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Abstract. Manifolds play a role of pressure balance, buffering and rectification for different branch pipelines,
the flow noise of manifolds has been a serious problem all this time in natural gas transmission station. By chang-
ing the number of outlet pipes of manifolds and the different positions of intake pipes, the distribution of the
Sound Pressure Level (SPL) of the manifold flow noise is analyzed based on the Ffowcs Williams-
Hawkings (FW-H) acoustic analogy theory and Large Eddy Simulations (LESs). The three-dimensional
simulation analysis of the flow field shows that pressure pulsation is the mainly source of manifold noise, as
the number of outlet pipe increases, the SPLs of fluid dynamic noise at the end of inlet pipes are significantly
reduced by about 10 dB on average, when the inlet and outlet piping are oppositely connected, the SPL is
2 dB~3 dB lower than that in staggered connections. An expansion-chamber muffler is designed with the analysis
of its noise reduction effect, the results show that after the muffler is installed, the noise reduction in the low-
frequency ranges reaches up to 37.5 dB, which controls the maximum noise to around 82 dB.

1 Introduction

For the past few years, with the rapid growth of natural gas
demand in China, the annual throughput of gas pipelines
has been constantly increasing. Consequently, many
stations experienced an obvious problem of noise pollution.
The continuous strong station noise not only can cause
damaging effects on people’s health, but also covers the
danger singer, resulting in the distortion of the measuring
instruments of pipelines, bringing severe harm to the
production safety [1, 2].

Though, there are a variety of noise sources in natural
gas station, which causes various types of noise, it is found
through field investigation that the mainly noise is the fluid
dynamic noise generated by the process pipeline and equip-
ment. Natural gas transmission includes multiple links,
when the station is pressure-regulated and diverted, the
flow state of the medium in the pipe is prone to abrupt
change, forming disturbance, eddy current and vortex
resistance, the friction along the pipe walls increases, and
the energy spreads out in sound waves. So, the aerodynamic
noise is thus generated. Especially for large-scale gas
stations, due to the dizzying number of intake and distribu-
tion pipelines, the noise problem is of great serious and can
not be evaded [3].

In the 1950s, the research of flow noise made great pro-
gress with the landmark event of the establishment of
Lighthill’s acoustic analogy theory [4, 5]. Lighthill equation
describes the sound field and the flow field separately, and
succeeds in resolving the problem of the sound caused by
moving fluid. Thereafter, experts and scholars all over the
word restudied the Lighthill equation and developed their
respective theories. Curle considered the influence of static
solid boundaries [6]. Powell proposed the theory of vortex
sound [7]. Williams and Hawkings extended Curle’s theory
to consider the influence of nonstationary solid boundaries
and obtained the famous Ffowcs Williams-Hawkings
(FW-H) equation [8]. Lauchle further developed Curle’s
theory and proposed the radiated noise model of boundary
layer transition [9]. Goldstein analyzed the noise mechanism
of moving transmission medium and obtained the univer-
sally applicable Lighthill equation [10]. With the develop-
ment of numerous theories, the understand of noise
mechanism has been more profound.

Early researches on aerodynamic noise were dominated
by the theoretical analysis and experiments. Ma et al. con-
ducted in-depth theoretical and experimental research on
the noise production of subsonic and supersonic jets and
obtained the relationship between turbulent jet noise and
pressure [11–13]. Wu studied the wave-vortex interaction
and the mechanism of vortex emission and absorption of
sound waves [14, 15]. With the development of computer* Corresponding author: enbin.liu@swpu.edu.cn
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technology, numerical simulation is realized, and various
turbulence calculation models are widely used. Mankbadi
et al. applied the LES to the study of jet noise and predicted
the far-field sound field [16, 17]. Wu and Zhang investigated
the 3-D separate flow of butterfly valve, gate valve and ball
valve in the water piping and proved that the flow noise at
valve downstream is bigger than that at the valve
upstream, and vortex motion is the mainly source of valve
noise [18]. Tan and Wang analyzed the velocity field in
downstream gas pipe of manifold and obtained the reason-
able velocity field distribution [19]. Liu et al. did several
aggressive studies on aerodynamic noise, which included
the analysis of the factors influence the noise of upright
venting pipes, elbows and manifolds [20–23].

