape competitive dynamics in Pseudomonas aeruginosa biofilms.
Irrespective of initial frequency, in competition with matrix mutants, wild-type cells always increase
in relative abundance in planar microfluidic devices under simple flow regimes. By contrast, in
microenvironments with complex, irregular flow profiles — which are common in natural
environments — wild-type matrix-producing and isogenic non-producing strains can coexist. This
result stems from local obstruction of flow by wild-type matrix producers, which generates regions
of near-zero shear that allow matrix mutants to locally accumulate. Our findings connect the
evolutionary stability of matrix production with the hydrodynamics and spatial structure of the
surrounding environment, providing a potential explanation for the variation in biofilm matrix
secretion observed among bacteria in natural environments.

DOI: 10.7554/elife.21855.001

Introduction

In nature, bacteria predominantly exist in biofilms, which are surface-attached or free-floating com-
munities of cells held together by a secreted matrix (Hall-Stoodley et al., 2004; Nadell et al., 2009;
Flemming et al., 2016). The extracellular matrix defines biofilm structure, promotes cell-cell and
cell-surface adhesion, and confers resistance to chemical and physical insults (Flemming and Wing-
ender, 2010; Hobley et al., 2015; Teschler et al., 2015; Tseng et al., 2013; Doroshenko et al.,
2014; Landry et al., 2006). The matrix also plays a role in the social evolution and population
dynamics of biofilm-dwelling bacteria (Nadell et al., 2009; Steenackers et al., 2016; Nadell et al.,
2016; Ghoul and Mitri, 2016; Mitri et al., 2016, 2013, 2011). In some species, such as the soil bac-
terium Bacillus subtilis, matrix materials are readily shared among cells, leading to public goods
dilemmas in which non-producing strains can outcompete producing strains (van Gestel et al.,
2015, 2014; Kovdcs, 2014). In other species, including the pathogens Vibrio cholerae, Pseudomo-
nas fluorescens, and P. aeruginosa, matrix-secreting cell lineages privatize most matrix components,
allowing them to smother or laterally displace other cell lineages and, in so doing, outcompete non-
producing cells (Xavier and Foster, 2007, Nadell and Bassler, 2011; Nadell et al., 2015;
Kim et al., 2014c; Schluter et al., 2015; Irie et al., 2016; Drescher et al., 2016; Yan et al., 2016,
Madsen et al., 2015; Oliveira et al., 2015). Interestingly, not all wild and clinical isolates of these
species produce a biofilm matrix, despite the clear ecological and competitive benefits of possessing
a matrix (Mann and Wozniak, 2012; Yawata et al., 2014, Chowdhury et al., 2016). Theory and
experiments investigating bacterial colonies on agar show that constrained movement can promote
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elLife digest Bacteria often live together — attached to surfaces like river rocks, water pipes, the
lining of the gut and catheters — in communities called biofilms. These groups of bacteria are small-
scale ecosystems in which cells cooperate and compete with one another to obtain resources, such
as food and space to grow. Within a biofilm, a sticky glue-like substance called the matrix binds the
cells to each other and to the surface. Cells that make the matrix typically have an advantage over
those that do not because they can better resist the shearing forces experienced when liquid flows
over the surface. The matrix also helps cells to capture nutrients from the passing liquid.
Nevertheless, not all strains of bacteria make matrix, despite its advantages.

Because of where they can grow, biofilms are fundamentally important in the environment, in
industry and in infections. Resolving why some bacteria make matrix while others do not could
therefore allow scientists and engineers to re-design the surfaces involved in these settings to
discourage harmful biofilms or to encourage beneficial ones.

Nadell, Ricaurte et al. have now used a bacterium called Pseudomonas aeruginosa to explore
how the properties of the surface and the flowing liquid affect matrix production among cells in
biofilms. P. aeruginosa typically lives in soil and can cause infections in people, especially in hospital
patients and people who have weakened immune systems. Nadell, Ricaurte et al. studied normal P.
aeruginosa bacteria and a mutant strain that is unable to make matrix. The strains were labeled with
fluorescent markers and put into special chambers that simulated different environments. The
proportion of each strain was measured after three days of biofilm growth. When biofilms were
grown under flowing liquid in simple environments with flat surfaces, matrix producers always
outcompeted non-producers. However, the two strains coexisted in more complex and porous
environments, like those found in soil.

