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Abstract. This paper explores the effect of various graphical constructions upon the
associated graph C∗-algebras. The graphical constructions in question arise naturally in
the study of flow equivalence for topological Markov chains. We prove that out-splittings
give rise to isomorphic graph algebras, and in-splittings give rise to strongly Morita
equivalent C∗-algebras. We generalize the notion of a delay as defined in (D. Drinen,
Preprint, Dartmouth College, 2001) to form in-delays and out-delays. We prove that these
constructions give rise to Morita equivalent graph C∗-algebras. We provide examples
which suggest that our results are the most general possible in the setting of the C∗-algebras
of arbitrary directed graphs.

1. Introduction
The purpose of this paper is to describe various constructions on a directed graph which
give rise to equivalences between the associated graph C∗-algebras. The graphical
constructions in question all have their roots in the theory of flow equivalence for
topological Markov chains. Our results will unify the work of several authors over the last
few years who have studied similar constructions for Cuntz–Krieger algebras and, more
recently, graph C∗-algebras (see [CK, MRS, Ash, D, DS, Br, B1] amongst others).

The motivation for the graphical constructions we use lies in the theory of subshifts of
finite type. A shift space (X, σ ) over a finite alphabet A is a compact subset X of AZ
invariant under the shift map σ . To a directed graph E with finitely many edges and no
sources or sinks, one may associate a shift space XE , called the edge shift of E, whose
alphabet is the edge set of E (see [LM, Definition 2.2.5]). Edge shifts are examples of
subshifts of finite type. Alternatively, to every square 0–1 matrix A with no zero rows or
columns, one may associate a subshift of finite type XA (see [LM, Definition 2.3.7]).

Two important types of equivalence between shift spaces are conjugacy and flow
equivalence. Shift spaces (X, σX) and (Y, σY) are conjugate (X ∼= Y) if there is an
isomorphism φ : X → Y such that σY ◦ φ = φ ◦ σX. The suspension of (X, σX) is

SX := (X × R)/[(x, t + 1) ∼ (σX(x), t)].
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Shift spaces (X, σX) and (Y, σY) are flow equivalent (X ∼ Y) if there is a homeomorphism
between SX and SY preserving the orientation of flow lines.

By [LM, Proposition 2.3.9], every subshift of finite type is conjugate to an edge shift XE

for some directed graph E. Since the edge connectivity matrix BE of E is a 0–1 matrix
such that XE

∼= XBE , every subshift of finite type is conjugate to a shift described by a 0–1
matrix. Conversely, every shift described by a 0–1 matrix A is conjugate to an edge shift:
let EA be the directed graph with vertex connectivity matrix A, then XEA is conjugate
to XA (see [LM, Exercise 1.5.6, Proposition 2.3.9]). Hence, subshifts of finite type are
edge shifts or shifts associated to 0–1 matrices.

Conjugacy and flow equivalence for subshifts of finite type may be expressed in terms of
0–1 matrices: an elementary strong shift equivalence between square 0–1 matrices A,B is
a pair (R, S) of 0–1 matrices such that A = RS and B = SR. We say A and B are strong
shift equivalent if there is a chain of elementary strong shift equivalences from A to B.
From [W, Theorem A] (see also [LM, Theorem 7.2.7]), XA

∼= XB if and only if A and
B are strong shift equivalent. By [PS], XA ∼ XB if and only if A and B are related via
a chain of elementary strong shift equivalences and certain matrix expansions. Both these
matrix operations have graphical interpretations: following [LM, Theorem 2.4.14 and
Exercise 2.4.9], an elementary strong shift equivalence corresponds to either an in- or out-
splitting of the corresponding graphs. Following [D, §3], the matrix expansions in [PS]
correspond to an out-delay of the corresponding graph.

To a 0–1 matrix A with n non-zero rows and columns is associated a C∗-algebra
generated by partial isometries {Si}ni=1 with mutually orthogonal ranges satisfying

S∗
j Sj =

n∑
i=1

A(i, j)SiS
∗
i .

If the matrix A satisfies condition (I) the Cuntz–Krieger algebra OA is unique up to isomor-
phism. Results about Cuntz–Krieger algebras may be expressed in terms of the underlying
directed graph EA associated to A (see [EW] and [FW], for instance). More recent results
are expressed entirely in terms of EA (see [KPRR, KPR] amongst others).

To a row-finite directed graph E with finitely many edges and no sources or sinks is
associated the universal C∗-algebra, C∗(E) generated by partial isometries {se : e ∈ E1}
with mutually orthogonal ranges satisfying

s∗
e se =

∑
s(f )=r(e)

sf s∗
f .

If A is a square 0–1 matrix which satisfies condition (I) and EA is the associated directed
graph, then OA

∼= C∗(EA) (see [MRS, Proposition 4.1]). On the other hand, if E satisfies
condition (L) (every 1000 has an exit), then the associated edge connectivity matrix BE

satisfies condition (I) and C∗(E) ∼= OBE (see [KPRR, Proposition 4.1]). There are similar
equivalences between Cuntz–Krieger algebras associated to infinite 0–1 matrices which
are row-finite and certain row-finite directed graphs (see [PR], [BPRSz, Theorem 3.1]).

By [CK, Proposition 2.17, Theorems 3.8 and 4.1], if A and B satisfy condition (I)
and XA

∼= XB , then OA
∼= OB ; moreover, if XA ∼ XB , then OA is stably isomorphic

to OB . The aim of this paper is to show that the graphical procedures involved in flow
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equivalence and conjugacy for edge shifts may be applied to arbitrary graphs and give
rise to isomorphisms or Morita equivalences of the corresponding graph C∗-algebras.
Initial results in this direction were proved in [D] for graphs with no sinks and finitely
many vertices: out-splittings lead to isomorphisms of the underlying graph C∗-algebras
whilst the C∗-algebra of an in-split graph is isomorphic to the C∗-algebra of a certain
out-delayed graph. Further partial results may be found in [DS] and [Br].