The manifold is widely used in natural gas station and
plays a role of pressure balancing, buffering and rectifica-
tion for different branch pipelines. The pipe diameter of
manifold is much larger than that of most pipe segments,
and it usually works under high pressure. When natural
gas flows through a manifold, high level aerodynamic noise
is easily produced due to the influence of eddy current dis-
turbance [24–26]. In this paper, the flow field inside the
manifold is simulated. Meanwhile, an expansion-chamber
muffler is designed. The results of numerical simulations
show that the noise inside the manifold is decreased
obviously after the muffler is installed.

2 Numerical methods

2.1 Mathematical model

The FW-H function is widely used in aerodynamic acoustic.
It is derived from the Lighthill’s acoustic analogy theory
using the generalized function method and satisfies the
problem of flow noise caused by the interaction between a
nonstationary solid boundary and a fluid medium. Suppose
the moving object surface in the fluid can be described by
c(xi, t) = 0, and the area inside the object surface is repre-
sented by c(xi, t) < 0, the area outside the object surface is
represented by c(xi, t) > 0. The FW-H function is shown
below:
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where p0 is the sound pressure at far field (Pa); a0 is the
local sound speed (m/s); q0 is the fluid density (kg/m3);
un is the flowing medium velocity component (m/s); vn
is the surface velocity component (m/s); Tij is the Light-
hill stress tensor (Pa); d(c) is the Dirac function, and H(c)
is the Heaviside function. It satisfies:

H ðcÞ ¼
1; cðx i; tÞ > 0

0; cðx i; tÞ < 0

�

; d cð Þ ¼ @HðcÞ
@c

In Large Eddy Simulation (LES) theory, the motion is
divided into vortices of different sizes and the small-scale
vortices are thought to be less affected by the flow fields.
By filtering the N–S equations in physical space or wave
number, the equation can be obtained as follows:
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where sij is the subgrid stress (MPa); ui and uj are velocity
components of the fluid (m/s); xj is the length component
(m); t is the time(s).

In order to more intuitively analyze the Sound Pressure
Level (SPL) and its distribution inside the manifold, the
pressure pulsation signal receivers were placed, and the time
domain pressure pulsations measured by each receiver were
converted into the frequency domain using the Fast Fourier
Transform (FFT).

pðf Þ ¼ 1

2p

Z þ1

�1
p tð Þeitfdt; ð3Þ

where p(t) is the pressure function in time domain; p(f) is
the pressure function in frequency domain; e is the base of
the natural logarithm; i is the imaginary unit that has the
property i2 = �1; f is the frequency (Hz); t is the time (s).

The SPL can be written as:

SPL ¼ 20 log
prms

pref
; ð4Þ

where the SPL is measured (dB), prms is the pressure pul-
sation (Pa); pref is the reference SPL, and the value is
2 � 10�5 Pa.

2.2 Numerical calculation

With the modulation of the fluid field near the manifold by
ANSYS Fluent, the establishment of the model is done by
transferring the distribution of fluid to a sound source at
the surface of the manifold by the FW-H theory. The
steady-state condition of the k � e equation is selected as
the initial condition of the LES transient simulation. To
speed up the convergence, PISO is chosen as the iterative
method, and the time step is 2.5 � 10�4 s.

3 Result and discussions

Using Pro/Engineer to establish 3D models of the manifold.
The manifold diameter Dm = 600 mm, manifold length
Lm = 4000 mm, inlet pipe diameter Din = 200 mm, inlet
pipe length Lin = 800 mm, outlet pipe diameter Dout =
200 mm, outlet pipe length Lout = 800 mm. The fluid inside
the manifold is methane, and the sound velocity
c0 = 447 m/s, temperature T = 293 K, dynamic viscosity
l = 1.1067 � 10�5 Pa s. The boundary conditions are veloc-
ity-inlet and pressure-outlet. The fluid velocity satisfies the
no-slip boundary condition, which means that the velocity
at the pipe wall is 0.
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Taking the typical oppositely connected manifold with
one inlet and one outlet as an example, the manifold model
and grid division are as shown in Figure 1.

In the usage of LES, the calculation error caused by the
grid number and the time step need to be eliminated. In this
study, the effectiveness of this method is verified by
comparing the experimental results under four different grid
number (about 1 500 000, 3 400 000, 4 600 000 and
5 800 000).

As we can see in Figure 2, with the grid number
increase, the SPL changes little. And considering the
amount of calculation, in this study, 4 600 000 of the
computational grid number has been chosen.

