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1 Introduction

Understanding the high Tc superconductivity has been one of the major motivations to
study strongly correlated systems. Therefore there have been huge activities for holographic
superconductivity [1–12] based on the gauge gravity duality [13–16]. The novel achievement
was to construct a new dynamical mechanism of the instability to give the U(1) symmetry
breaking from the dynamics of the scalar-vector-gravity system [1, 2]. Despite the similarity
of the abelian Higgs Model in flat space, holographic models need not use the Higgs potential.
Instead, it can rely on the horizon instability under cooling the system, leading to the
transition from a hairless to a hairy black hole where some of the charges are sent out to
the black hole exterior as a scalar field condensation.

After the original works [1, 2], which were for s-wave superconductivity, p-wave and
d-wav superconductivity were also studied using the vector and spin-2 tensor fields [17–21]
and the spectrum of the fermions under the presence of the hair was studied in [22] for the
s-wave and also in [20, 23, 24] for p- and d-waves.

However, to our surprise, the s-wave gap structure in the fermion spectrum under
the presence of the complex scalar condensation has not been shown clearly until today.
Authors of [22] constructed some of the most natural-looking interaction terms between the
fermion and complex scalar,

L = Φψ̄cΓψ, with Γ = 1, Γ5. (1.1)
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Such scalar-Majorana-mass interaction term is the most anticipated analog of the flat space
BCS theory. However, the resulting spectrum is very different: spectral function does not
have a clear gap and has high weights in the regime where one does not expect any.

In this paper, we reconsider the problem of constructing the fermion spectral function
with the s-wave gap in the presence of the complex scalar. We find that apart from the
interaction type mentioned above, two other terms can be considered as scalars, and one
of them generates the desired superconducting gap with expected features. These are
interactions of the type (1.1) but with

Γ = Γz, ΓzΓ5, (1.2)

which are vectors from the bulk point of view but classified as scalars from the boundary
view. It turns out that Γz gives the gap with the features expected in the superconductivity.

Another issue is to find a flow equation systematically. In the numerical computation
of the fermion spectrum, the most crucial source of the error comes from the boundary
condition at the black horizon, where the fluctuating spinor solutions are singular, forcing us
to impose the boundary condition of the horizon. To avoid the problem, one need to extend
the flow equation method [25], where the Green function itself is the variable and regular at
the horizon. Such regularity enables us to calculate the precise solution much shorter time.
However, incorrect flow equation seems to be an origin of the incorrect spectral shape.

We found that our spectral function gives the gap structure expected from the super-
conductivity. In detail, however, the correlation effect introduces a few differences. We
also studied the effect of the chemical potential and density and compared it with the BCS
theory. We found that the two theories are similar in the small chemical potential regime
but are very different in the high-density case. We suggest that this is due to the strong
correlation between the electrons.

2 Holographic superconductivity vs. BCS theory

The action of our model is given by

Stot = Sψ + Sint + Sbdy + Sg,A,Φ, (2.1)

Sψ =
∫
d4x
√
−g

[
iψ̄(ΓµDµ −m)ψ − iψ̄c(ΓµD∗µ −m)ψc

]
, (2.2)

Sint =
∫
d4x
√
−g

(
Φψ̄Γzψc + h.c.

)
, (2.3)

Sbdy = i

∫
d3x
√
−h(ψ̄ψ + ψ̄cψc), (2.4)

Sg,A,Φ =
∫
d4x
√
−g

(
R+ 6

L2 −
1
4F

2
µν − |DµΦ|2 −m2

Φ|Φ|2
)
, (2.5)

where gµν , Aµ and Φ are considered as the background fields. In this paper, we do not
consider the back reaction effects. Our main goal is to show that our model reproduces the
qualitative features of the fermion spectrum of BCS theory in the s-wave case. Therefore
we first want to ensure that our model is comparable to the BCS theory at the level
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of the degrees of freedom. The point in comparison is that half of the bulk degrees of
freedom in the holographic theory are projected out, and the residual physical ones are the
boundary behavior of the surviving ones. In terms of the two-component spinors ψ± with
ψT = (ψ+, ψ−), the interaction term can be written as

Sint =
∫
d4x

√
−g̃

[
Φ∗ψT−(iσ2)ψ+ + Φψ†+(−iσ2)ψ∗− + h.c.

]
, (2.6)

where ψc = ψ∗ and
√
−g̃ = √gxxgyy. The first two terms of Sint can be interpreted as the

source term and its hermitian conjugate as the response term; it will be seen later. Since
the boundary degrees of freedom correspond to source parts, we request ψ+, ψ

∗
− to match

the fermion action of BCS theory. We introduce the analog of the Nambu-Gork’ov spinor
Ψ = (ψ+, ψ

∗
−) to rewrite the action as

Sint =
∫
d4x

√
−g̃

[
Ψ†
(

0 −Φiσ2
Φ∗iσ2 0

)
Ψ + h.c.