Nadell, Ricaurte et al. went on to show that the strains could co-exist because the matrix
producers made biofilms that created areas within the environment where the liquid flows very
slowly or not at all. In these regions, non-producing cells could compete successfully because
resistance to shearing forces is less important when flow is weak or absent, and so the non-
producing cells were not washed away. The results begin to explain why matrix production among
cells in environmental settings is diverse and highlight that the environment is important in the
evolution of bacterial biofilms.

DOI: 10.7554/elife.21855.002

coexistence of different strains and species (Levin, 1974; Levin and Paine, 1974; Durrett and
Levin, 1994, 1998; Kerr et al., 2002; Kim et al., 2008; Poltak and Cooper, 2011). Fitness trade-
offs between the benefits of being adhered to surfaces and the ability to disperse to new locations
can cause variability in matrix production (Nadell and Bassler, 2011; Yawata et al., 2014,
Levin, 1974; Cohen and Levin, 1991), but it is not well understood how selective forces within the
biofilm environment itself might drive the coexistence of strains that make matrix with strains that
do not. Here, we explore how selection for matrix production occurs within biofilms on different sur-
face geometries and under different flow regimes, including those that are relevant inside host
organisms and in abiotic environments such as soil.

The local hydrodynamics associated with natural environments can have dramatic effects on bio-
film matrix organization. This phenomenon has been particularly well established for P. aeruginosa, a
common soil bacterium (Green et al., 1974) and opportunistic pathogen that thrives in open
wounds (Fazli et al., 2009; Burmglle et al., 2010), on sub-epithelial medical devices
(Guaglianone et al., 2010), and in the lungs of cystic fibrosis patients (Harmsen et al., 2010;
Ciofu et al., 2013; Folkesson et al., 2012; Stacy et al., 2015; McNally et al., 2014). Under steady
laminar flow in simple microfluidic channels, P. aeruginosa forms biofilms with intermittent mush-
room-shaped tower structures (Harmsen et al., 2010; Friedman and Kolter, 2004; Miller et al.,
2012; Parsek and Tolker-Nielsen, 2008). Under irregular flow regimes in more complex environ-
ments, however, P. aeruginosa also produces sieve-like biofilm streamers that protrude into the lig-
uid phase above the substratum (Persat et al., 2015; Kim et al., 2014a, 2014b; Rusconi et al.,
2010). These streamers — whose structure depends on the secreted matrix — are proficient at
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catching cells, nutrients, and debris that pass by, leading to clogging and termination of local flow
(Drescher et al., 2013).

The spatial and temporal characteristics of flow thus combine to alter matrix morphology, which,
in turn, feeds back to alter local hydrodynamics and nutrient advection and diffusion (Nadell et al.,
2016; Hellweger et al., 2016; Stewart and Franklin, 2008). By modifying community structure and
solute transport in and around biofilms (Stewart, 2012), this feedback could have a significant influ-
ence on the evolutionary dynamics of matrix secretion in natural environments (Coyte et al., 2016).
Here, we study within-biofilm competition as a function of flow regime using strains of P. aeruginosa
PA14 that differ only in their production of Pel, a viscoelastic matrix polysaccharide that serves as
the primary structural element for biofilm and streamer formation (Friedman and Kolter, 2004;
Drescher et al., 2013; Chew et al., 2014; Jennings et al., 2015). Using a combination of fluid flow
visualization and population dynamics analyses, we reveal a novel interaction between hydrodynamic
conditions, biofilm architecture, and competition within bacterial communities.

