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Abstract  
Employing Ravleigh's method, the collapse of a vaporous bubble in an incompressible 

liquid with surface tension is analysed. The expressions of time versus radius, bubble-wall 

velocity and pressure developed at collapse are thus introduced. 

Finally, the numerical solution of velocity and pressure field in the liquid surrounding 

the cavity is also given. 

I. Process  of Bubble Collapse 

The collapse of a spherical bubble in an inviscid incompressible liquid at rest at infinity is 

discussed here. Suppose that the initial radius of  bubble is R o, the radius at time t is R, the bubble- 

wall velocity at time t is U and the radial distance from bubble center to any point is r. The 

velocity u and velocity potential at any point in liquid can be expressed as IjJ 

UR* U R  z 
= - - - - - ~ l  u:= r 2 ( 1 . 1 )  

The expression for the kinetic energy of the entire body of  liquid at time t is given by 

-~-~ I :  ut " 4 z r ' d r =  ZzpU2RS ( 1 . 2 )  ( K E ) =  

where ,o is the density of  liquid. 

The external work done on the system as the bubble is collapsing from initial radius R o to radius 

R consists of: 

The work of pressure Poo done on the system at infinity 

4~ (R3o_R3)p~ .  ( 1 . 3 )  
WP~176 3 

The work of internal pressure p done on the system 

t 
' R 0  

Wp = 4zrRZpdR ( 1 . 4 )  
R 

Since bubble collapses very rapidly, the change of its volume can be regarded as an adiabatic 

process. Hence 

(~_~__o) 
3y 2or 

P = P '  + P ' - -  R ( 1 . 5 )  
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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in which p~ is air pressure inside the bubble at intial time (R = R 0, R = 0),P,-= P. (73 is vapor pressure 

inside the bubble, or= or(T) is surface tension of  liquid, ~' is the gas constant (adiabatic), Tis 

temperature of liquid. 

An expression for the work ofpressurep done on the system can be obtained from Eq. (1.4) by 

substituting (I.5) into (I.4) and performing the integration. This gives 

4r~Pl [ R~_RS(~-t) 3v ] W,---3(l_v) 

4srp r p s  ~ , , , o - R S ) - 4 s r c ~ ( R ~ o - - R ~ )  ( 1 . 6 )  

If the liquid is inviscid as well as incompressible, the work done appears as kinetic energy. 

Therefore, combining Eq. (I.2), Eq. (1.3) with Eq. (I.6), the following equation will be given 

3 (R'~ 3 ( l - - v )  

4~rpv (R'o --R 3) + 4 u ~ ( R [  - - R  =) ( 1 . 7 )  
3 

Which gives 

2Pt 

I(~--~~ s (~-~~ 2~ 1 ] )  ''z 
" - -~L~R / - ( 1 . 8 )  

Giving initial radius R 0 , temperature Tand pressure Pr the bubble-wall velocity U at any 

radius R can be obtained by means of Eq. (1.8) (in Fig. 1 and Table 1, the results o fcomputa ton  are 

shown). 

Table 1 The computation results of bubble-wall velocity (R.0= 3.556mm., T= 15"C .) 

R(mm) 
3.50 
3.00 
2.50 
2.00 
1.50 
1.00 
0.50 
0,10 

[ .P~----O.03 .P~o-'~O.05 t P~==O,I Poo='O.3 P:,o=O.5 Pco==O.T I Poo=l.O 

1 (kg/cmZ) (kg/cmZ) I (kg/cmZ) i ! ' (kg/em 2 ) (kg/em z ) (kg/em z ) (kg/cm 2 ) ! 
U(m/s). 

0.103 
0.238 
1.041 
2.564 
6.110 

17.164 
03.833 

2640.57 

b 

U(m/s) 

0.092 I 
i 0.647 

1.895 
i 

q 4.348 
10.054 I 

1 
27.776 
134.273 

J 4208.02 

U(m/s) 
0.057 
1.151 
3.140 
7 053 

16.139 
44.313 

213.384 
6074.10 

I U(m/s) 
! 0.132 
I 2.226 
! 5.911 

13.157 
29.968 
82.051 

1 394.305 
} 12324.47 

U(m/s) 
O. 196 
2.929 
7.748 
17.218 
39.188 

107.243 
516.327 

16100.9 

UCrals) 
0.243 
3.49,1 

9.226 

20.4.90 
46,618 
127.554 
612.843 

19146.5 

U(,,/s) 
0.301 
,1.201 

11.079 
24..694 

65. 944 
153.0,16 

735.254 
22969. 'T 

It can be tbund from Fig. I that the bubble-wall velocity rises rapidly with the R reducing. If 

R = II. l lnm. the bubble-wall velocity could reach the quantity of 105m]s. Alsc, in the whole process 

of bubble collapse, the increases of pressure P ~  will lead to the considerable increases of collapse 

velocity. 
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Table 2 The computation results of collapsing time (Ro=3.556mm., T= 1512 .) 

p:,o=0.08 

( k g / m ' )  

R(mm) t(s) 

3.40 7.5673X 10 ~ 

3.00 ,9,9455 x I0  ~ 

2 .50  4.9154 X 10 -3 

2.00 5.2279x 10 -z 
1.60 5.8589x 10 -~ 

1 . 0 0  5.4111x I0 -3 

0.60  5. ,1288X 10-: 

1.10 5.428T • 10 -s 
0.001 5,428Tx 10-: 

Suppose U = dR/dt, 

be expressed as 

P,::,o=O.05 

(~g/c -a)  

t (s)  