]
. (2.7)

Furthermore, if we introduce the c↑↓ as the components of ψ+, ψ
∗
−, i.e,

ψ+ = (c↑(z, ω, k), c↓(z, ω, k))T ,
ψ∗− = (c∗↑(z,−ω,−k), c∗↓(z,−ω,−k))T , (2.8)

the interaction term can be written in terms of the components as follows.

Sint =
∫
dzd3k

√
−g̃[Φ(−c∗↑(z, ω, k)c∗↓(z,−ω,−k) + c∗↓(z, ω, k)c∗↑(z,−ω,−k))

+ Φ∗c(c↑(z,−ω,−k)c↓(z, ω, k)− c↓(z,−ω,−k)c↑(z, ω, k))] (2.9)

If we compare this with the action of the BCS theory [22]

S[c] =
∫
d3k[c†α(ω, k)(iω − εk)cα(ω, k)−∆(k)c†↑(ω, k)c†↓(−ω,−k)

−∆∗(k)c↑(ω, k)c↓(−ω,−k)], (2.10)

we find that with the correspondence

cα(z, ω, k)↔ cα(ω, k), 2Φ(z, k)↔ ∆(k), (2.11)

our system match with BCS theory at the level of degrees of freedom. Here α =↑, ↓ are
spin indices and ∆ is the superconducting order parameter and we used the anti-commute
property of c(ω, k).

3 Flow equation

In this section we develop the flow equation which is our main method to discuss the
detailed gap structure.
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3.1 Dirac equation

Gamma matrices and the bosonic fields are given by

Γt = σ1 ⊗ iσ2, Γx = σ1 ⊗ σ1, Γy = σ1 ⊗ σ3, Γz = σ3 ⊗ σ0, Γ5 = σ2 ⊗ σ0, (3.1)

ds2 = −f(z)χ(z)
z2 dt2 + dx2 + dy2

z2 + dz2

z2f(z) , Aµ = (At(z), 0, 0, 0), Φ = Φ(z), (3.2)

where underlined indices represent tangent space indices. In our Γ matrix representation,
the charge conjugation operator is C = 1K, where K is the complex conjugation. Now we
can write the Dirac equation as follows.

(ΓµDµ −m)ψ − iΦΓzψc = 0, (3.3)

where Dµ = ∂µ + 1
4ωνλ,µΓνλ − iqAµ, ωνλ,µ is the spin connection. Substituting

ψ = (−ggzz)−1/4e−iωt+ikxx+ikyyζ(z),

we can get simplified Dirac equation [25]:[
Γz∂z − i

(
(ω + qAt)
f(z)

√
χ(z)

Γt − 1√
f(z)

(kxΓx + kyΓy)
)
− m

z
√
f(z)

]
ζ − iΦΓzζc = 0. (3.4)

The charge conjugation of this equation is given by[
Γz∂z + i

(
(ω − qAt)
f(z)

√
χ(z)

Γt − 1√
f(z)

(kxΓx + kyΓy)
)
− m

z
√
f(z)

]
ζc + iΦ∗Γzζ = 0. (3.5)

3.2 Determining source and condensation

For two-component spinor A,B, we introduce a notation (A;B) =
(
A

B

)
, so that 4-

component spinor ψ =
(
ψ+
ψ−

)
can be written as ψ = (ψ+;ψ−).

To see which components are the source, we need to investigate the variation of the
total action. The variation of the bulk action is

δSbulk = EOM + i

∫
d3x(ζ̄Γzδζ − δζ̄Γzζ − ζ̄cΓzδζc + δζ̄cΓzζc), (3.6)

while the variation of boundary action is

δSbdy = i

∫
d3x(δζ̄ζ + ζ̄δζ + δζ̄cζc + ζ̄cδζc). (3.7)

Adding (3.6) and (3.7) and expressing the result in terms of the two-component spinors,

δSbulk + δSbdy = 2i
∫
d3x

(
− ζ†−σ1δζ+ + ζ†c+σ1δζc−

)
+ h.c, (3.8)

where ζ = (ζ+; ζ−) and ζc = (ζc+; ζc−). Now we see that we should choose (ζ+; ζc−) to
be the source whose values are fixed on the AdS boundary to make the variation of the
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total action zero. This source definition is equivalent to that of Nambu-Gork’ov spinor in
eq. (2.7). While to find the condensation, we only consider the boundary action. Because
the contribution of the bulk action to the effective action is zero due to the equation
of motion.