The paper is organized as follows. Section 2 describes the C∗-algebra of any directed
graph and the gauge-invariant uniqueness result used to establish our results. Section 3
deals with out-split graphs, §4 with in- and out-delays and §5 with in-split graphs. Finally,
§6 relates our results to those in [B1]. Our main results are:
(1) if E is a directed graph and F is a proper out-split graph formed from E, then

C∗(E) ∼= C∗(F ) (Theorem 3.2);
(2) if E is a directed graph and F is an out-delayed graph formed from E, then C∗(E) is

strongly Morita equivalent to C∗(F ) if and only if F arises from a proper out-delay
(Theorem 4.2);

(3) if E is a directed graph and F is an in-delayed graph formed from E, then C∗(E) is
strongly Morita equivalent to C∗(F ) (Theorem 4.5);

(4) if E is a directed graph and F is an in-split graph formed from E, then C∗(E) is
strongly Morita equivalent to C∗(F ) if and only if F arises from a proper in-splitting
(Corollary 5.4).

2. The C∗-algebra of a directed graph
Here we briefly set out some of the basic definitions and terminology which we use
throughout this paper. A directed graph E consists of countable sets of vertices and
edges E0 and E1 respectively, together with maps r, s : E1 → E0 giving the direction
of each edge. The maps r, s extend naturally to E∗, the collection of all finite paths in E.
The graph E is called row-finite if every vertex emits a finite number of edges.

A Cuntz–Krieger E-family consists of a collection {se : e ∈ E1} of partial isometries
with orthogonal ranges, and mutually orthogonal projections {pv : v ∈ E0} satisfying
(i) s∗

e se = pr(e),
(ii) ses

∗
e ≤ ps(e),

(iii) if v emits finitely many edges then pv = ∑
s(e)=v ses

∗
e .

The graph C∗-algebra of E, C∗(E) is the universal C∗-algebra generated by a Cuntz–
Krieger E-family. An important property of a graph C∗-algebra is the existence of an
action γ of T, called the gauge action, which is characterized by

γzse = zse and γzpv = pv

where {se, pv} ⊆ C∗(E) is the canonical Cuntz–Krieger E-family and z ∈ T. This gauge
action is a key ingredient in the uniqueness theorem which we shall frequently use.

THEOREM 2.1. [BHRSz, Theorem 2.1] Let E be a directed graph, {Se, Pv} be a Cuntz–
Krieger E-family and π : C∗(E) → C∗(Se, Pv) the homomorphism satisfying π(se) = Se

and π(pv) = Pv . Suppose that each Pv is non-zero, and that there is a strongly continuous
action β of T on C∗(Se, Pv) such that βz ◦ π = π ◦ γz for all z ∈ T. Then π is faithful.
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To apply Theorem 2.1, we exhibit a non-trivial Cuntz–Krieger E-family within a
C∗-algebra B, which carries a suitable T-action β.

Some results in this paper require the following result on the Morita equivalence of
graph algebras. As in [BHRSz, Remark 3.1], we define the saturation �H(S) of S ⊆ E0

to be the union of the sequence �n(S) of subsets of E0 defined inductively as follows:

�0(S) := {v ∈ E0 : v = r(µ) for some µ ∈ E∗ with s(µ) ∈ S}
�n+1(S) := �n(S) ∪ {w ∈ E0 : 0 < |s−1(w)| < ∞ and s(e) = w imply r(e) ∈ �n(S)}.
We note that if E is row-finite, then �H(S) is the saturation of the hereditary set �0(S) as
defined in [BPRSz].

LEMMA 2.2. Suppose that E is a directed graph, S a subset of E0 and {se, pv} the
canonical Cuntz–Krieger E-family. Let P = ∑

v∈S pv . Then P ∈ M(C∗(E)) and the
corner PC∗(E)P is full if and only if �H(S) = E0.

Proof. By [PR, Lemma 3.3.1], the sum
∑

v∈S pv converges to a projection P ∈
M(C∗(E)). We claim that PC∗(E)P ⊆ I�H(S). Let sµs∗

ν be a non-zero element of
PC∗(E)P , then s(µ) ∈ S and so ps(µ) ∈ I�H(S). Thus, sµs∗

ν = ps(µ)sµs∗
ν ∈ I�H(S).

If PC∗(E)P is full, then I�H(S) = C∗(E) and so �H(S) = E0 by [BHRSz, §3].
Conversely, suppose that �H(S) = E0 and PC∗(E)P ⊆ I for some ideal I in C∗(E).
By [BHRSz, Lemma 3.2] HI = {v : pv ∈ I } is a saturated hereditary subset of E0

containing S and, hence, �H(S). Thus, C∗(E) = I�H(S) ⊆ I and the result follows. �

3. Out-splittings
The following definitions are adapted from [LM, Definition 2.4.3]. Let E = (E0, E1, r, s)

be a directed graph. For each v ∈ E0 which emits an edge, partition s−1(v) into disjoint
non-empty subsets E1

v , . . . , Em(v)
v where m(v) ≥ 1 (if v is a sink, then we put m(v) = 0).

Let P denote the resulting partition of E1. We form the out-split graph Es(P) from E

using P as follows. Let

Es(P)0 = {vi : v ∈ E0, 1 ≤ i ≤ m(v)} ∪ {v : m(v) = 0},
Es(P)1 = {ej : e ∈ E1, 1 ≤ j ≤ m(r(e))} ∪ {e : m(r(e)) = 0},

and define rEs(P), sEs (P) : Es(P)1 → Es(P)0 for e ∈ E i
s(e) by

sEs(P)(e
j ) = s(e)i and sEs(P)(e) = s(e)i,

rEs(P)(e
j ) = r(e)j and rEs(P)(e) = r(e).

The partition P is proper if for every vertex v with infinite valency we have m(v) < ∞
and only one of the partition sets E i

v is infinite.

Examples 3.1.

(i) The partitions which give rise to the out-splittings described in [LM, Figures 2.4.3–
2.4.5] and [D, §4.1] are all examples of proper partitions.
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(ii) If we out-split at an infinite valence vertex, taking a partition P which has finitely
many subsets, such as in

E := • •v w
∞

.................................................................................................................................................... ................... which splits at v to

•

• •
v1

v2 w
∞

.................................................................................................................................................... ...................

................................................................................................................................................................ ...............
....

then P is proper. If P has more than one infinite subset, such as in

E := • •∞
v

w
................................................................................................................................................................................. ................... which splits at v to Es(P ′) := •

•

•v1

v2

w
∞
∞

................................................................................................................................................................................. ...................

........................................................................................................................................................................................ ..................
.

then P is not proper. In this case, C∗(E) is not Morita equivalent to C∗(Es(P))

since the latter has an additional ideal. If P has infinitely many subsets, such as in

E := • •∞
v

w
................................................................................................................................................................................. ................... which splits at v to Es(P) := •

•
•
...