1.0365 x tO -3 

3,5355 x I0  -z 

3 .9904  X 10 -s 

4.1684X I0  -s 

4.2#88 x 10 -s 

4 .2788 x I0  -3 

4.2886 X I0 -~ 

4.289T X 10 -s 

4.2897X 10 -s 

Poo=0.1 

(kg/cmZ) 

t(s) 
1. 0048 X 10 -3 

2.3821 x l0  -3 

2.84T4 x 10 -~ 

2. T680 X 10 -3 

2.8045 x 10 -~ 

2, 8245 X 10 -s 

2.8308 X 10 -3 

2 .831  ( X  10 -s 

2 ,8314x  10 -s 

from Eq. (1.8), the time t re( 

poo=0 .3  

(kg/cm~) 

t ( s )  

13.72'81 x I0 ~ 

r 7.5042x 10 4 

8.8959x 10 -~ 

9.4755• -4 
9.7305 • 10 4 

9.8441 x 10 4 

9.8TT3 • 10 -4 

9 , 8 8 1 3 X  10" 

9 . 8 8 1 3 x  tO ~ 

Poo=0.5 Poo=O.T Po~=l.0 

(kg/em z) (kg/'cms) (kg/cm~) 

t(s) t ( s )  i t(s) 
i 

2.6982• 10 -d 2.2121 • 10-'i 1.8114• 10" 
5.6021x 10-4 ,L5534x 10 -~ 13.T68OX 10 -~ 
6.5619x 10 ~ 5.4428x10 -~ 4.4931x10-' 
7.0046X10 -d 5.8145X t0-d 4.8028x 10-' 

T.2039X l0 -d 5.9821X 10-"4.9,124• 10-' 

T.2863X10 "~ 6.0613x10 -d 5.0001x 10-' 

7.3116x 10 -4 6.0T2TX 10-' 5.01TgX 10-* 

7.314T x l0 -d 8.0T52• -d 6.0200• 10-' 

T.314TX 10 -d 0.0T52 x zo- ' js .0200x 10-, 

uired for a bubble to collapse from R o to R can 

2 , ,  R0 11 2p, r( R0 V 

' ~  x] ) ' -  J - <1.9> 

By doing numerical integrations to formula (1.9), we found the relationship of  time versus 

bubble radius under different P~, (See Fig. 2 or Table 2). 

Because the collapse velocity increases with the increase of p ,~ , the time of  collapse on Fig. 2 

will be cut short simultaneously. We see from Table 2 that under general pressure, the period of  the 

bubble collapsing completely (i.e. from collapse to the state of  free gas nucleus) is about l0 

seconds. Therefore, the collapse of  bubble is transient. 

Fig. 3 illustrates under Poo = 0.5 atm. the measured data and calculated results by Rayleigh's 

method and by the method given in this paper. 

Fig. 3 shows that the results derived from the method mentioned by this paper are more 

coincident with the measured results than that from Rayleigh's method. It is well-known that the 

following assumptions are taken in Rayleigh's method, i.e. considering the bubble as an empty one 
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and omitting the impacts of  the pressure inside the bubble and the impacts of  the surface tension of  

it. Because of  these assumptions, Rayleigh's method has more divergence from the measureed 

results. 

1.C 

2.C 

1.0 

R(mm) 

2 ' : L o  
" �9 ~ p~--o,Skglcrn:  

�9 "1 . ,  
. . . .  I ,  . . I  , . , o . ,  
1 Z - ]  l fi 6 I 

ap 
P+ -at dr 

It 

x 

Fig. 3 Comparison of R -  t curve Fig. 4 

II. De te r mi n at i on  o f  Veloc i ty  Field and Pressure  Field 

1. De terminat ion  of  velocity field 
The bubble-wall velocity U and bubble radius R at any moment  of  collapse can be obtained by 

means of Fig, 1 and Fig. 2. Substituting this Uand R into Eq. (1.1), we get the velocity of  any point in 

liquid (its radial distance is r) at this moment. 

R*U 
u---- r" ( 2 . 1 )  

For cavitation zone, we can use the Biot-Savart theorem to determine the velocity of  any point, 

which is similar to the determination of the induced velocity of  line vortices. 

2. D e t e r m i n a t i o n  of  pressure field 

Consider an element in the liquid in Fig. 4, where the radial distance is r, the pressure is p, the 

velocity is u, the acceleration is a .  

du au au 
. .  a,=--~=--~--u~ 

On the element, we have 

pdxdydr .a,= ( p+ ~ r  dr)dxdy--pdxdy 

au au 1 Op 
. .  a , = - - - ~ - - U ~ - ~ =  p Or (2 .2 )  

Then, by (l.1), we have u = UR2/F. Substituting this equation in (2.2), we get 

Po~R'o 2U'R* 2RU" 1 Op 
or*R* t r 6 r - r - - - - p  Or ( 2 , 3 )  
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Integrating (2.3) with respect to radial distance from r = , , .  to r, the final result is 

R '  p = (  2R _~_4 )UZp p~zR~ 
r rR* + P ~  ( 2 . 4 )  

Let R = R 0 (i.e. the moment  when collapse starts) then 

I f  the values of  P,~ , R 0 and Tare  given, substituting (1.8) into (2.4), the value of pressure at 

any point in liquid at any time can be obtained. 

For the outside of  bubble-wall (where r = R), formula (2.4) can be simplified as 

- - ~  p:~, ( 2 . 6 )  

I f  P~=O.O5kg/cm 2 , T=I5~ R0=3.556mm, r=R=O, lmm, from Table I, we get 

U2= 1.7707 • l0 ~3 mm2/s 2. Substituting these values into (2.5), we can see that the pressure p in the 

outside of  the bubble-wall is 258558.8 kg/cm 2 , when bubble collapses to R = 0. I mm. 

In the discussion above, the effects of  viscosity is omitted. The results of  computations indicate 

the appreciable effects of  the viscosity in retarding both growth and collapse for viscosities much 

greater than that of  waterl41, 
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