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In pumped-storage reservoirs, turbulent kinetic energy input from plant operation can be considerably high. Flow velocities
were measured by Acoustic Doppler Current Profilers near the intake/outlet structure to describe flow patterns induced by
pumped-storage operation in an Alpine reservoir. Recorded data allowed reproducing 1D and 2D velocity profiles along
the water column. The comparison between the main frequencies of the velocity signal and the discharge series from the
plant reveals correlation between recorded flow patterns and pumped-storage operation. Numerical modeling enhanced the
understanding of flow patterns developing near the intake/outlet structure. Both results reveal that water withdrawal by
pumping only marginally affects flow patterns in front of the intake, whereas water injected during turbine mode leads
to backflow areas and large-scale recirculation cells. Numerical modeling further revealed that steady flow patterns are
developing only after some 2.5 h of continuous turbine operation.
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Notation

Symbols

A area (m2)
Ai,eff effective in-/outflow section (m2)
C∗

k efficiency factor, converting wind to turbulent
kinetic energy (–)

D diameter (m)
f frequency (Hz)
H height (m)
P precipitation (mm)
PvE,N power of sampled velocity signal (mm/s)2

PQ power of sampled discharge signal (m3/s)2

p pressure (m)
Q discharge (m3/s, l/s)
T temperature (°C)
t time (s)
U, v velocity (m/s)
V volume (m3)
x′ longitudinal coordinate in the intake’s local ref-

erential (m)
x abscissa (m)
y ordinate (m)
y ′ Transverse coordinate in the intake’s local refer-

ential (m)
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Z vertical coordinate in Swiss grid (m)
�t time step (s)
ηTurb turbulent kinetic energy input per unit of area

and time (W/m2)
ηa natural turbulent kinetic energy input per unit of

area and time (W/m2)
ν kinematic viscosity (m2/s)
ρ density (kg/m3)

Indices

0 initial
a air, wind
E East
Gr Grimsel
i intake
L longitudinal
m mean
N North
Oa Oberaar
Pump pumping
T transversal
Turb turbine
turb turbulent
w water
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Introduction

Context

Over the last decades, pumped-storage hydropower plants
have gained in importance since they allow short-term
regulation of the power grid, storing energy during low
demand and generating peak electricity. Such facilities
normally consist of two reservoirs at different elevations,
between which water is moved up and down. Like in tra-
ditional storage hydropower plants, these reservoirs can
be affected by sedimentation processes if they are fed by
natural inflow (rivers and direct runoff from the valley
flanks) which transports sediment into the storage volume.
This filling up of the reservoir reduces storage capacity
and affects the operational and structural safety of the
plant (Graf 1982; ICOLD 1989; Schleiss et al. 2010). In
pumped-storage reservoirs, sediment inflow can also result
from the connection of two initially separated systems,
that is, particles can be transferred from one reservoir to
the other. For example, even fully artificial reservoirs with
any natural sediment input can be subject to sedimenta-
tion problems, as they are supplied with sediment-laden
water from the other connected upper or lower reser-
voir. In the framework of a Ph.D. thesis, Müller (2012)
investigated a new approach of keeping fine particles in
suspension, namely with the goal of benefitting from the
turbulence induced by pumped-storage cycles to hinder
fast settling and to improve sediment transfer through
the power intakes and bottom outlets toward the down-
stream reach. This paper presents the results of a prototype
monitoring campaign, aimed at describing the flow con-
ditions in front of the intake/outlet structure of an Alpine
pumped-storage plant.