Seff = Sbdy = i

∫
d3x
√
−h(ψ̄ψ + ψ̄cψc) = i

∫
d3x(ζ̄ζ + ζ̄cζc)

=
∫
d3xζ̄−ζ+ + ζ̄c+ζc− + h.c, (3.9)

where ζ̄− = ζ−
†γt with γt = −σ2. From this, we can choose (ζ−; ζc+) as the condensation

which is the conjugate momentum of the source (ζ+; ζc−).

3.3 Derivation of the flow equation

We define 4-components spinor ξ(S) and ξ(C) by the ordering of the source and condensation:

ξ(S) = (ζ+; ζ̃∗−), ξ(C) = (ζ−, ζ̃∗+). (3.10)

Since we introduced ζc as the complex conjugation of ζ̃, which is a copy of ζ, ζ̃ should be
treated as an independent field. If we rearrange (3.4)–(3.5), the two Dirac equations can be
written as

∂zξ
(S) + M1ξ

(S) + M2ξ
(C) = 0, (3.11)

∂zξ
(C) + M3ξ

(C) + M4ξ
(S) = 0, (3.12)

where

M1 = − m

z
√
f(z)

(
σ0 0
0 −σ0

)
, M3 = −M1, (3.13)

M2 =
(

N(q) P
P† N(−q)

)
, M4 =

(
−N(q) P

P† −N(−q)

)
,

N(q) = i√
f(z)

 ky − (ω+qAt)√
f(z)χ(z)

+ kx
(ω+qAt)√
f(z)χ(z)

+ kx −ky

 , P =
(
−iΦ(z) 0

0 −iΦ(z)

)
. (3.14)

Because ξ(S) and ξ(C) consist of 4 components, there are 4-independent solutions. We can
express a general solution as a combination of these with coefficients ci, i = 1, 2, 3, 4. For
example, if we denote 4 solutions for ξ(S) by ξ(S,i), i = 1, · · · , 4, then arbitrary ξ(S) can be
expressed as

ξ(S) =
4∑
i=1

ciξ
(S,i) = S(z)c, (3.15)

where S(z) is the 4 by 4 matrix whose i-th column is given by ξ(S,i), and c is a column
vector whose i-th component is ci. Similar expression is available for ξ(C). Furthermore,
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from (3.11) and (3.12), ξ(C) can be expressed in terms of ξ(S), therefore we should use the
same ci for ξ(C) also. Namely,

ξ(S) = S(z)c, ξ(C) = C(z)c. (3.16)

Substituting these to (3.11) and (3.12), we find:

∂zS(z) + M1S(z) + M2C(z) = 0, (3.17)
∂zC(z) + M3C(z) + M4S(z) = 0, (3.18)

because c is an arbitrary vector in the solution space. Now, we consider the near boundary
behavior of ξ(S) and ξ(C) from those of ζ = (ζ+, ζ−) which are given by

ζ+ = Azm +Bz1−m, ζ− = Dz−m + Cz1+m, (3.19)

where A, B, C, and D are two-component spinors. If |m| < 1/2, A,D terms are leading
ones. Therefore

ζ ' (Azm;Dz−m), ζc ' (Ã∗zm; D̃∗z−m). (3.20)

From eq. (3.10),

ξ(S) ' (Azm; D̃∗z−m), ξ(C) ' (Dz−m; Ã∗zm). (3.21)

Therefore, if we define

U(z) = diag(zm, zm, z−m, z−m), (3.22)

then the near boundary behavior of ξ(S) and ξ(C) can be written as

ξ(S) = S(z)c ' U(z)S0c, (3.23)

ξ(C) = C(z)c ' U(z)−1C0c, (3.24)

where S0 is a matrix whose i-th column is given by the coefficients of the leading terms in
ξ(S,i), namely, (A, D̃∗). Similar description works for C0. Defining

J = S0c, C = C0c, (3.25)

we get

ξ(S) ' U(z)J , ξ(C) ' U(z)−1C. (3.26)

It is easy to see that

J = (A, D̃∗), C = (D, Ã∗). (3.27)

Since the contribution of the bulk action to the effective action is zero due to the equation
of motion, as we mentioned above, the Green function comes from the boundary action (2.4)
only. Then, the boundary action can be written in terms of ξ(S) and ξ(C):

Seff = i

∫
z=ε

d3x(ζ̄ζ + ζ̄cζc)

=
∫
z=ε

d3xξ(S)†Γ̃ξ(C) + h.c =
∫
d3xJ †Γ̃C + h.c, (3.28)
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where Γ̃ = σ0 ⊗ γt. From eq. (3.25)