•v1
v2
v3

w................................................................................................................................................................................. ...................

................................................................................................................................................................................... ...................

.......................................................................................................................................................................................... .................
..

then P is not proper. Again, C∗(E) and C∗(Es(P)) are not Morita equivalent:
The former is non-simple and the latter simple.

THEOREM 3.2. Let E be a directed graph, P a partition of E1 and Es(P) the out-split
graph formed from E using P . If P is proper, then C∗(E) ∼= C∗(Es(P)).

Proof. Let {sf , pw : f ∈ Es(P)1, w ∈ Es(P)0} be a Cuntz–Krieger Es(P)-family.
For v ∈ E0 and e ∈ E1, set Qv = pv if m(v) = 0, Te = se if m(r(e)) = 0,

Qv =
∑

1≤i≤m(v)

pvi if m(v) 
= 0 and Te =
∑

1≤j≤m(r(e))

sej if m(r(e)) 
= 0.

Because P is proper, m(v) < ∞ for all v ∈ E0 and all of these sums are finite. We claim
that {Te,Qv : e ∈ E1, v ∈ E0} is a Cuntz–Krieger E-family in C∗(Es(P)).

The Qvs are non-zero mutually orthogonal projections since they are sums of
projections satisfying the same properties. The partial isometries Te for e ∈ E1 have
mutually orthogonal ranges since they consist of sums of partial isometries with mutually
orthogonal ranges. For e ∈ E1, it is easy to see that T ∗

e Te = Qr(e) and TeT
∗
e ≤ Qs(e).

For e ∈ E1 with m(r(e)) 
= 0, then since rEs(P)(e
j ) 
= rEs(P)(e

k) for j 
= k, we have

TeT
∗
e =

( ∑
1≤j≤m(r(e))

sej

)( ∑
1≤k≤m(r(e))

sek

)∗
=

∑
1≤j≤m(r(e))

sej s∗
ej . (3.1)

If m(r(e)) = 0, then TeT
∗
e = ses

∗
e . For v ∈ E0 and 1 ≤ i ≤ m(v), put E i

1,v = {e ∈ E i
v :

m(r(e)) ≥ 1} and E i
0,v = {e ∈ E i

v : m(r(e)) = 0}. If v ∈ E0 has finite valency and is not a

sink, then s−1(v) = ⋃m(v)
i=1 E i

v and for 1 ≤ i ≤ m(v), we have

s−1
Es(P)

(vi) = {ej : e ∈ E i
1,v, 1 ≤ j ≤ m(r(e))} ∪ {e ∈ E1 : m(r(e)) = 0}.
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Hence, using (3.1), we may compute

Qv =
∑

1≤i≤m(v)

pvi =
∑

1≤i≤m(v)

∑
e∈E i

1,v

∑
1≤j≤m(r(e))

sej s∗
ej +

∑
1≤i≤m(v)

∑
e∈E i

0,v

ses
∗
e

=
∑

1≤i≤m(v)

∑
e∈E i

v

TeT
∗
e =

∑
e:s(e)=v

TeT
∗
e ,

completing the proof of our claim, since vertices v ∈ E0 with m(v) = 0 are sinks.
Let {te, qv} be the canonical generators of C∗(E), then by the universal property of

C∗(E) there is a homomorphism π : C∗(E) → C∗(Es(P)) taking te to Te and qv to Qv .
To prove that π is onto, we show that the generators of C∗(Es(P)) lie in C∗(Te,Qv).
If w = vj ∈ Es(P)0 has finite valency or w is a sink, then pw ∈ C∗(Te,Qv). If vj has
infinite valency, then without loss of generality we suppose j = 1. Since P is proper, it
follows that v2, . . . , vm(v) have finite valency, so pv2, . . . pvm(v) ∈ C∗(Te,Qv) and, hence,

pv1 = Qv − pv2 − · · · − pvm(v) ∈ C∗(Te,Qv).

If ej ∈ Es(P)1, then m(r(e)) 
= 0. Since pr(e)j ∈ C∗(Te,Qv), we have sej = Tepr(e)j ∈
C∗(Te,Qv). If e ∈ Es(P)1, then m(r(e)) = 0 and so se = Te ∈ C∗(Te,Qv).

Since π commutes with the canonical gauge action on each C∗-algebra and as Qv 
= 0
for all v ∈ E0, it follows from Theorem 2.1 that π is injective, and the result follows. �

Remarks 3.3.
(i) The maximal out-splitting Ẽ of E is formed from a partition P of E1 which admits

no refinements. For a graph E = (E0, E1, r, s) without sinks, Ẽ is isomorphic to
the dual graph Ê = (E1, E2, r ′, s′) (where r ′(ef ) = f and s′(ef ) = e). Since the
out-splitting is maximal and there are no sinks, we have

Ẽ0 = {ve : s(e) = v} and Ẽ1 = {ef : s(f ) = r(e)}.
The maps ve �→ e and ef �→ ef induce an isomorphism from Ẽ to Ê. We define
the dual graph Ê of any directed graph E to be its maximal out-split graph Ẽ.
Since a maximal out-splitting is proper if and only E is row-finite, we may now
use Theorem 3.2 to generalize [BPRSz, Corollary 2.5] to any row-finite graph.

(ii) Brenken defines a graph algebra G∗(E) which, under certain conditions, is
isomorphic to C∗(E). By [Br, Theorem 3.4], G∗(E) and the C∗-algebra of its out-
splitting are isomorphic if the graph satisfies a certain properness condition (see [Br,
Definition 3.2]). This result only applies to C∗(E) when E is row-finite.

(iii) For row-finite graphs with finitely many vertices and no sinks, a proof of Theorem 3.2
may be deduced from [D, §4.1]. In [DS, §6] similar results are proved for an
‘explosion’ which is a particular example of an out-splitting operation.