Results/discussion

We performed competition experiments with wild type PA14 and an otherwise isogenic strain
deleted for pelA, which is required for synthesis of Pel (Franklin et al., 2011). We focused on Pel
because it is the key structural polysaccharide in PA14 biofilms, and it is necessary for streamer for-
mation under complex flow regimes. Deletion of pelA significantly impairs biofilm formation in
PA14, which does not naturally produce Psl, an additional matrix polysaccharide secreted by other
P. aeruginosa isolates (Colvin et al., 2012, 2011). Wild-type cells produced GFP, and ApelA mutants
produced mCherry. Experiments in shaken liquid culture using genetically identical wild-type cells
producing GFP or mCherry confirmed that fluorescent protein expression constructs had no measur-
able effect on growth rate (Figure 1—figure supplement 1). Our first goal was to compare the pop-
ulation dynamics of the wild-type and ApelA strains in typical planar microfluidic devices, which have
simple parabolic flow regimes, and in porous environments containing turns and corners, which have
irregular flow profiles and better reflect the packed soil environments that P. aeruginosa often occu-
pies (Green et al., 1974; Das and Mukherjee, 2007; Stover et al., 2000). To approximate the latter
environment, we used microfluidic chambers containing column obstacles. The size and spacing dis-
tributions of the column obstacles were specifically designed to simulate soil or sand (see Materials
and methods). Analogous methods have been used previously to study bacterial growth (Vos et al.,
2013) and the behavior of Caenorhabditis elegans (Lockery et al., 2008) in realistic environments
while maintaining accessibility to microscopy. In our setup, flow was maintained through these cham-
bers at rates comparable to those experienced by P. aeruginosa in a soil environment
(Heath, 1983).

The flow regime alters selection for matrix production in biofilms

Several approaches are available to study how competitive dynamics differ in particular flow environ-
ments. Most commonly, one would monitor biofilm co-cultures of wild-type and ApelA PA14 cells
over time until their strain compositions reached steady state. Performing such time-series experi-
ments was not possible here due to a combination of low-fluorescence output in the early phases of
biofilm growth coupled with phototoxicity incurred by cells during epifluorescence imaging. To cir-
cumvent this issue, we measured the change in frequency of wild-type and ApelA cells over a fixed
72 hr time period as a function of their initial ratio in both planar chambers and soil-mimicking cham-
bers containing column obstacles. Population composition was quantified in all cases using micros-
copy, as described in the Materials and methods section. From these measurements, we could infer
the final stable states of Pel-producing and non-producing cells as a function of surface topography
and flow conditions. This method is commonly used to evaluate the behavior of dynamical systems,
and it has been employed in a variety of related experimental applications (Nadell and Bassler,
2011; Nadell et al., 2015; Madsen et al., 2015; Chuang et al., 2009; Sanchez and Gore, 2013;
Drescher et al., 2014).

In planar chambers with simple parabolic flows, wild-type PA14 increased in relative abundance
regardless of initial population composition, indicating uniform positive selection for Pel secretion
(Figure 1A,B). This result is consistent with recent studies of V. cholerae and Pseudomonas spp.
demonstrating that — in these species — core structural polysaccharides of the secreted matrix cannot
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Figure 1. Wild-type P. aeruginosa PA14 outcompetes the ApelA mutant under simple flow conditions, but the two
strains coexist under complex flow conditions. (A) Wild-type and ApelA strains were co-cultured at a range of
initial frequencies in the simple planar (black data) or column-containing (blue data) microfluidic chambers. In both
cases, fresh minimal M9 medium with 0.5% glucose was introduced at flow rates adjusted to equalize the volume
of medium flowing through each chamber per unit time across all experiments. The diagonal gray line denotes the
maximum possible increase in wild-type frequency for a given initial condition. Each data point is an independent
biological replicate. (B) A maximum intensity projection (top-down view) of a confocal z-stack of wild type (green)
and ApelA (red) biofilms in simple flow chambers. (C) An epifluorescence micrograph (top-down view) of wild type
(green) and ApelA (red) biofilms after 72 hr growth in a flow chamber containing column obstacles to simulate a
porous environment with irregular flows. Images in (B) and (C) were taken from chambers in which the wild type
was inoculated at a frequency of 0.7.