C = C0S
−1
0 J , (3.29)

so that (3.28) becomes

Seff =
∫
d3xJ †G0J + h.c, (3.30)

where

G0 = Γ̃C0S
−1
0 . (3.31)

The above expression of the action identifies G0 as the desired retarded Green function GR.
We now find the equation satisfied by G(z). If we substitute equations (3.17)–(3.18) into
the definition of Green function, G0 = Γ̃C0S

−1
0 , and take a derivative with respect to z,

∂zG(z) = ∂z
(
Γ̃C(z)S(z)−1

)
= Γ̃

(
∂zC(z)S(z)−1 − CS(z)−1∂zS(z)S(z)−1

)
= −

(
Γ̃M3Γ̃G(z) + Γ̃M4 − G(z)M1 − G(z)M2Γ̃G(z)

)
. (3.32)

In the third line, we used (3.17)–(3.18). Then we have

∂zG(z) + [M1,G(z)]− G(z)M2Γ̃G(z) + Γ̃M4 = 0, (3.33)

the desired flow equation or Riccati equation for our case. Now we express the boundary
Green function G0 in terms of the bulk quantity G(z) near the AdS boundary. If we
substitute the expressions (3.23)–(3.24) into the definition of Green function,

G(z) = Γ̃C(z)S(z)−1

' Γ̃U(z)−1C0S
−1
0 U(z)−1

= U(z)−1G0U(z)−1. (3.34)

In the third line, we use Γ̃2 = 14×4 and Γ̃U(z)−1Γ̃ = U(z)−1. Finally, the boundary Green
function G0 is given by

G0 = lim
z→0

U(z)G(z)U(z). (3.35)

3.4 Horizon value of the Green function

Here we motivate the use of the flow equation by showing the regularity of the G(z) at the
horizon. Let’s take an ansatz for the near horizon behavior, ζi = (1− z/zH)aζi0, where ζi0
are constants. If we series expand the Dirac equation near the horizon, we can express the
leading terms as follows:

(1− z/zH)a−
3
4
[
u0 + (1− z/zH)

1
2 u 1

2
+ (1− z/zH)u1

]
= 0, (3.36)

u0 = 1
33/4


−3aζ10 − iζ40ωzH
−3aζ30 + iζ20ωzH
3aζ20 − iζ30ωzH
3aζ40 + iζ10ωzH

 , (3.37)
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where u 1
2
and u1 are constant vectors. To make a left-hand side zero, we should make

the u0 = 0.Then, we can get a’s values and the relation between ζi0’s. There are two sets
of solutions:

a = ± iωzH3 , ζ30 = ±ζ20, and ζ40 = ∓ζ10, (3.38)

which can be recast as

ζ =


(1− z/zH)−

iωzH
3 (ζ10, ζ20,−ζ20, ζ10)T , for the infalling,

(1− z/zH)
iωzH

3 (ζ10, ζ20, ζ20,−ζ10)T , for the outgoing.
(3.39)

Notice that if ζ has the infalling condition, ζc automatically takes the outgoing condition.
From these conditions, we can construct the horizon behavior of ξ(S) and ξ(C):

ξ(S) = (Zζ10, Zζ20, Z
∗ζ̃∗20, Z

∗ζ̃∗10)T , (3.40)

ξ(C) = (−Zζ20, Zζ10,−Z∗ζ̃∗10, Z
∗ζ̃∗20)T , (3.41)

where Z = (1− z/zH)−
iwzH

3 . Then by choosing ζi0 and ζ̃∗i0 appropriately,

S(z) '


Z Z Z Z

Z −Z Z Z

Z∗ Z∗ −Z∗ Z∗

Z∗ Z∗ Z∗ −Z∗

 , C(z) '


−Z Z −Z −Z
Z Z Z Z

−Z∗ −Z∗ −Z∗ −Z∗

Z∗ Z∗ −Z∗ Z∗

 . (3.42)

Using Z∗ = Z−1, the horizon value of the matrix Green function is given by

G(z) = Γ̃C(z)S(z)−1 = i14×4, (3.43)

which is rather surprising: G(z) is constant near the horizon while S(z) and C(z) are singular
at z = zH . This result is significant in a numerical calculation and is the main reason we
want to have the flow equations.

4 Spectral density

We now present our result of numerical calculations and then provide an exact result to see
some of the analytic details.