Motivation

With increasing pumped-storage activity, especially the
areas in the vicinity of intake and outlet structures are
subjected to fast and frequent changes in flow conditions.
When water is ejected into the reservoir, turbulent flow
conditions are generated due to the inflowing jet. Dur-
ing water withdrawal from the reservoir, a potential flow
field develops, characterized by fast-decreasing flow veloc-
ities with increasing distance from the intake. Physical and
chemical properties of the involved water bodies can be
significantly altered (Potter et al. 1982). The mixing pro-
cesses due to pumped-storage operation were shown to
weaken thermal stratification and hence affect nutrients and
ecosystems in reservoirs and downstream rivers (Girgi-
dov et al. 1990; US Bureau of Reclamation 1993; Finger
et al. 2007). Imboden (1980) developed a mathematical
model of vertical temperature structure and predicted a
shift of seasonal thermal stratification of Lake Lucerne
(Switzerland) due to a hypothetical pumped-storage plant.
Fine sediment behavior can be affected by the plant opera-
tion as well. Settling of small particles in the water body

near the intake/outlet occurs if flow velocities are tend-
ing to very low values, that is, when energy available
for mixing is insufficient. In some cases, the turbulent
kinetic energy (TKE) input from power plants is high
enough to keep small particles in suspension or even
resuspend fine sediment from the reservoir bottom (US
Bureau of Reclamation 1993). Wolanski et al. (1992)
presented an application in maritime turbulence-induced
mixing.

To estimate TKE input ηTurb induced by power gen-
eration, Imboden (1980) gives the following formula
(adapted):

ηTurb =
QTurb · U2

Turb · ρIN

2 · A0
, (1)

where QTurb: the turbine discharge (m3/s), UTurb: the efflux
velocity at the intake (m/s), ρIN: the density of injected
water (kg/m3) and A0: the lake surface area (m2).

For maximum discharge of QTurb = 93 m3/s and
the Lake Grimsel area of 2.63 km2, an energy input
of ηTurb = 7.4 × 10−3 W/m2 is calculated. Taking into
account an average turbine operation of 6.5 h/d, the daily
mean TKE input is of ηTurb = 2 × 10−3 W/m2. As TKE
input from natural convective mixing or pumping activ-
ity has low influence on mixing of the water column
(Anderson 2010), it has not been considered in the present
calculation. The artificial TKE input can be compared to
the natural TKE input per unit area and time due to average
wind-forcing (Anderson 2010):

ηa = C∗

k · ρw ·

(

cD · ρa

ρw

)3/2

· U3
a , (2)

where C∗

k: an efficiency factor for converting wind energy
to TKE (–), ρw: the density of water (kg/m3), ρa: the den-
sity of air (kg/m3), cD: the drag coefficient (–) and Ua: the
wind speed (m/s).

The annual average wind speed at Grimsel Hospitz is
Ua = 5.6 m/s. Fluid densities of ρw = 995 kg/m3 (water
at 5.5°C) and ρa = 1.2 kg/m3 are assumed and, according
to (Anderson 2010), values of C∗

k = 0.23 and cD = 0.0013
are considered. Thus, a daily mean TKE input from wind
of ηa = 7.9 × 10−5 W/m2 can be defined.

Consequently, Lake Grimsel is subjected to a TKE
input due to pumped-storage operations, which is about 25
times higher than TKE naturally generated by wind. Even
when comparing the artificial TKE input from maximum
turbine discharge to the natural TKE input from periods
with very strong wind (Ua = 12.0 m/s), the latter is still
about 10 times lower than the TKE input from hydropower
operation. The water body of the reservoir, especially
near the intake and outlet structure, is affected by impor-
tant mixing processes of high TKE, which were shown
to weaken stratification and increase mixing frequency in
pumped-storage reservoirs (Imboden 1980; Potter et al.
1982; Bonalumi et al. 2011) and which are most likely
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to slow down fine sediment settling. Thus, a potential of
positively affecting the sedimentation process by in- and
outflow sequences exists, as this energy could be used to
disrupt settling processes in the reservoirs and to eventually
evacuate suspended sediment through the power intakes
or bottom outlets. However, the degree of disturbance
depends on the initial hydrological, sedimentological and
ecological conditions of the water body before pumped-
storage operation on the one hand, and on the layout of
hydraulic inlet and outlet structures and the exploitation
mode of the plant.

Objective and methods

To estimate the potential of keeping fine sediment in
suspension, knowledge of flow conditions in front of
intake/outlet structures during in- and outflow sequences
is required. Therefore, the objective of this study was to
implement a potential long-term monitoring method for
flow patterns in an Alpine reservoir and record velocity
profiles near the intake/outlet structure to define the impact
of the hydropower operation on flow fields and to correlate
flow patterns to pumped-storage activity.