DOI: 10.7554/elife.21855.003

The following source data and figure supplements are available for figure 1:

Source data 1. Change in WT frequency as a function of initial frequency in two flow conditions

DOI: 10.7554/¢elife.21855.004

Figure supplement 1. The maximum growth rates of P. aeruginosa PA14 wild type and ApelA cells in mixed liquid
culture.

DOI: 10.7554/¢elife.21855.005

Figure supplement 1—source data 1. Maximum liquid culture growth rates of study strains.

DOI: 10.7554/¢elife.21855.006

be readily exploited by non-producing mutants (Nadell and Bassler, 2011; Nadell et al., 2015;
Kim et al., 2014c; Schluter et al., 2015; Irie et al., 2016; Yan et al., 2016, Madsen et al., 2015).
Confocal microscopy revealed that Pel-producers mostly excluded non-Pel-producing cells from bio-
film clusters in planar chambers (Figure 2A,B), although some ApelA mutants resided on the periph-
ery of wild-type biofilms. The liquid effluent from these chambers contained an over-representation
of the ApelA mutant relative to wild type, consistent with the interpretation that ApelA strain was
displaced from the substratum over time (Figure 2C). When wild-type and ApelA cells competed in
microfluidic devices simulating porous microenvironments, by contrast, there was a pronounced shift
to negative frequency-dependent selection for Pel production (Figure 1A,C). Wild-type PA14 was
selectively favored at initial frequencies below ~0.6. Above this critical frequency, the ApelA mutant
was favored. From this result, we can infer that in this porous environment, ApelA null mutants can
grow and stably coexist with wild type Pel-producers.
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Figure 2. Matrix production confers a competitive advantage to wild-type P. aeruginosa PA14 in biofilms under simple flow conditions. (A) Absolute
abundances of wild-type and ApelA strains in monoculture and co-culture in planar microfluidic flow-chambers (bars denote means + S.D. for n = 3-6).
The two strains were inoculated alone (left two bars) or together at a 1:1 ratio (right two bars). (B) Single optical plane 3 um from the surface, and z-
projections at right and bottom respectively, of the wild-type (green) and ApelA (red) strains grown in co-culture for 48 hr after inoculation at a 1:1 ratio.
(C) Relative abundance of wild-type and ApelA strains in the liquid effluent of planar microfluidic devices (points denote means + S.D. for n = 3). Wild-
type and ApelA cells were combined at a 1:1 initial ratio and co-inoculated on the glass substratum of simple flow chambers. At 0, 24, and 48 hr, 5 uL of
effluent was collected from chamber outlets. Wild-type frequency was calculated within biofilms and within the liquid effluent for each time point.

DOI: 10.7554/eLife.21855.007

The following source data is available for figure 2:

Source data 1. Biofilm production of WT and Pel-deficient P. aeruginosa in mono-culture and co-culture; cell counts in chamber effluents.

DOI: 10.7554/eLife.21855.008

Wild-type P. aeruginosa obstructs porous environments, generating
low-shear regions that Pel-deficient mutants can occupy

Previous work has shown that in environments with flow and with corners, wild-type P. aeruginosa
produces Pel-dependent biofilm streamers that extrude from the surface into the passing liquid
(Kim et al., 2014a; Rusconi et al., 2010; Drescher et al., 2013). In our experiments, streamers were
produced by wild-type cells and could be readily detected via microscopy throughout column-con-
taining chambers, but not planar chambers. Streamers are known to catch cells and debris that pass
by (Drescher et al., 2013), and although ApelA cells could be found in the streamers in our experi-
ments, they were not abundant. Cell capture by streamers therefore cannot account for the
observed coexistence of the two strains (Figure 3—figure supplement 1). This result suggests that
streamers do indeed catch debris, consistent with prior studies (Kim et al., 2014b; Drescher et al.,
2013), but that in our system, ApelA cells are not present at high enough density in the passing lig-
uid phase to accumulate substantial population sizes by this mechanism.