4.1 Comparison between backreaction and probe limit

In this section, we compare the results of backreaction and the proble limit. First, we
mention the method of the backreacted system. To solve the background equations, we
write equations of motion as follows:

Φ′′ +
(2f ′χ+ fχ′

2fχ − 2
z

)
Φ′ +

(
Q2A2

t

f2χ
+ 2
z2f

)
Φ = 0, (4.1)

A′′t −
χ′

2χA
′
t −

2Q2Φ2

z2f
= 0, (4.2)
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χ′ + zΦ′2χ+ Q2zA2
tΦ2

f2 = 0, (4.3)

f ′ +
(
χ′

2χ −
3
z

)
f − z3A′2t

4χ + Φ2

z
+ 3
z

= 0, (4.4)

where m2
Φ = −2 and Q is charge of the scalar field. And we use a shooting method with

horizon behaviors up to the fifth order.

(At (z) ,Φ(z), f(z), χ(z) ) '
5∑
i=0

(Ati,Φi, fi, χi)
(

1− z

zH

)i
. (4.5)

One can find relations among coefficient (Ati,Φi, fi, χi) in terms of (At1,Φ0, χ0, zH) by
putting again to the above equations (4.1)–(4.4). On the other hand, asymptotic behavior
near the boundary is given by

At(z) ' µ− ρz, (4.6)
Φ(z) ' Φ+z + 〈O〉z2, (4.7)

where ρ is a charge density, Φ+ is a scalar source and 〈O〉 is a scalar codensation. Now,
we have two 2nd-order ODE and two 1st-order ODE. It means that we need six boundary
conditions whose values are written as

At(zH) = 0, f(zH) = 0, T = control parameter,

µ = control parameter, χ(0) = 1, Φ+ = 0. (4.8)

Now, we have all ingredients to solve the bosonic equations. So, we summarize the process
of getting the backreacted solution and finish this section. Input a desired (T, µ) = (T0, µ0)
value and define hyper-plane which is parameterized by (At1,Φ0, χ0, zH). Then, one can
find the solution of (At1,Φ0, χ0, zH), which satisfies (T, µ) = (T0, µ0). From the calculated
value of (At1,Φ0, χ0, zH), one can get a configuration of (At(z),Φ(z), f(z), χ(z)).

For probe limit, we can take two metric solutions, SAdS(Schwarzschild-AdS) and
RN-AdS. However, the proper probe limit for holographic superconductors is SAdS [26].
Nevertheless, we show the result of RN-AdS for the toy model. We set the same temperature,
chemical potential, and scalar condensation for consistency. The boson configuration and
spectral density are shown in figure 1. Now we discuss the difference between probe limit
and back reacted solution. From the boson configuration of figure 1, one can notice that
the slope of At(z)(blue curve) near the boundary is higher in (c) than those of (a) and (b).
It means the charge density is higher than the probe limits and it is reflected in spectral
density(SD) (d,e,f). Comparing SD’s, we also see that 1(e) is fuzzier than (d). We suggest
that the reason is related to the size of the horizon radius. Small horizon radius means larger
black hole size. And the effect of black hole is the scrambling system. Both temperature
and density increases the black hole radius as one can see from

rH = 1/zH = 4πT
3 for Schwarzschild-AdS, (4.9)

rH = 1/zH = 4πT +
√

16π2T 2 + 3µ2

6 for RN-AdS. (4.10)

It is natural that the information scrambling power is higher in larger size black hole so
that such black hole should have a fuzzier spectrum.
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(a) AdS-Schwarzschild (b) RN-AdS (c) Backreacted solution

(d) AdS-Schwarzschild (e) RN-AdS (f) Backreacted solution

Figure 1. Background boson fields and Spectral Density(SD). The red vertical line of (a), (b), and
(c) means the position of the horizon. We used T = 0.05, µ = 1 and 〈O〉 = 1.51.

4.2 The dependence of the gap on the chemical potential µ

To understand the effect of the chemical potential, we compare our model with a standard
mean-field model of superconductivity [27]. The Hamiltonian of the BCS theory model is
also that of the action (2.9):

H =
∑
kσ

εkc
†
kσckσ +

∑
k

[∆∗c−k↓ck↑ + ∆c†k↑c
†
−k↓], (4.11)

where εk = ~2k2

2m − µ. The energy eigenvalues of this model are given by

E = ±

√
(~

2k2

2m − µ)2 + |∆|2, (4.12)

which clearly shows particle-hole symmetry as well as the role of the condensation ∆ in
gapping the fermion spectrum. Particle and hole bands cross each other, and hybridization
gives the avoided crossing, which also generates the gap simultaneously. See the figure 2(a).
As we can see in the figure 2(b), there are two effects of chemical potential. The first one is
to create two minimum(maximum) in the particle(hole) spectrum. This is a consequence
of the downshift of the particle bands and upshift of the hole bands to cross each other,
followed by the hybridization of two bands to avoid the crossing. The same effect appears
in the BCS mean field theory. The second effect of µ is to make the spectrum fuzzier,
which was understood in the previous section due to the increase of black hole radius by
the charge density. Notice that the fuzziness coming from the density effect is a rule not a
accidental, and this is a characteristic feature of a strongly coupled and entangled system.
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(a) BCS model (b) Holographic model

Figure 2. Fermion gap generation in superconductor. (a) BCS model with spectrum given in
eq. (4.12). (b) Holographic model with T = 0.05 and µ = 1.