(iv) The C∗-algebra of an out-split graph is isomorphic to the C∗-algebra of an ultragraph
(see [T]). Given a directed graph E and a partition P , define the ultragraph
G(P) = (G0,G1, r ′, s′) as follows. Put G0 = Es(P)0, G1 = E1, s′(e) = s(e)i

if e ∈ E i
s(e), r ′(e) = r(e) if m(r(e)) = 0 and

r ′(e) = {r(e)i : 1 ≤ i ≤ m(r(e))} if m(r(e)) 
= 0.
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We claim that if P is proper, then C∗(G(P)) ∼= C∗(Es(P)). When P is proper,
G0 is the set of finite subsets of Es(P)0. Let {pA, se : A ∈ G0, e ∈ G1} be a
Cuntz–Krieger G(P)-family. For w ∈ Es(P)0, set Qw = pw and for f j ∈ Es(P)1,
put Tf j = sf pr(f )j . Then {Qw, Tf j } is a Cuntz–Krieger Es(P)-family in which
each Qw 
= 0. Let {tf j , qw} be the canonical generators of C∗(Es(P)), then by
the universal property of C∗(Es(P)) there is a map π : C∗(Es(P)) → C∗(G(P))

sending tf j to Tf j and qw to Qw . As each A ∈ G0 is finite, C∗(Tf j ,Qw) contains
each generator of C∗(G(P)), so π is onto. By [T, §2] there is an appropriate action
of T on C∗(G(P)), so π is injective by Theorem 2.1, proving our claim.

(v) Let � act freely on the edges of a row-finite graph E, then the induced �-action
on the dual graph Ê is free on its vertices. The isomorphism C∗(E) ∼= C∗(Ê) is
�-equivariant, so C∗(E) × � ∼= C∗(Ê) × � and by [KQR, Corollary 3.3] we have

C∗(E) × � ∼= C∗(Ê/�) ⊗ K(	2(Z2)). (3.2)

For instance, there is a free action of Z2 on the edges of graph B2 which consists of a
single vertex and two edges (the ‘flip-flop automorphism’ of C∗(B2) ∼= O2 described
by [Ar]). Equation (3.2) shows that O2 × Z2 is Morita equivalent to O2.

4. Delays
Let E = (E0, E1, r, s) be a directed graph. A map ds : E0 ∪ E1 → N ∪ {∞} such that:
(i) if w ∈ E0 is not a sink then ds(w) = sup{ds(e) : s(e) = w};
(ii) if ds(x) = ∞ for some x then either x is a sink or x emits infinitely many edges;
is called a Drinen source-vector. Note that only vertices are allowed to have an infinite
ds-value; moreover, if ds(v) = ∞ and v is not a sink, then there are edges with source
v and arbitrarily large ds-value. From these data, we construct a new graph as follows.
Let

ds(E)0 = {vi : v ∈ E0, 0 ≤ i ≤ ds(v)}
and

ds(E)1 = E1 ∪ {f (v)i : 1 ≤ i ≤ ds(v)},
and for e ∈ E1 define rod(e) = r(e)0 and sod(e) = s(e)ds(e). For f (v)i , define
sod(f (v)i) = vi−1 and rod(f (v)i) = vi . The resulting directed graph ds(E) is called
the out-delayed graph of E for the Drinen source-vector ds .

In the out-delayed graph the original vertices correspond to those vertices with
superscript 0; the edge e ∈ E1 is delayed from leaving s(e)0 and arriving at r(e)0 by a
path of length ds(e). The Drinen source vector ds is strictly proper if, whenever v has
infinite valency, there is no vi with infinite valency unless i = ds(v) < ∞. A Drinen
source-vector ds which gives rise to an out-delayed graph ds(E) which may be constructed
using a finite sequence of strictly proper Drinen source-vectors is said to be proper.

Examples 4.1.
(i) The notion of an out-delay in the context of graph C∗-algebras was first introduced

in [CK, §4] and subsequently generalized in [D]. The graphs shown in [D, §3.1] are
all examples of out-delays for some proper Drinen source-vector where all the edges
out of a given vertex are delayed by the same amount.
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(ii) The Drinen–Tomforde desingularization of a graph described in [DT, Definition 2.2]
is an example of a out-delay with a proper Drinen source-vector: if v has infinite
valency, then the edges with source v may be written as {ei : i ∈ N}; we set
ds(v) = ∞ and ds(ei) = i for i ∈ N. If v has finite valency, then we set ds(v) = 0
(and so ds(e) = 0 for all e ∈ s−1(v)). If v is a sink, then we put ds(v) = ∞.
The resulting graph ds(E) is row-finite with no sinks.

(iii) Putting ds(v) = ∞ for a sink adds an infinite tail to the sink. If ds(v) = ∞ for all
sinks and ds(v) = 0 for all vertices which emit edges, then ds(E) is the graph E with
tails added to all sinks (cf. [RS, Lemma 1.4]).

(iv) Consider the following graph E:

E := • •∞
v w

................................................................................................................ ................... with out-delay ds(E) :=

. . .• • • •

•

v3v2v1v0

w0

∞


...

...................

................................................................................................................................................................................................................................................................
......

...................

...............................................................................................................................................................................
.........
...........
........

.........................................................................................................................................

........
...
........
........
...

The Drinen source-vector for this out-delay is not proper since vertex v1 has infinite
valency. Moreover, the C∗-algebra C∗(ds(E)) is not Morita equivalent to C∗(E)

since the former C∗-algebra has two proper ideals and the latter only one.

THEOREM 4.2. Let E be a directed graph and ds : E0 ∪ E1 → N ∪ {∞} be a Drinen
source-vector. Then C∗(ds(E)) is strongly Morita equivalent to C∗(E) if and only if ds is
proper.

Proof. Without loss of generality, we may assume that ds : E0 ∪ E1 → N ∪ {∞} is an
essentially proper Drinen source-vector. Let {sf , pw : f ∈ ds(E)1, w ∈ ds(E)0} be a
Cuntz–Krieger ds(E)-family. For e ∈ E1 and v ∈ E0 define Qv = pv0 and

Te = sf (s(e))1 . . . sf (s(e))ds(e) se if ds(e) 
= 0 and Te = se otherwise.

We claim that {Te,Qv : e ∈ E1, v ∈ E0} is a Cuntz–Krieger E-family. The Qv’s are non-
zero mutually orthogonal projections since the pv’s are. The Te’s are partial isometries
with mutually orthogonal ranges since they are products of partial isometries with this
property. For e ∈ E1, it is routine to check that T ∗

e Te = Qr(e) and TeT
∗
e ≤ Qs(e).