Our microscopy-based observation of chambers containing column obstacles suggested that
wild-type biofilms gradually obstructed some of the regions located between columns over time.
We hypothesized that partial clogging could render those portions of the chambers more suitable
for growth of the ApelA strain, which was previously shown to be sensitive to removal by shear
(Colvin et al., 2012, 2011). This hypothesis predicts that ApelA cells should be found predominantly
in regions of the chamber that have been clogged by wild type biofilms. To test this prediction, we
repeated our co-culture competition experiment with wild-type and ApelA cells in chambers contain-
ing columns, and we measured the distribution of each strain as above. We next introduced fluores-
cent beads into the chambers by connecting new influent syringes to the inflow tubing. By tracking
the beads with high frame-rate microscopy, we could distinguish areas in which flow was present
from areas in which flow was absent or very low, and then we could superimpose this information
onto the spatial distributions of wild-type and ApelA mutant cells (Figure 3—figure supplement 2).

Wild-type biofilms accumulated intermittently, often with clusters of ApelA cells in close proxim-
ity. Importantly, and in support of our prediction, ApelA biofilm clusters occurred significantly more
often in regions in which flow was blocked by wild-type biofilms than in regions in which flow was
not interrupted (Figure 3A,B). As shown previously (Drescher et al., 2013), ApelA cells did not clog
chambers when grown in isolation, supporting the interpretation that ApelA accumulation relies on
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Figure 3. Pel-deficient mutants occupy locations protected from flow due to local clogging by wild-type P. aeruginosa biofilms. (A) Wild-type (green)
and ApelA (red) P. aeruginosa strain mixtures were inoculated into complex flow chambers with irregularly-spaced column obstacles. Biofilms were
imaged using confocal microscopy, after which fluorescent beads were flowed through the chamber. The presence or absence of flow was monitored
through averaging successive exposures of bead tracks (white lines are bead tracks; blue arrows highlight flow trajectories). (B) Analysis of co-
occurrence of flow and wild-type or ApelA cell growth at the end of 1:1 competition experiments in complex flow chambers with column obstacles, as
illustrated by the micrograph in (A). The occurrence of wild-type (gray) and ApelA (white) cell clusters are shown as a function of whether local flow has
been blocked or remained open after 72 hr of competition (bars denote means + S.E. for n = 3). These occurrence frequency data are normalized to
the total area of blocked versus open flow in the microfluidic devices, as determined by the presence or absence of fluorescent bead tracks. There is no
significant difference in wild type occurrence in regions in which flow is unobstructed and in regions in which flow is blocked (two-sample t = 0.995,
df = 4, p=0.376), but the ApelA strain is significantly more likely to occur in regions in which flow is blocked at a p<0.05 threshold with Bonferroni
correction for two pairwise comparisons (two-sample t = 3.60, df = 4, p=0.0227). (C) Biofilm growth of wild-type P. aeruginosa PA14 (gray) and the
ApelA mutant (white) in monoculture in planar flow chambers under different shear stress exposure treatments (bars denote means + S.D. for n = 5-10).
DOI: 10.7554/elife.21855.009

The following source data and figure supplements are available for figure 3:

Source data 1. Occurrence of WT and Pel-deficient P. aeruginosa in areas with flow blocked versus areas with flow open.

DOI: 10.7554/eLife.21855.010

Figure supplement 1. Streamer structures produced by wild-type P. aeruginosa PA14 (green) in microfluidic chambers with complex flow profiles do
not capture large numbers of co-cultured ApelA mutants (red) over 72 hr of biofilm growth (black circles are column obstacles).
DOI: 10.7554/eLife.21855.011

Figure supplement 2. Analysis procedure for correlating local flow and accumulation of ApelA and wild-type cells.

DOI: 10.7554/elife.21855.012

Figure supplement 3. Change in frequency of WT cells from a 1:1 starting population with ApelA with and without flow.

DOI: 10.7554/eLife.21855.013

Figure supplement 3—source data 1. Comparison of competition in simple chambers with or without flow.