Acoustic Doppler Current Profilers (ADCP) are com-
monly used for flow velocity measurement in rivers, lakes
and estuaries and provide a non-intrusive measurement
technique, that is, without disturbing the recorded flow
field (Gordon et al. 1999; Cook et al. 2007). Several
authors report the use of ADCP for discharge measure-
ments or concentrations of suspended solids (Gartner 2004;
Kostaschuk et al. 2005). Early long-term measurements
were carried out by (Schott & Johns 1987) who installed
an upward-looking instrument in the Somali Current and
recorded data for more than six months. In situ measure-
ments are often used to calibrate numerical or mathemat-
ical models or to compare prototype results to physical
modeling (Kostaschuk et al. 2005; Laval et al. 2005;
Elci et al. 2007).

Velocity measurements in front of intake structures
are carried out in order to either design the civil engi-
neering works or observe and confirm their adequate
functioning and their influence on the flow conditions.

Goto and Tsuchiyama (1998), Vermeyen (2002) and Dorf-
mann and Knoblauch (2008) used vessel-mounted ADCP
to study flow fields in a reservoir, to define withdrawal
for stratified and destratified reservoir conditions and to
develop flushing concepts for a run-of-river power plant.
Cook et al. (2007) as well as Vermeyen (2003) fixed
downward-looking instruments close to power intakes to
study velocities at a Kaplan turbine draft tube and provide
information about flow velocities previous to conducting
diving operations.

The paper introduces the study site and provides infor-
mation on the ADCP measuring equipment. Then, the
recorded velocity profiles in front of the intake/outlet
are presented and compared to the turbine and pumping
sequences of the power plant as well as to simulated flow
patterns.

Investigation site

The Oberhasli region is located in the Canton of Berne,
in the central Alps of Switzerland. The favorable hydro-
logical, geological and topographical conditions in this
area led to the construction of a complex system of dams,
water intakes, waterways and power plants since the 1930s.
Today, Kraftwerke Oberhasli AG (KWO) operates nine
power plants fed by eight main reservoirs, the largest being
Lakes Grimsel, Oberaar and Räterichsboden.

Reservoir characteristics

Since 1982, the Grimsel 2 pumped-storage power plant
(Figure 1) is operating water from Lake Oberaar and Grim-
sel located at 2303 and 1909 m a.s.l., respectively. Lake
Oberaar (Oa) provides an exploitable storage volume of
57 × 106 m3 and has a maximum depth of 90 m. Lake
Grimsel (Gr) has a gross storage volume of 95 × 106 m3

and a maximum depth of 100 m. The two lakes are con-
nected by a 5-km-long pressurized tunnel, guiding the
water from the two intake/outlet structures to the power
house Grimsel 2.

A volume of about 600–700 × 106 m3 of water is
pumped annually from Lake Grimsel into Lake Oberaar

Figure 1. Location map (a, source: www.worldofmaps.net (GNU Free Documentation License)) and layout (b) of the Grimsel 2
pumped-storage scheme.
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and moved back during turbine mode. Thus, the volumes of
the lower and upper reservoir are exchanged several times
throughout one year of hydropower operation.

The catchment areas of the two reservoirs are partly
glaciated. Denudation rate is 1–2 mm/year (Anselmetti
et al. 2007), leading to high sediment supply, generally
above 50 mg/l (Finger et al. 2006). The sediment charac-
teristics of this ‘glacier milk’ in both lakes were recently
investigated by Bühler and Siegenthaler (2003) and Bona-
lumi et al. (2011). Anselmetti et al. (2007) showed that
since hydropower exploitation, approximately 85% of the
annual sediment supply of 272 kt/year settles in the reser-
voirs, while only 40 kt/year are released downstream.
Thus, slowing down sedimentation by maintaining small
particles in suspension by pumped-storage operation or
even downstream transfer of fine sediment by the means
of power intakes or bottom outlets would be desirable to
slow down the filling-up process of Lake Grimsel.