If v ∈ E0 is neither a sink nor has infinite valence, then ds(v) < ∞. If ds(v) = 0, then
we certainly have Qv = ∑

s(e)=v TeT
∗
e . Otherwise, for 0 ≤ j ≤ ds(v) − 1, we have,

pvj =
∑

s(e)=v,ds(e)=j

ses
∗
e + sf (v)j+1pvj+1s

∗
f (v)j+1, (4.1)

and since we must have some edges with s(e) = v and ds(e) = ds(v), we have

pvds(v) =
∑

s(e)=v,ds(e)=ds(v)

ses
∗
e . (4.2)

Using (4.1) recursively and (4.2) when j = ds(v) − 1, we see that

Qv = pv0 =
∑

s(e)=v,ds(e)=0

TeT
∗
e + · · · +

∑
s(e)=v,ds(e)=ds(v)

TeT
∗
e =

∑
s(e)=v

TeT
∗
e ,

and this establishes our claim.
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Let {te, qv} be the canonical generators of C∗(E), then by the universal property of
C∗(E) there is a homomorphism π : C∗(E) → C∗(ds(E)) which takes te to Te and qv

to Qv . It remains to show that C∗(Te,Qv) is a full corner in C∗(ds(E)).
Let α denote the strongly continuous T-action satisfying, for z ∈ T,

αzse = zse, αzsf (v)i = sf (v)i for 1 ≤ i ≤ ds(v) and αzpvi = pvi for 0 ≤ i ≤ ds(v).

It is straightforward to check that π ◦ γ = α ◦ π where γ is the usual gauge action of T on
C∗(E) and it follows from Theorem 2.1 that π is injective.

By Lemma 2.2, the sum
∑

v∈E0 pv0 converges to a projection P ∈ M(C∗(ds(E))).
We claim that C∗(Te,Qv) is equal to PC∗(ds(E))P . Note that if Psµs∗

ν P = sµs∗
ν 
= 0,

then sod(µ) = v0 and sod(ν) = w0 for some v,w ∈ E0, and rod(µ) = rod(ν).
If µ = ν = v0, then sµs∗

ν = pv0 = Qv ∈ C∗({Te,Qv}). If rod(µ) = u0 for some
u ∈ E0, then there are paths α, β ∈ E∗ with r(α) = r(β) = u such that sµs∗

ν = TαT ∗
β

and so sµs∗
ν ∈ C∗(Te,Qv). Suppose now that rod(µ) /∈ E0. Then rod(µ) = uq for some

u ∈ E0 and 0 < q ≤ ds(u) and we can write

sµs∗
ν = Tαsf (u)1 · · · sf (u)q s

∗
f (u)q · · · s∗

f (u)1T
∗
β

for some α, β ∈ E∗. Suppose q > 1, then since ds is proper, f (u)q−1 has finite valency.
If there are no edges in E with s(e) = u and ds(e) = q − 1, then

sµs∗
ν = Tαsf (u)1 · · · sf (u)q−1s∗

f (u)q−1 · · · s∗
f (u)1T

∗
β . (4.3)

If there are a finite number of edges e1, . . . , el ∈ E1 with s(ei) = u and ds(ei) = q − 1
for i = 1, . . . , l, then

sµs∗
ν = Tαsf (u)1 . . . sf (u)q−1(puq−1 − se1s

∗
e1

− · · · − sel s
∗
el
)s∗

f (u)q−1 . . . s∗
f (u)1T

∗
β

= Tαsf (u)1 . . . sf (u)q−1s∗
f (u)q−1 . . . s∗

f (u)1T
∗
β −

l∑
i=1

TαTei T
∗
ei
T ∗

β . (4.4)

Our new expression for sµs∗
ν may now be analysed as in (4.3) or (4.4), reducing the value

of q until all sf (u)i terms are removed. Then

sµs∗
ν = TαT ∗

β −
∑

s(e)=u,ds(e)≤q−1

TαeT
∗
βe ∈ C∗(Te,Qv),

completing the proof of our claim.
Since �H({v0 : v ∈ E0}) = ds(E)0, it follows from Lemma 2.2 that PC∗(ds(E))P is a

full corner in C∗(ds(E)) and, hence, C∗(ds(E)) and C∗(E) are strongly Morita equivalent.
If ds is not proper, then there are at least two vertices f (v)i , f (v)j with 0 ≤ i ≤ j ≤

ds(v) emitting infinitely many edges. In this case there is an ideal generated by pf (v)i in
C∗(ds(E)) which was not present in C∗(E). �

We are grateful to Daniel Gow and Tyrone Crisp for pointing out an error in an earlier
version of Theorem 4.2 (see also [CG]).
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Remarks 4.3.
(i) Theorem 4.2 significantly generalizes the results in [D, §3.1]. Drinen shows a limited

number of graph groupoid isomorphisms for row-finite graphs with finitely many
vertices and no sinks in which each edge is equally delayed.

(ii) The desingularization of a non-row-finite graph is an example of an out-delay
(see Examples 4.1(ii)). Moreover, any out-delay of a non-row-finite graph using
a proper Drinen source vector with ds(v) = ∞ for all vertices of infinite valency
provides an example of a row-finite graph ds(E) whose C∗-algebra is Morita
equivalent to C∗(E). It follows by [B2, Corollary 4.6] that if E satisfies condition
(K) (every vertex lies either on no loops or on at least two loops), then Prim(C∗(E))

is the primitive ideal space of some AF-algebra.
(iii) If ds : E0 ∪ E1 → N ∪ {∞} is a Drinen source-vector, then E is a deformation

retract of ds(E) (see [St, §3.3]). The construction of an out-delayed graph replaces
each vertex v with ds(v) ≥ 1 by the tree {vi : 0 ≤ i ≤ ds(v), f (v)i : 1 ≤ i ≤ ds(v)}
which may be contracted to the root v0 and identified with v (see also [GT, §1.5.5]).
In particular π1(ds(E)) ∼= π1(E) and the universal covering tree T of E is a
deformation retract of the universal covering tree T ′ of ds(E). It follows that the
boundary ∂T of T is homeomorphic to the boundary ∂T ′ of T ′ (see [KP, §4]).
Hence, the Morita equivalence between C∗(E) and C∗(ds(E)) could be obtained
for row-finite graphs with no sinks using the Kumjian–Pask description of C∗(E) as
a crossed product of C0(∂T ) by π1(E) (see [KP, Corollary 4.14]).