DOI: 10.7554/elife.21855.014

and only occurs after clogging by the wild type. This result is consistent with prior indications that
Pel-producers have higher shear tolerance than Pel-deficient cells (Colvin et al., 2012, 2011), which
we confirmed in our system by growing each strain in isolation under varying shear stress in planar
chambers (Figure 3C). Further supporting our interpretation, the ApelA strain can outcompete the
wild type when the two are grown together in planar microfluidic chambers in the absence of flow
(Figure 3—figure supplement 3). This experiment approximates the clogged areas of complex flow
environments, and the results explain how - on spatial scales encompassing areas of high flow and
low or no flow - the wild-type and the ApelA strains can coexist.

Conclusions

Biofilm growth is ubiquitous in porous microenvironments and often causes clogging in natural and
industrial contexts, including soil beds and water filtration systems (Knowles et al., 2011). Here, we
have shown that the clogging process can dramatically influence population dynamics within
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growing biofilms by generating a feedback between hydrodynamic flow, biofilm spatial architecture,
and competition (Coyte et al., 2016). Our findings suggest that when P. aeruginosa wild type and
ApelA mutants experience irregular flow in heterogeneous environments, wild-type biofilm forma-
tion causes partial clogging, regionally reducing local flow speed. The lack of flow generates favor-
able conditions for the ApelA strain, whose biofilms would otherwise be removed by shear forces,
presumably enabling it to proliferate locally if sufficient nutrients for growth diffuse from other areas
of the chamber in which medium continues to flow (Bottero et al., 2013).

P. aeruginosa is notorious as an opportunistic pathogen of plants and animals, including humans
(Xavier, 2016). It also thrives outside of hosts, for example, in porous niches such as sall
(Fierer et al., 2007). Despite the well-documented ecological benefits of matrix secretion during
biofilm formation, environmental and clinical isolates of P. aeruginosa exhibit considerable variation
in their production of matrix components, including loss or overexpression of Pel (Mann and Woz-
niak, 2012; Chew et al., 2014). Our results offer an explanation for natural variation in the ability of
P. aeruginosa to produce extracellular matrix, particularly among bacteria in porous microhabitats:
the evolutionary stable states of extracellular matrix secretion vary with the topographical complexity
of the flow environment in which the bacteria reside.

Materials and methods

Strains

All strains are derivatives of Pseudomonas aeruginosa PA14 (RRID:WB_PA14). Wild-type PA14
strains constitutively producing fluorescent proteins (Drescher et al., 2013) were provided by Albert
Siryaporn (UC Irvine), and they harbor genes encoding either EGFP or mCherry under the control of
the Pa1/04/03 promoter in single copy on the chromosome (Choi and Schweizer, 2006). The ApelA
strain was constructed using the lambda red system modified for P. aeruginosa (Lesic and Rahme,
2008).

Liquid growth rate experiments

To determine maximum growth rates and the potential for fluorescent protein production to cause
fitness differences, bacterial strains were grown overnight in M9 minimal medium with 0.5% glucose
at 37°C. Overnight cultures were back-diluted into minimal M9 medium with 0.5% glucose at room
temperature and monitored until their optical densities at 600 nm were ~0.2, corresponding to loga-
rithmic phase. Cultures were back diluted again into minimal M9 medium with 0.5% glucose and
transferred to 96-well plates at room temperature. This experiment was repeated for four biological
replicates (different overnight inoculation cultures), each repeated for six technical replicates (differ-
ent wells within a 96-well plate). Measurements of culture optical density at 600 nm were taken once
per 10 min until saturation, corresponding to stationary phase. Matlab (Natick, MA) curve fitting soft-
ware was used to calculate the maximum growth rate of each strain (wild type [GFP]: 0.00716 h™",
wild type [mCherry]: 0.00733 h™", ApelA [mCherry]: 0.00842 h~"). These experiments confirmed that
the fluorescent protein markers had no measurable effect on growth rates and thus did not contrib-
ute to competitive outcomes in our experiments.