4.3 A solvable model of superconductivity

Here, instead of the coupling betweeb the fermion and the scalar field, we consider the
case where Γz comes with a constant ∆ which is analogous to the mass term in flat space.
However, the usual bulk mass in AdS does not play the role of the gap creation, while
it can do here. The analytic Green’s function for such coupling is available at the zero
temperature and for the zero bulk mass. The action is given by

Sint =
∫
d4x
√
−g

(
∆ψ̄Γzψc + h.c.

)
. (4.13)

Notice that Γz comes with the vielbein, Γz = zf(z)Γz, so that this term is not the bulk
fermion mass. Here we present only the result leaving the details in the appendix. The
result is given by

GR(ω, kx, ky) = 1√
k2 + |∆|2 − ω2


ω + kx −ky 0 ∆
−ky w − kx −∆ 0

0 −∆∗ ω + kx −ky
∆∗ 0 −ky ω − kx

 , (4.14)

where GR = G0 and k2 = k2
x + k2

y. Notice that the structure of (4.14) is similar to that of
the Quantum Field Theory(QFT) [27]. Upper and lower block diagonal matrices represent
particle and hole’s Green function. And off-diagonal block matrices represent the pairing
condensation parts that result in the gap of the fermion Green function. By diagonalizing
it, we can get the quasi-particle Green function.

G̃R(ω, kx, ky) = diag(G+, G+, G−, G−), (4.15)

G+ = ω +
√
k2 + |∆|2√

k2 + |∆|2 − ω2 , (4.16)

G− = ω −
√
k2 + |∆|2√

k2 + |∆|2 − ω2 . (4.17)

Now, we can draw a spectral density (SD) using the definition ρ = ImGR. The result is
shown in figure 3. Now, let’s focus on comparing between Holographic and QFT calculations.
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(a) SD of TrG
15pt

(b) SD of TrG at k = 0 line

Figure 3. SD with ∆ = 1. (a) is a trace of Green’s function and (b) is a it’s k = 0 line.

(a) µ=0, ∆0=1 (b) µ=1, ∆0=1

Figure 4. Spectral density for Fermion coupled with ∆Γz. We used T = 0.01 and q = 1.

TrGHolo
R = 4ω√

k2 + ∆2 − ω2
, (4.18)

TrGQFT
R = 2ω

ω2 − k2
x − k2

y − |∆|2
. (4.19)

Notice that (4.18) is holographic result, while (4.19) is calculated by QFT [27].
Finally, if we consider the case that both At = µ(1− z/zH) and ∆ exist, we can see

the effect of the chemical potential, shown in figure 4 by numerical method.

4.4 Comparing the spectra between the four scalar type interactions

In the paper [28], we classified the interaction types according to the Γ matrix in the
interaction term Φψ̄Γψ. There can be four classes of scalar type: i1,Γ5,Γz, and Γ5z. It
turns out that i1,Γ5, give gaps, while the others do not. For superconducting theories the
interaction term should be of the Majorana coupling type, yet, we have the four scalar
types too:

Φ∗ψ̄cΓψ + h.c, Γ = i1,Γ5,Γz,Γ5z. (4.20)

However, to our surprise, neither 1 nor Γ5 type interaction showed the gap in this case. See
figure 5. Instead, Γz shows the superconducting gap in the fermion spectrum for Majorana
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(a) Probe i1 (b) Probe Γ5

(c) Backreacted i1 (d) Backreacted Γ5

Figure 5. SD for Γ = i1 (a) and (c), and for Γ5 (b) and (d). Any figure from (a) to (d) does not
give the Superconducting gap. Like the Γz, probe limit and backreacted results do not show much
difference. We used T = 0.05, µ = 1 and 〈O〉 = 1.51.

mass type interactions. Therefore, this should be our choice of interaction for the theory of
superconductivity. This is the main achievement of this paper from the physical aspect.
Notice also that spectra in figure 5 are somewhat different from the results of [22].