We now turn our attention to in-delays where edges are delayed from arriving at their range.
Let E = (E0, E1, r, s) be a graph. A map dr : E0 ∪ E1 → N ∪ {∞} satisfying
(i) if w is not a source, then dr(w) = sup{dr(e) : r(e) = w} and
(ii) if dr(x) = ∞, then x is either a source or receives infinitely many edges
is called a Drinen range-vector. We construct a new graph dr(E) called the in-delayed
graph of E for the Drinen range-vector dr as follows:

dr(E)0 = {vi : v ∈ E0, 0 ≤ i ≤ dr(v)}
and

dr(E)1 = E1 ∪ {f (v)i : 1 ≤ i ≤ dr(v)},
and for e ∈ E1, we define rid (e) = r(e)dr(e) and sid (e) = s(e)0. For f (v)i , we define
sid (f (v)i) = vi and rid (f (v)i) = vi−1.

Examples 4.4.
(i) Consider the following graph E, with edges {ei : i ≥ 0} from v to w. If we set

dr(ei) = i, dr(v) = 0 and dr(w) = ∞, then

E := • •∞
v w

................................................................................................................ ................... in-delays to dr(E) := . . .• • • •

•

w0w1w2w3

v0

................................................................................................................ ................... ................................................................................................................ ................... ................................................................................................................ ...................

.........................................................................

........
...
........
........
...

.............................................................................................................................
.......

..................
.

................................................................................................................................................................................................................................
.

...................

........................................................................................................................................................................................................................................................................................................................................................

............................

(ii) Observe that putting dr(v) = ∞ for a source adds an infinite ‘head’ to the source.
If dr(v) = ∞ for all sources and dr(v) = 0 for all vertices which receive edges, then
dr(E) is the graph E with heads added to all sources (cf. [RS, Lemma 1.4]).
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THEOREM 4.5. If dr : E0 → N ∪ {∞} is a Drinen range-vector, then C∗(dr(E)) is
strongly Morita equivalent to C∗(E).

Proof. Let dr : E0 ∪ E1 → N ∪ {∞} be a Drinen range-vector and {se, pv : e ∈ dr(E)0,

v ∈ dr(E)1} be a Cuntz–Krieger dr(E)-family. For v ∈ E0 let Qv = pv0 and for e ∈ E1,
put

Te = sesf (r(e))dr(e)
. . . sf (r(e))1 if dr(e) 
= 0 and Te = se otherwise.

It is straightforward to check that {Te,Qv} is a Cuntz–Krieger E-family in C∗(dr (E))

in which all the projections Qv are non-zero. Let {te, qv} be the canonical generators of
C∗(E), then by the universal property of C∗(E) there is a homomorphism π : C∗(E) →
C∗(dr(E)) satisfying π(te) = Te and π(qv) = Qv . It remains to show that C∗(Te,Qv),
the image of π , is a full corner in C∗(dr (E)).

Let α be the strongly continuous T-action α on C∗(dr(E)) satisfying, for z ∈ T,

αz(se) = zse, αz(sf (v)i ) = sf (v)i for 1 ≤ i ≤ dr(v)

and

αz(pvi ) = pvi for 0 ≤ i ≤ dr(v).

It is straightforward to check that π ◦ γ = α ◦ π where γ is the usual gauge action on
C∗(E) and it follows from Theorem 2.1 that π is injective.

By Lemma 2.2, the sum
∑

v∈E0 pv0 converges to a projection P ∈ M(C∗(dr(E))).
We claim that C∗({Te,Qv}) is equal to PC∗(dr (E))P . Note that if Psµs∗

ν P = sµs∗
ν 
= 0,

then sid (µ) = v0 and sid (ν) = w0 for some v,w ∈ E0 and rid (µ) = rid (ν).
If rid (µ) ∈ E0, then sµs∗

ν = TαT ∗
β for some paths α, β ∈ E∗ and, hence, sµs∗

ν ∈
C∗({Te,Qv}). Suppose rid (µ) /∈ E0. Then rid (µ) = r(e)q for some e ∈ E1 with
1 ≤ q ≤ dr(e) and there are α, β ∈ E∗ such that sµs∗

ν = Tαsepf (r(e))dr(e)
s∗
e T ∗

β if q = dr(e)

and

sµs∗
ν = Tαsesf (r(e))dr (e)

. . . sf (r(e))q+1pf (r(e))q s
∗
f (r(e))q+1

. . . s∗
e T ∗

β ,

otherwise. Since the vertices f (r(e))i for 2 ≤ i ≤ dr(r(e)) emit exactly one edge each,
we have pf (r(e))i = sf (r(e))i−1s

∗
f (r(e))i−1

and, hence, we decrease q in the expression for
sµs∗

ν until we have sµs∗
ν = TαeT

∗
βe ∈ C∗(Te,Qv) as required.

It remains to check that the corner is full. To see this, we note that �H(E0) = dr(E)0

and apply Lemma 2.2. Our result follows. �

Remarks 4.6.
(i) Using in-delays we can convert row-finite graphs into locally finite graphs

(i.e. graphs where every vertex receives and emits finitely many edges). If E is
row-finite and v ∈ E0 receives edges {ei : i ∈ N}, set dr(v) = ∞ and dr(ei) = i.
If v is a source we put dr(v) = ∞ and if v receives finitely many edges we set
dr(v) = 0. Evidently, dr : E0 ∪ E1 → N is proper. The resulting graph dr(E) is
then locally finite with no sources. Thus, combining Theorems 4.2 and 4.5, we can
show that, for any graph E, there is a locally finite graph with no sinks and sources
F such that C∗(E) is strongly Morita equivalent to C∗(F ).
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(ii) An in-delay at a vertex v with dr(v) ≥ 1 replaces v ∈ E0 by the tree {vi : 0 ≤ i ≤
dr(v), f (v)i : 1 ≤ i ≤ dr(v)} where v is identified with the leaf v0. In combination
with Remarks 4.3(iii) it seems that we may get similar Morita equivalence results
if we replace vertices with more general trees (i.e. contractible graphs) where the
original vertex lies within the tree itself.

(iii) Not every in-delay can be expressed as an out-delay. To see this, observe that for the
graph E used in Examples 3.1 there can be no out-delay which corresponds to the
in-delay described in Example 4.4. It should not be difficult to find examples where
the graph contains no sources and sinks.