Microfluidics and competition experiments
Microfluidic devices consisting of poly(dimethylsiloxane) (PDMS) bonded to 36 mm x 60 mm glass
slides were constructed using standard soft photolithography techniques (Sia and Whitesides,
2003). We used planar microfluidic devices with no obstacles to simulate environments with simple
parabolic flow profiles, and we used devices with PDMS pillars interspersed throughout the chamber
volume to simulate environments with complex (i.e. irregular, non-parabolic) flow profiles. The size
and spatial distributions of these column obstacles were determined by taking a cross-section
through a simulated volume of packed beads mimicking a simple soil environment. Flow rates
through these two chamber types were adjusted to equalize the average initial flow velocities,
although the local flow velocity within each chamber varied as biofilms grew during experiments
(see main text).

For all competition experiments, bacterial strains were grown overnight. The following morning,
aliquots of the overnight cultures were added to Eppendorf (Hamburg, Germany) tubes, and their
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optical densities were equalized prior to preparation of defined mixtures of wild-type and ApelA
cells. 100 pL volumes of the wild-type strain alone, the ApelA strain alone, or mixtures of the two
strains (for competition experiments), were introduced into microfluidic chambers using 1 mL syrin-
ges and Cole-Parmer (Vernon Hills, IL) polytetrafluoroethylene tubing (inner diameter = 0.30 mm;
outer diameter = 0.76 mm). After 3 hr, fresh tubing connected to syringes containing fresh minimal
M9 medium with 0.5% glucose were inserted into the inlet channels. The syringes (3 mL BD Syringe,
27G; Becton, Dickinson and Co.; Franklin Lakes, NJ) were mounted onto high-precision syringe
pumps (Harvard Apparatus; Holliston, MA), which were used to tune flow speeds according to
empirical measurements of flow speeds in soil (Heath, 1983). In our experiments, the average flow
speed was 150-200 um/s, unless noted otherwise. In Figure 3C, to alter shear, we varied the aver-
age flow speed; shear was estimated using standard calculations for surface shear stress under fluid

flow: t(y) = a% = 22 \where 1 is the shear stress, y is the height above the surface (evaluated in

this case for y = 0), « is the dynamic viscosity of the fluid, and u is the fluid flow velocity field, calcu-
lated for a rectangular channel in terms of the pressure decrease Ap/L across the length L and height
H of the channel. The pressure decrease was calculated for our channel dimensions and flow rates
using previously published results (Fuerstman et al., 2007). Biofilms were grown at room tempera-
ture. It should be noted that microfluidic experiments in the obstacle-containing chambers experi-
ence a high failure rate, in which no biofilms appear to grow after the 72 hr period of the
experiment. No data could be extracted from such chambers, which were omitted from analysis.
This problem was overcome by performing the experiment at high replication. Sufficient data were
thus collected to populate the relevant panels in Figures 1 and 3 of the main text. In the case of
competition experiments, one replicate was defined as the output from one independently inocu-
lated microfluidic chamber (e.g. Figure 1A). For experiments in which biofilm growth was measured
as a function of flow-mediated shear stress (Figure 3C), one replicate was defined as the output
from one imaging location within a microfluidic chamber, with two to three locations per chamber
being sampled.

Design of soil-mimicking microfluidic chambers

To obtain spatial patterns of column obstacles that mimic soil or sand, we first generated a 3D
model of packed spheres. The centers of the spheres were positioned such that they had equal radii
of 1 (arbitrary units), in a close-packed arrangement. Soil grains, however, are not all the same size.
To include heterogeneity in sphere size in our model, we adjusted each sphere’s radius using uni-
formly distributed random numbers to generate a range of sphere radii varying from 0.4 to 1.0. For
a plane that is oblique to any of the symmetry planes defined by the centers of the spheres, we gen-
erated a cross-section through the 3D packed-sphere model. This cross-section of the spheres was
used to define the borders of the columns in our soil-mimicking microfluidic devices. To convert the
arbitrarily sized spheres from the 3D model to the actual sizes of physical columns in our microfluidic
chambers, we chose column radii that varied from 80 to 200 um, corresponding to particle sizes of
fine- and medium-grain sand.