Similarly, for time independency, the time step has been
selected as 0.00025 s.

3.1 Field and acoustic field

Studies have shown that there are two main causes of pipe-
line noise, one is the pressure pulsation caused by fluid flow,
and the other is the friction, collision and disturbance
generated by the internal medium motion inside the pipe
[27, 28]. The pressure pulsation inside the manifold is gen-
erally generated by the eddy current motion. In Fluent
post-processing, the eddy current motion can be analyzed
indirectly through the velocity field and the acoustic power
level distribution. The position where the eddy motion is
likely to occur, the pressure pulsation is large, and the noise
is easily produced.

Taking the oppositely connected manifold with one inlet
and one outlet as an example, the velocity field and acoustic
power level distribution are shown in Figures 3 and 4.

Figure 3 shows that, when flowing through the manifold
with one inlet and one outlet, the velocity at both ends of
the manifold is small, while the velocity at the inlet and out-
let pipes is relatively large, among which the velocity at the
outlet trachea is 10%~20% higher than that at the inlet
pipe. Because of the guiding of the outlet pipe, the fluid
inside the manifold ejected by the intake pipe moves toward
the outlet as it approaches the pipe wall. And combined
with the influence of the boundary layer near the manifold
wall, eddies appear and became the source of the fluid
dynamic noise. Moreover, the manifold diameter is much

larger than that of the inlet and outlet pipes. When gas
flows in the manifold, there is a sudden change in velocity
at the head of the outlet pipe. Causing greater pressure
pulsation, and the noise is generated in the manifold.
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Fig. 2. SPL distribution with different grid number. (a) SPL
distribution at the end of inlet pipe. (b) SPL distribution at the
head of outlet pipe.

Fig. 1. The geometric model and grid division of the manifold with one inlet and one outlet.
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The location of the maximum noise can be clearly seen
from Figure 4, that is, the first section of the manifold’s
outlet pipe. For the oppositely connected manifold with
one inlet and one outlet, the flow of the medium near outlet
pipe is unstable and cannot be smoothly transitioned.
Therefore forming strong eddies and generating noise.
Meanwhile, the flow is relatively stable and the velocity is
low at both ends of the manifold, which makes the flow
noise must also be low.

3.2 Sound pressure level

In Figure 5, pressure pulsation signal monitoring points
were placed inside the manifold, from which we can analyze
the SPL and its distribution more intuitively. By setting up
these monitoring points, the time-domain curve of pressure
pulsation at each monitoring point can be conveniently
obtained. However, it is not enough to observe the struc-
tural characteristics of the manifold spectrum only through
the time-domain curve of the pulsating pressure. At this
time, the FFT in Fluent acoustic module is utilized to con-
vert the time-domain curve of pulsating pressure into the
frequency-domain pulsating pressure.

The pressure pulsations in the frequency domain are
shown in Figure 6. It shows that, the SPL inside the

manifold is relatively stable with a small range of fluctua-
tion. The SPL is mostly distributed among 70 dB~80 dB,
where the maximum value is 96.4 dB, the minimum value
is 65.1 dB, and the average SPL is 75.8 dB. When the fre-
quency is around 850 Hz, 1200 Hz and 1800 Hz, the SPL
inside the manifold is obviously fluctuated, among which
the SPL at frequency near 850 Hz and 1800 Hz is higher
than the industrial regulation. Therefore, attention should
be paid to the excessive noise near these frequency bands.

By changing the number of outlet pipes of manifolds and
the different positions of intake pipes, the flow field and SPL
of these manifolds are compared. Through the FFT, the
pressure pulsations in the frequency domain at the end of
the inlet pipes are obtained. Among them, 1 and 2 are man-
ifolds with one inlet and one outlet, 3 and 4 are manifolds
with one inlet and two outlets, 5, 6 and 7 are manifolds with
one inlet and three outlets. The branches above the
manifolds are the intake pipes, and the lower branches are
the outlet pipes. Each inlet and outlet pipe is distributed
at 1/4, 1/2, 3/4 of the pipe segment, the inlet pipe of
manifold 6 is located at 3/8 of the pipe section, as shown
in Table 1.

The simulation results of manifold 2 have been shown in
Figures 3 and 4. In Figures 7 and 8, the simulation results of

Fig. 5. The sketch of manifold’s pressure-monitoring points.
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Fig. 6. The SPL distribution of the manifold with one inlet and
one outlet.