5. In-splittings
The following is adapted from [LM, Definition 2.4.7]: let E = (E0, E1, r, s) be a directed
graph. For each v ∈ E0 with r−1(v) 
= ∅ partition the set r−1(v) into disjoint non-empty
subsets Ev

1 , . . . , Ev
m(v) where m(v) ≥ 1 (if v is a source then we put m(v) = 0). Let P

denote the resulting partition of E1. We form the in-split graph Er(P) from E using the
partition P as follows. Let

Er(P)0 = {vi : v ∈ E0, 1 ≤ i ≤ m(v)} ∪ {v : m(v) = 0},
Er(P)1 = {ej : e ∈ E1, 1 ≤ j ≤ m(s(e))} ∪ {e : m(s(e)) = 0},

and define rEr (P), sEr (P) : Er(P)1 → Er(P)0 by

sEr (P)(ej ) = s(e)j and sEr (P)(e) = s(e)

rEr (P)(ej ) = r(e)i and rEr (P)(e) = r(e)i where e ∈ Er(e)
i .

Partition P is proper if for every vertex v which is a sink or emits infinitely many edges
we have m(v) = 0, 1. That is, we cannot in-split at a sink or vertex with infinite valency.

To relate the graph algebras of a graph and its in-splittings, we use a variation of the
method introduced in [D, §4.2]: if Er(P) is the in-split graph formed from E using the
partition P , then we may define a Drinen range-vector dr,P : E0 ∪ E1 → N ∪ {∞} by

dr,P(v) = m(v) − 1 if m(v) ≥ 1 and dr,P(v) = 0 otherwise. For e ∈ Er(e)
i , we put

dr,P(e) = i − 1. Hence, if v receives n ≥ 2 edges, then we create an in-delayed graph in
which v is given delay of size m(v) − 1 and all edges with range v are given a delay one
less than their label in the partition of r−1(v). If v is a source or receives only one edge,
then there is no delay attached to v.

Examples 5.1.
(i) Examples of proper in-splittings are found in [LM, Figure 2.4.6] and [D, §4.2].
(ii) An in-splitting is not proper if we in-split at a sink, such as for

E :=
•

•
•

....................................
....................................

....................................
........................................... ...................

....................................................................................................................................................... ...................

u

w

v which in-splits at v to give Er(P) :=
•

• •

•

.................................................................................................................................................... ...................

.................................................................................................................................................... ...................

u

w

v1

v2

The associated in-delayed graph is

dr,P(E) :=
•

• • •



u0

w0 v1 v0

As C∗(Er(P)) has two ideals and C∗(dr,P(E)) one, they are not Morita equivalent.
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(iii) In-splittings at infinite valence vertices are not proper, such as in

E :=
•

•
• • • . . .

....................................................................................................................................................... ...................

...................................
....................................

....................................


∞u

w
v

which in-splits at v to give

Er(P) :=
•

• •

•
• • • . . .

.................................................................................................................................................... ...................

.................................................................................................................................................... ................... ...............................
................................

................................
................................

........................ ...................



u

w

v1

v2

∞

∞

The associated in-delayed graph is

dr,P(E) := •

•

• • • • . . .



u0

w0 v1 v0
∞

In this case C∗(Er(P)) has two ideals, whereas C∗(dr(E)) only has one. Thus, these
algebras are not Morita equivalent.

Remark 5.2. If P is proper, then every vertex v which is either a sink or a vertex of infinite
valency occurs only as v or v1 in Er(P) and only as v0 in dr,P(E). In particular, if P is
a proper partition and v is a sink or infinite valence vertex, then there are no edges of the
form ej for j ≥ 2 with s(e) = v in Er(P) and no edges of the form f (v)i in dr,P(E).

THEOREM 5.3. Let E be a directed graph, P a partition of E1, Er(P) the in-split graph
formed from E using P and dr,P : E0 ∪ E1 → N ∪ {∞} the Drinen range-vector defined
as above. Then C∗(Er(P)) ∼= C∗(dr,P(E)) if and only if P is proper.

Proof. Let {sf , pw : f ∈ dr,P (E)1, w ∈ dr,P(E)0} be a Cuntz–Krieger dr,P(E)-family.
To simplify our definitions, for v ∈ E0 we put sf (v)0 = pv0 . For e ∈ Er(P)1, we define
Te = se. For ej ∈ Er(P)1 with 1 ≤ j ≤ m(s(e)), we define

Tej = sf (s(e))j−1 . . . sf (s(e))1se.

For 1 ≤ i ≤ m(v), define Qvi = pvi−1 ; if m(v) = 0, define Qv = pv0 . Then {Tg,Qu :
g ∈ Er(P)1, u ∈ Er(P)0} is a Cuntz–Krieger Er(P)-family with Qu 
= 0 for all u.

Let {tg, qu} be the canonical generators of C∗(Er(P)). By the universal property
of C∗(Er(P)), there is a homomorphism π : C∗(Er(P)) → C∗(dr,P(E)) such that
π(tg) = Tg and π(qu) = Qu. We claim that π is surjective, that is {Tg,Qu} generates
C∗(dr,P(E)).

For w ∈ drP(E)0, we have pw ∈ C∗(Tg,Qu) by definition. For e ∈ Er(P)1, we have
se = Te ∈ C∗(Tg,Qu). Since P is proper, by Remark 5.2 there are no edges in dr,P(E)

of the form f (r(e))j with r(e) a sink. In particular, every edge f (v)j in dr,P (E) is of the
form f (s(e))j where s(e) has finite valency. For 1 ≤ j ≤ m(s(e)) − 1 = dr,P(s(e)),

Tej+1T
∗
ej

= sf (s(e))j . . . sf (s(e))1ses
∗
e sf (s(e))1 . . . sf (s(e))j−1



380 T. Bates and D. Pask

and since v = s(e) has finite valency, we have∑
s(e)=v

Tej+1T
∗
ej

= sf (s(e))j . . . sf (s(e))1

( ∑
s(e)=v0

ses
∗
e

)
s∗
f (s(e))1

. . . s∗
f (s(e))j−1

= sf (s(e))j . . . sf (s(e))1pv0s
∗
f (s(e))1

. . . s∗
f (s(e))j−1

= sf (s(e))j .