In situ measurements by Bonalumi et al. (2011) showed
that the two reservoirs are ice-covered and inversely strat-
ified in winter, with water temperatures of Tw = 2.5°C
along the entire water column except for the first meters
below the ice, where Tw = 0°C. In summer, both reser-
voirs are ice-free and thermally stratified, with surface
temperatures reaching Tw = 14–15°C in the upper and
Tw = 10°C in the lower reservoir. In Lake Oberaar, the
thermocline is located at 15 m depth and bottom temper-
ature is about Tw = 4°C, while Lake Grimsel has no well-
defined thermocline and a bottom temperature of some
Tw = 5°C.

Intake/outlet specifications

At the foot of a 750-m-long inclined steel-lined shaft,
four independent pump-turbine units are located in the
Grimsel 2 underground power house and provide installed
capacities in turbine and pumping mode of 348 and
363 MW, respectively. The power house is linked to
the intake/outlet structure in Lake Grimsel by a pres-
sure tunnel of diameter D = 7.50 m. Discharges up to
QTurb = 93 m3/s are injected into the reservoir during
turbine mode, while during pumping mode, a maximum
discharge of QPump = 80 m3/s is withdrawn.

The Lake Grimsel intake/outlet is a submerged circu-
lar structure (Figure 2) embedded in a recess of the lake
topography, with its foundation platform located at 1842
m a.s.l. The lateral open cylinder has an effective height
Hi = 6.25 m and a diameter Di = 21.70 m. Ten guiding
walls are supposed to equally distribute the out-flowing
discharge on the ten sectors of the tulip. Considering the
diameter and the height of the structure, the circumferen-
tial outflow section is Ai = 426.08 m2. However, the net
in-/outflow section is reduced to Ai,eff = 143.58 m2 by a
dense trash rack which was found to be the most effec-
tive measure to guarantee uniform flow distribution at the
circumferential section (VAW 1982).

a)

Figure 2. Grimsel 2 intake/outlet structure in Lake Grimsel;
photo during construction period (a), schematic plan view (b)
and cross section (c). Sources: photograph courtesy of IUB Engi-
neering AG, with permission, and drawings from KWO, with
permission.

Assuming uniform flow distribution in the net cross
sections, water is injected at a speed of up to v = 2.1 m/s at
the shaft end and flow velocities are v = 0.65 m/s through
the trash rack. Minimum drawdown level of Lake Grimsel
is 1850 m a.s.l., resulting in an intake submergence of 2 m.

Other studies carried out on pumped-storage reservoirs
have shown that a sediment-laden inflowing jet from an
intake/outlet structure can be guided toward another intake
or a bottom outlet. However, the potential of transfer-
ring turbid water through the reservoir depends on the
intake/outlet geometry, the layout of the hydraulic works
and the lake bathymetry. Whether the circumferential jet
flowing into Lake Grimsel is able to reach a second power
intake, the Gelmer/Grimsel 1 intake at Spittellamm Dam,
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and eventually guarantee the downstream transfer of fine
sediment, remains to be seen.

ADCP measurements

Profiler settings

Flow velocity data were recorded by three 300 kHz ADCP
(Teledyne RDI, USA). Together with a 12V lead-acid bat-
tery (Yuasa Battery Europe Ltd.), each unit was mounted
on an aluminum and PVC frame, positioned on the Grimsel
reservoir bottom and fixed to a mooring buoy. Dual-axis
gimbals guaranteed a permanent upward-looking orienta-
tion of the instrument.

The low-frequency four beam ADCP sampled the
entire water column and were operated with a bin length
of 1.0 m and a fixed number of 85 bins, limiting the
measurement error on horizontal velocity components to
± 12 mm/s. The mooring height of the device of 0.8 m
and the profiler blanking distance of 2.96 m placed the first
recording bin at 3.7 m above the reservoir bottom. Conse-
quently, current profiles were registered from 3.7 m up to
75.0 m above the reservoir bottom, according to the lake
level during measurement periods.