Fig. 4. Acoustic power level distribution in the manifold.

Fig. 3. Velocity contours in the manifold.
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manifold 3 and manifold 5 are presented. Through the com-
parative analysis of these simulation results, we can easily
find that although the manifold structure is different, the
causes of flow noise in manifolds are similar. Therefore,
the general rule of noise generation in the manifold can be
obtained, that is, if the flow state of the medium is abrupt,
and the flow cannot be smoothly transitioned, strong eddies
will be generated at the position where the flow velocity is
abrupt, and the faster the flow rate, the more irregular the
air passage, the easier it is to form eddies. Eddy currents
result in pressure pulsations. So, it can be reasonably

inferred that the position where the gas flow state is abrupt,
the noise inside the manifold is serious.

Figure 9 shows the pressure pulsations in the frequency
domain, from which we can see that, with the increase of
the number of outlet pipes, the SPL drops significantly,
and the positions of the intake pipes are different, the SPL
is also different. For the manifold with one inlet and one
outlet, the SPL is mostly distributed among 70 dB~80 dB,
but the SPL of the manifold 2 is 2 dB~3 dB lower than
that of the manifold 1. For the manifold with one inlet
and two outlets, the SPL is mostly distributed among

Fig. 7. Velocity contours and acoustic power level distribution of manifold 3.

Fig. 8. Velocity contours and acoustic power level distribution of manifold 5.

Table 1. The different structures of manifolds.

Manifold
structures

One inlet and one
outlet

One inlet and two
outlets

One inlet and three outlets

Numbers 1 2 3 4 5 6 7
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60 dB~80 dB, and the SPL of the manifold 4 is 2 dB~3 dB
lower than that of the manifold 3. In the frequency range of
20 Hz~800Hz, the SPL drops significantly. For the manifold
with one inlet and three outlets, the SPL is mostly
distributed among 50 dB~70 dB, and the SPL of the
manifold 6 is 1 dB~2 dB lower than that of the manifold 5,
the SPL of the manifold 7 is 1 dB~2 dB lower than
that of the manifold 6. In the frequency bands of
100 Hz~300 Hz, the SPL reaches the maximum. Therefore,
an effective method to reduce the SPL inside the manifold
is to increase the number of outlets, however, if the on-site
process is not permitted, it is wise to select a reasonable
manifold structure, which can also effectively reduce noise.

4 Expansion-chamber muffler design
and evaluation

Due to the inherent characteristics in reducing low and
middle frequency, small pressure loss and simple geometry,
the expansion-chamber muffler is being extensively used in
natural gas transmission station.

Figure 10 shows the muffling principle of expansion-
chamber muffler, that is, the expansion cavity causes reflec-
tion of sound waves, which hinders the normal propagation
of sound energy. According to the continuous conditions of
sound pressure, volume and velocity at the variable cross
section and the law of conservation of energy, the sound
pressure transmission coefficient can be obtained:

tp ¼
2S1

S2 þ S1

; ð5Þ

where tp is the sound pressure transmission coefficient; S1
is the area of the pipe section; S2 is the area of the expan-
sion section.

The sound intensity transmission coefficient can be
written as:

tI ¼
S2

S1

ðtpÞ2; ð6Þ

where tI is the sound intensity transmission coefficient.
The silencing effect of the muffler can be written as:

TL ¼ 10 log
1

tI
¼ 10 log

ðS1 þ S2Þ2
4S1S2

¼ 10 log
ð1þ S2 =S1Þ2

4S2=S1

¼ 10 log
ð1þmÞ2

4m
; ð7Þ

where TL is the noise reduction of the muffler; m is the
expansion ratio of expansion cavity.

The silencing effect of the expansion-chamber muffler
mainly depends on the ratio of its cross-sectional area
m = S2/S1, that is, the expansion ratio of expansion cavity,
while the length of expansion cavity has little influence on
the silencing performance of the muffler. Generally speak-
ing, increasing the expansion ratio is an important way to
improve the muffler’s silencing performance, however, the
expansion ratio is not as big as possible, in practice, it is
usually 5 < m < 20 [29, 30].

In the case that the length of expansion cavity remains
unchanged, three types of expansion-chamber mufflers with
expansion ratio of m = 6, m = 9 and m = 16 are selected
respectively to compare their silencing effect (Fig. 11).
The main design parameters are as follows: muffler diame-
ter D = 200 mm, muffler length L = 1000 mm, expansion
cavity diameter Dex = D

ffiffiffiffiffi

m
p

, expansion cavity length
Lex = 600 mm.