5 Discussion

In this paper, we reconsidered the fermion spectral function in the presence of the Cooper
pair condensation and established the results consistent with the expectations in the s-
wave superconducting gap for the first time. We also found that the result of our model
is similar to that of the BCS theory in small chemical potential, but very different in
higher density cases. We suggested that this is due to the strong correlation between the
electrons: one should be reminded that, for a weakly interacting and weakly entangled
system, increasing density increases the kinetic energy by the uncertainty principle so that
the system becomes a more weakly interacting system because the effective coupling is the
ratio of the potential and kinetic energy, i.e., geff = V/K. However, for a highly entangled
system where the macroscopic number of particles are entangled, we suspect that the
Kinetic energy seems to be frozen, as in the case of the Mössbauer effect. Consequently,
the effective coupling increases so that one particle spectrum loses its particle character
and gives the fuzzy property.
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Finally, we mention a few future directions. Based on figure 1 and 5, we will extend
the interaction type to the 16 fermion bilinears like the paper [29]. Extension to the p and
d-wave superconductor will be interesting to draw a phase diagram whose shape is similar
to the cuprate case. It would also be interesting to combine it with a flat band system and
investigate its geometric properties.

A Derivation of analytic Green function

Under the approximations described in section (4.3), the flow equation is given by

∂zG(z)− G(z)M2Γ̃G(z) + Γ̃M4 = 0, (A.1)

with M2 =
(

N(0) P
P† N(0)

)
, M4 =

(
−N(0) P

P† −N(0)

)
,

N(q) = i

(
ky −ω + kx

ω + kx −ky

)
, P = −i

(
∆ 0
0 ∆

)
. (A.2)

Now, let’s take the following ansatz:

G(z) =
(

A(z) B(z)
B†(z) A(z)

)
, A = G(z)

(
a11 a12
a21 a22

)
, B = F(z)

(
0 a14
a23 0

)
, (A.3)

where each aij is a complex constant. Then, we can get ten independent differential
equations expressed by G(z) and F(z):

G′(z) + a11(a12 + a21)ky + a2
11(−kx + ω) + a12a21(kx + ω)

a11
G(z)2

−Re(a14∆∗)G(z)F(z) + |a14|2(kx + ω)
a11

F(z)2 + kx + ω

a11
= 0, (A.4)

G′(z) + (a2
12 + a11a22)ky + a11a12(−kx + ω) + a12a22(kx + ω)

a12
G(z)2

+ (a∗23∆− a14∆∗)G(z)F(z) + a14a
∗
23ky

a12
F(z)2 − ky

a12
= 0, (A.5)

G′(z) + (a2
21 + a11a22)ky + a11a21(−kx + ω) + a21a22(kx + ω)

a21
G(z)2

+ (a23∆∗ − a∗14∆)G(z)F(z) + a23a
∗
14ky

a21
F(z)2 − ky

a21
= 0, (A.6)

G′(z) + a22(a12 + a21)ky + a2
22(kx + ω) + a12a21(−kx + ω)

a22
G(z)2

+Re(a23∆∗)G(z)F(z) + |a23|2(−kx + ω)
a22

F(z)2 + −kx + ω

a22
= 0, (A.7)

G′(z) + a11(a12 + a21)ky + a2
11(−kx + ω) + a12a21(kx + ω)

a11
G(z)2

+Re(a23∆∗)G(z)F(z) + |a23|2(kx + ω)
a11

F(z)2 + kx + ω

a11
= 0, (A.8)
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G′(z) + a22(a12 + a21)ky + a2
22(kx + ω) + a12a21(−kx + ω)

a22
G(z)2

−Re(a14∆∗)G(z)F(z) + |a14|2(−kx + ω)
a22

F(z)2 + −kx + ω

a22
= 0, (A.9)

F ′(z) + (a2
12 − a11a22)∆

a14 G(z)2 + (a11(−kx + ω) + a22(kx + ω) + 2a12ky)G(z)F(z)

− a14∆∗F(z)2 + ∆
a14

= 0, (A.10)

F ′(z)− (a2
21 − a11a22)∆

a23 G(z)2 + (a11(−kx + ω) + a22(kx + ω) + 2a21ky)G(z)F(z)

+ a23∆∗F(z)2 − ∆
a23

= 0, (A.11)

F ′(z) + (a2
21 − a11a22)∆

a14∗ G(z)2 + (a11(−kx + ω) + a22(kx + ω) + 2a12ky)G(z)F(z)

− a∗14∆F(z)2 + ∆∗

a∗14
= 0, (A.12)

F ′(z)− (a2
12 − a11a22)∆

a14 G(z)2 + (a11(−kx + ω) + a22(kx + ω) + 2a21ky)G(z)F(z)

+ a∗23∆F(z)2 − ∆∗

a∗23
= 0. (A.13)