Microscopy and image analysis

Mature biofilms were imaged using a Nikon (Tokyo, Japan) Ti-E inverted microscope via a widefield
epifluorescence light path (using a 10x objective) or a Borealis-modified Yokogawa CSU-X1
(Tokyo, Japan) spinning disk confocal scanner (using a 60x TIRF objective). A 488-nm laser line was
used to excite EGFP, and a 594-nm laser line was used to excite mCherry. Quantification of biofilm
composition was performed using Matlab and Nikon NIS Elements analysis software
(Drescher et al., 2014). Imaging of biofilms could only be performed once for each experiment, pre-
cluding time-series analyses, due to phototoxicity effects after multiple rounds of imaging. Phototox-
icity was a particularly notable issue here due to dimness of the fluorescent proteins in P.
aeruginosa, which made long exposures necessary to capture images of sufficient quality for later
analysis. For this reason, we opted for inferential population dynamics analysis as described in the
main text.
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Effluent measurements

To measure strain frequencies in the biofilm effluent of planar chambers (Figure 2C), 1:1 strain mix-
tures of wild-type and ApelA cells were prepared and inoculated into simple flow chambers accord-
ing to the procedure outlined above for competition experiments. At 0, 24, and 48 hr, 5 uL samples
were collected from the microfluidic chamber outlet tubing, mixed vigorously by vortex, and plated
onto agar in serial dilution. After overnight growth at 37°C, plates were imaged with an Image Quant
LAS 4000 (GE Healthcare Bio-Sciences; Pittsburgh, PA). Cy3 and Cy5 fluorescence settings were
used for EGFP and mCherry excitation, respectively. Image Quant TL Colony Counting software was
used to measure the relative abundance of each strain.

Flow tracking experiments

1:1 mixtures of the wild-type and the ApelA mutant were prepared and introduced into obstacle-
containing flow chambers according to the procedure described above. Minimal M9 medium with
0.5% glucose was introduced into the chambers for 72 hr as described above. The entire chamber
was then imaged using widefield epifluorescence microscopy to document the locations of wild-type
and ApelA cell clusters. Subsequently, the influent syringes were replaced with syringes containing
yellow-green fluorescent beads (sulfate-modified, diameter = 2 um; Invitrogen; Carlsbad, CA) at a
concentration of 0.3%, and bead suspensions were flowed into the microfluidic chambers. To deter-
mine the presence or absence of flow with respect to the spatial distributions of wild-type and ApelA
cells, and to obtain large images for statistics, the entire chamber was imaged with a 1 s exposure
time, over which traveling beads were captured as streaks. It should be noted that this experiment
also has a high failure rate due to the sensitivity of the microfluidic chambers to removal and re-
insertion of syringes, and required optimization to execute successfully. Custom Matlab code was
written to correlate the presence or absence of fluid flow with the accumulation of wild-type and
ApelA cells. In brief, the positions of the columns were first identified and used to divide the cham-
ber into triangular sampling areas using a network structure in which columns served as nodes and
straight lines between column centers served as edges. Within each sampling triangle, the area cov-
ered by columns was first removed, and subsequently, the averaged ApelA and wild-type fluores-
cence intensities in the remaining area were used to determine if a region had wild type and/or
ApelA accumulation. In parallel, each sampling area was scored for the presence of flow in the corre-
sponding bead tracking images (Figure 3—figure supplement 2).

Data display and statistical tests

In all cases where displayed, bars denote the mean values of the measurements taken, and with the
exception of Figure 3B and Figure 1—figure supplement 1, the error bars denote standard devia-
tions. In Figure 3B and Figure 1—figure supplement 1, error bars denote standard errors. In
Figure 3B, we report the results of a two-tailed t-test comparing the wild type occurrence frequency
in regions of soil-mimicking chambers where flow was obstructed, versus the wild type occurrence
frequency in regions where flow was unobstructed. A second t-test was performed to make the
same comparison for the ApelA cells. The p-values from these tests were evaluated against a critical
threshold of p<0.05 adjusted by Bonferroni correction for two pairwise comparisons. Two t-tests
were also performed on the data in Figure 1—figure supplement 1 measuring the maximum
growth rates of our strains in liquid culture.
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