The numerical simulation of muffler silencing effect is
performed with the typical oppositely connected manifold
with one inlet and one outlet, and the muffler is connected
to the inlet pipe through a flange, as shown in Figure 12.
The SPL of manifolds with no muffler and three different
expansion ratios mufflers are shown in Figure 13.

As shown in Figure 13, when there is no muffler, the
SPL inside the manifold is mostly distributed among
75 dB~85 dB, and even more than 90 dB in some frequency
bands. After the muffler is installed, the SPL inside the
manifold shows a significant downward trend, especially
in the low frequencies (20 Hz~500 Hz). When the muffler

Fig. 10. Muffler schematic.
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is installed and the expansion ratio m = 6, the maximum
SPL inside the manifold is 91.1 dB, and the average value
is 70.4 dB. When the muffler is installed and the expansion
ratio m = 9, the maximum SPL inside the manifold is
82.2 dB, and the average value is 65.8 dB. When the muffler
is installed and the expansion ratio m = 16, the maximum
SPL inside the manifold is 80.6 dB, and the average value is
64.4 dB. As the expansion ratio increases, the silencing
effect of the muffler becomes better. For these three types
of mufflers, a large expansion ratio means a large expansion
cavity, and the large expansion cavity can more effectively
cause the reflection of sound waves, reflecting part of the
sound wave back to the sound source or reflecting back
and forth inside the expansion cavity. Thereby achieving

better purpose of silence. Considering the on-site installa-
tion conditions and economy, this paper selects a tapered
muffler with an expansion ratio of m = 9.

To analyze the silencing effect of the muffler with an
expansion ratio of m = 9, the end of the inlet pipe was
selected to compare the SPL in the low frequency bands,
as shown in Figure 14.

As we can see in Figure 14, the muffler effectively
reduces the SPL of the fluid dynamic noise inside the
manifold. The reduction of the noise is up to 37.5 dB, and
the mean noise reduction is 15.2 dB. It proves that the
designed expansion-chamber muffler is performed well in
noise reduction.

Fig. 11. The expansion-chamber mufflers with different expansion ratios.

Fig. 12. The manifold with an expansion-chamber muffler.
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The spectral power densities are shown in Figure 15.
It can be seen that the acoustic energy is mainly concen-
trated between 20 Hz and 200 Hz and reaches the peak in
a few frequency ranges and that the acoustic energy in
other frequency ranges is weak and near zero. At the same
time, the acoustic energy in low frequencies is greatly
reduced after the muffler is installed, which further proves
the excellent noise reduction effect of the expansion chamber
muffler.

5 Conclusion

The phenomenon of noise pollution exists in many natural
gas transmission stations. In this paper, the SPL of mani-
folds with different number of outlet pipes and different
positions of intake pipes are analyzed by ANSYS Fluent,
and an expansion-chamber muffler is designed to address
the fluid dynamic noise inside the manifold. The results of
numerical simulation show that:

(1) The SPL of manifold in natural gas station is rela-
tively high, and even reaches 100 dB in some
frequency bands, which is far beyond the upper limit
of 85 dB of noise emission in the specification.

(2) By changing the number of outlet pipes, the SPL
inside the manifold drops significantly. The SPL of
the manifold with one inlet and two outlets are
reduced by about 10 dB compared to the manifold
with one inlet and one outlet, and the SPL of the
manifold with one inlet and three outlets is about
10 dB lower than that the manifold with one inlet
and two outlets.

(3) The different positions of intake pipes affect the SPL
inside manifolds. When inlet and outlet piping are
staggered, the SPL is 2 dB~3 dB higher than that
of the opposite connection for the manifold with
one inlet, one outlet and the manifold with one inlet,
two outlets, when the inlet pipe is connected corre-
spondingly to the middle outlet pipe, the SPL is
lower than the other two structures for the manifold
with one inlet, three outlets.

(4) The designedmuffler can effectively reduce the SPLof
the fluid dynamic noise inside themanifold, especially
in low frequencies. The noise reduction is up to
37.5 dB, and the mean noise reduction is 15.2 dB.
The maximum noise in the manifold is controlled at
about 80 dB, and the average value is controlled at
about 60 dB.
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