Here we can make the coefficients of G(z)’s and F(z)’s differential equations be the same.
Then, we can find a set of coefficients relation in terms of a11 and a14:

a12 = a21 = − ky
kx + ω

a11, a22 = −kx + ω

kx + ω
a11, a23 = −a14, a∗14 = ∆∗

∆ a14. (A.14)

Now, putting the above relations to the equations (A.4)–(A.13) give a pair of equations
as follows:

G′(z)− a11(k2 − ω2)
kx + ω

G(z)2 − 2a14∆∗G(z)F(z) + a2
14∆∗(kx + ω)

a11∆ F(z)2 + kx + ω

a11
= 0,

F ′(z) + a2
11(k2 − ω2)
a14(kx + ω)2G(z)2 − 2a11(k2 − ω2)

kx + ω
G(z)F(z)− a14∆∗F(z)2 + ∆

a14
= 0,

(A.15)

where k2 = k2
x + k2

y.
To get a solution of G(z), we change to the equations of Gij from those of G(z) and F(z).

G′11(z)− k2 − ω2

kx + ω
G11(z)2 − 2∆∗G11(z)G14(z) + ∆∗

∆ (kx + ω)G14(z)2 + kx + ω = 0,

(A.16)

G′14(z) + k2 − ω2

(kx + ω)2 G11(z)2 − 2(k2 − ω2)
kx + ω

G11(z)G14(z)−∆∗G14(z)2 + ∆ = 0.

(A.17)
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Furthermore, to decouple above equations, we introduce transformation
(

G11(z)
G14(z)

)
= 1

2

 1 1

−i
√

∆(k2−ω2)
(kx+ω)

√
∆∗ i

√
∆(k2−ω2)

(kx+ω)
√

∆∗

(h1(z)
h2(z)

)
. (A.18)

Then, in terms of h1, h2, the equations can be expressed as

h′1(z) + −k
2 + ω2 + i|∆|

√
k2 − ω2

kx + ω
h1(z)2 + (kx + ω)(i|∆|+

√
k2 − ω2)√

k2 − ω2
= 0, (A.19)

h′2(z) + −k
2 + ω2 − i|∆|

√
k2 − ω2

kx + ω
h2(z)2 + (kx + ω)(−i|∆|+

√
k2 − ω2)√

k2 − ω2
= 0. (A.20)

Remarkably, the analytic solution of both equations can be found to be

h1(z) = −(kx + ω)(i|∆|+ ε0)
ε0ε∆

tanh(ε∆(z + b1ε0(kx + ω))), (A.21)

h2(z) = −(kx + ω)(−i|∆|+ ε0)
ε0ε∆

tanh(ε∆(z + b2ε0(kx + ω))), (A.22)

where

ε0 =
√
k2 − ω2, ε∆ =

√
k2 + |∆|2 − ω2, (A.23)

and b1 and b2 are the constants of integration. From G(zH) = i14×4 and (A.18), the horizon
values of h1(zH) and h2(zH) are given by

h1(z) = i, h2(z) = i, (A.24)

which in turn request that value of b1 and b2 should be

b1 = − 1
ε0(kx + ω)

[
Λ + i

ε∆
arctan

(
ε0ε∆

(kx + ω)(ε0 + i|∆|)

)]
, (A.25)

b2 = − 1
ε0(kx + ω)

[
Λ + i

ε∆
arctan

(
ε0ε∆

(kx + ω)(ε0 − i|∆|)

)]
. (A.26)

Notice that at zero temperature, the horizon can be thought of at zH =∞. We introduced
Λ as a cut-off value of z. Now, we have all ingredients for the boundary Green function.
For the massless fermion, the Green function can be written as

GR = lim
z→0

G(z). (A.27)

From this, the value of h1(z) and h2(z) at the AdS boundary are

h1(z) = (kx + ω)(i|∆|+ ε0)
ε0ε∆

, (A.28)

h2(z) = (kx + ω)(−i|∆|+ ε0)
ε0ε∆

. (A.29)
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To find value of GR, let’s recover the value of G11(0) and G14(0) using (A.18):

GR,11 := G11(0) = kx + ω√
k2 + |∆|2 − ω2 , (A.30)

GR,14 := G14(0) = ∆√
k2 + |∆|2 − ω2 . (A.31)

Finally, with the relation (A.14), we can get the full-component Green function GR already
described in section (4.3):

GR(ω, kx, ky) = 1√
k2 + |∆|2 − ω2


ω + kx −ky 0 ∆
−ky w − kx −∆ 0

0 −∆∗ ω + kx −ky
∆∗ 0 −ky ω − kx

 . (A.32)
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