Then sf (s(e))j ∈ C∗(Tg,Qu) and our claim follows.
For z ∈ T define an action α on C∗(dr,P(E)) by αz(pv) = pv for v ∈ dr,P(E)0,

αz(se) = zse for e ∈ Er(P)1, and αz(sf (v)i ) = sf (v)i for 1 ≤ i ≤ dr,P(v).
Since γ ◦ π = π ◦ α where γ is the usual gauge action on C∗(Er(P)), by Theorem 2.1
C∗(dr,P(E)) ∼= C∗(Er(P)).

If P is not proper, then there is a non-trivial in-splitting at a sink or a vertex of infinite
valency. The graph Er(P) will have at least one more sink or vertex of infinite valency
than dr,P (E) and, hence, C∗(Er(P)) will have more ideals than C∗(dr,P(E)). �

Applying Theorems 5.3 and 4.5, we have the following.

COROLLARY 5.4. Let E be a directed graph, P a partition of E1 and Er(P) the in-split
graph formed from E using P , then C∗(Er(P)) is strongly Morita equivalent to C∗(E) if
and only if P is proper.

6. Connections with strong shift equivalence
In [B1] the following definition (which generalizes one given in [Ash]) was given for
elementary strong shift equivalence of directed graphs which contain no sinks.

Definition 6.1. Let Ei = (E0
i , E1

i , ri, si ) for i = 1, 2 be directed graphs. Suppose there is
a directed graph E3 = (E0

3, E1
3 , r3, s3) such that

(a) E0
3 = E0

1 ∪ E0
2 and E0

1 ∩ E0
2 = ∅,

(b) E1
3 = E1

12 ∪ E1
21 where E1

ij := {e ∈ E1
3 : s3(e) ∈ E0

i , r3(e) ∈ E0
j } and

(c) for i = 1, 2 there are range and source-preserving bijections θi : E1
i → E2

3(E0
i , E0

i )

where for i ∈ {1, 2}, E2
3(E0

i , E0
i ) := {α ∈ E2

3 : s3(α) ∈ E0
i , r3(α) ∈ E0

i }.
Then we say that E1 and E2 are elementary strong shift equivalent (E1 ∼ES E2) via E3.

The equivalence relation ∼S on directed graphs generated by elementary strong shift
equivalence is called strong shift equivalence. Row-finite graphs which are strong shift
equivalent have Morita equivalent C∗-algebras (see [B1, Theorem 5.2]).

PROPOSITION 6.2. Let E be a directed graph with no sinks and Es(P) be an out-split
graph formed from E using P . Then E ∼ES Es(P).

Proof. One constructs a bipartite graph E3 in the following manner. Let E0
3 = E0 ∪

Es(P)0. For each v ∈ E0, draw an edge ei
v to the corresponding split vertices vi ∈ Es(P)0

with s(ei
v) = v and r(ei

v) = vi . For each set of edges {ei}m(r(e))
i=1 ⊆ Es(P )1 with s(ei) = vi

and r(ei) ∈ {wj }m(w)
j=1 , draw an edge ei

v,w with s(ei
v,w) = vi and r(ei

v,w) = w. The graph
E3 satisfies the conditions of Definition 6.1 and, hence, E ∼ES Es(P) via E3. �

In a similar manner, we may show the following.
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PROPOSITION 6.3. Let E be a directed graph with no sinks and Er(P) be an in-split
graph formed from E using P . Then E ∼ES Er(P).

Remark 6.4. Proposition 6.3 and [B1, Theorem 5.2] enable us to give another proof that
the C∗-algebras of a row-finite directed graph and its in-splittings are Morita equivalent.
We have analogous results for in-amalgamations and out-amalgamations as they are the
reverse operations of in-splittings and out-splittings.
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[BPRSz] T. Bates, D. Pask, I. Raeburn and W. Szymański. The C∗-algebras of row–finite graphs. New York

J. Math. 6 (2000), 307–324.
[Br] B. Brenken. C∗-algebras of infinite graphs and Cuntz–Krieger algebras. Can. Math. Bull. 45

(2002), 321–326.
[CG] T. Crisp and D. Gow. Contractible subgraphs and Morita equivalence of graph C∗-algebras.

Preprint, University of Newcastle, 2003.
[CK] J. Cuntz and W. Krieger. A class of C∗-algebras and topological Markov chains. Invent. Math. 56

(1980), 251–268.
[D] D. Drinen. Flow equivalence and graph groupoid isomorphism. Preprint, Dartmouth College, 2001.
[DS] D. Drinen and N. Sieben. C∗-equivalences of graphs. J. Operator Theory 45 (2001), 209–229.
[DT] D. Drinen and M. Tomforde. The C∗-algebras of arbitrary graphs. Rocky Mountain J. Math. to

appear.
[EW] M. Enomoto and Y. Watatani. A graph theory for C∗-algebras. Math. Japon. 25 (1980), 435–442.
[FW] M. Fujii and Y. Watatani. Cuntz–Krieger algebras associated with adjoint graphs. Math. Japon. 25

(1980), 501–506.
[GT] J. L. Gross and T. W. Tucker. Topological Graph Theory (Wiley Interscience Series in Discrete

Mathematics and Optimization), 1st edn. J. Wiley and Sons, Chichester, 1987.
[KQR] S. Kaliszewski, J. Quigg and I. Raeburn. Skew products and crossed products by coactions.

J. Operator Theory 46 (2001), 411–433.
[KPRR] A. Kumjian, D. Pask, I. Raeburn and J. Renault. Graphs, groupoids and Cuntz–Krieger algebras.

J. Funct. Anal. 144 (1997), 505–541.
[KPR] A. Kumjian, D. Pask and I. Raeburn. Cuntz–Krieger algebras of directed graphs. Pacific. J. Math.

184 (1998), 161–174.
[KP] A. Kumjian and D. Pask. C∗-algebras of directed graphs and group actions. Ergod. Th. & Dynam.

Sys. 19 (1999), 1503–1519.
[LM] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University

Press, Cambridge, 1995.
[MRS] M. H. Mann, I. Raeburn and C. E. Sutherland. Representations of finite groups and Cuntz–Krieger

algebras. Bull. Austral. Math. Soc. 46 (1992), 225–241.
[PR] D. Pask and I. Raeburn. On the K-theory of Cuntz–Krieger algebras. Publications of the Research

Institute for Mathematical Sciences, Kyoto 32 (1996), 415–443.
[PS] W. Parry and D. Sullivan. A topological invariant of flows on 1-dimensional spaces. Topology 14

(1975), 297–299.



382 T. Bates and D. Pask
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