Profiler position

The three ADCP measurement lines were chosen accord-
ing to the intake/outlet geometry and surrounding topog-
raphy. Assuming an equally distributed discharge over the
ten intake/outlet sectors (Figure 2), the measuring devices
were aligned along the supposed main directions of the
inflowing jets. The bathymetry of Lake Grimsel restricted
the implementation possibilities for the devices, as rela-
tively steep rock slopes surround the intake/outlet structure
in the West. Eastward, in the direction of Spittellamm dam,
the reservoir bottom is flat and situated almost 10 m below
the intake level (Flotron 2006). This invert area provides
most suitable conditions for velocity sampling since it

guarantees a stable position of the ADCP and a maximum
number of data sampling points along the water column.

Additionally, adequate locations of the profilers avoid
interference between the emitted ultrasonic beam and the
concrete civil engineering works or the beam of the neigh-
boring unit. Considering the maximum sampling height of
75 m and the 20° beam angle of the profiler, the ADCP
were placed at 50, 150 and 250 m from the intake in the
flat Eastern part of the reservoir, and at 30 and 90 m from
the intake/outlet in the steeper Northern and Southern part
(Figure 3). The closest device to the intake/outlet is named
P1, the farthest P3.

During the first campaign in September 2008, the
ADCP were placed on the flat part of the reservoir bottom
in line with in the main geographical orientation of Lake
Grimsel (E-NE). From a vessel, the ADCP were placed
at the corresponding profiler positions controlled by GPS
(Geko, Garmin, USA). A manual echo sounder allowed
measuring the water depth to confirm the foreseen record-
ing depth of the instrument. Positioning accuracy was
± 5 m in both East and North direction.

According to results of this first sampling period, two
additional measurement lines were defined for the second
campaign in November 2008, not only to better describe
the influence of in- and outflow on the flow patterns in
front of the intake/outlet, but also to evaluate reservoir
bathymetry effects and eventual longitudinal or transversal
movements of the entire lake (internal seiches). The sec-
ond measurement line was orientated almost exactly N–S,
the third again in the flat part, in E-SE.

Seiches are large-scale dynamics and have been
investigated by (Stevens & Lawrence 1997) for several
Canadian lakes and reservoirs, as well as by Bouffard
(2008) and Lemmin et al. (2005) for lake Geneva in
Switzerland. Munnich et al. (1992) investigated verti-
cal seiche modes and calculated horizontal velocities of
20 to 40 mm/s on the bottom of the 33 m deep Lake
Alpnach in Switzerland.

a) b)

Figure 3. Lake Grimsel bathymetry and positions of the ADCP for the three measurement periods (a) and photo of the frame-mounted
ADCP device (b); A is the upward-looking ADCP instrument (with protection cap); B, the dual-axis gimbals; C, the power supply and
D, the aluminum/PVC frame.
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Sampling periods and raw ADCP data

During the first in situ campaign, the ADCP data were
recorded for 5 days from September 15th to 20th. In
November 2008, sampling went on for two more weeks
from November 6th to 20th, during which only two ADCP
were operational due to technical problems of profiler
P3. Pitch and roll movements were recorded, defining
the moment of stabilized samplings for reliable recording
periods. KWO provided Grimsel 2 operation discharges
and Lake Grimsel levels for the measurement periods
(Figure 4).

For September 2008, reliable data were recorded from
Monday to Friday September 16th 00:00 to 19th 12:00
(called Sept). As shown in Figure 4(a), turbine sequences
were predominant during this term, while pumping activ-
ity was moderate during nighttime. Three times, the plant
was operated at maximum turbine discharge over 1 to 3 h.
In November, data were available from Friday Novem-
ber 7th 00:00 to Tuesday 11th 12:00 for the first (Nov1)
and from Wednesday November 12th 00:00 to Thursday
19th 12:00 for the second measurement line (Nov2). That
sampling period included main pumping sequences dur-
ing the night and especially during the weekends, whereas
the turbines were run at reduced capacity during most
of the sequences (Figure 4(b),(c)). Consequently, flow

velocities were registered for a large spectrum of in- and
outflow sequences, including relatively long periods of tur-
bine mode during weekdays and pumping mode during
weekends, but also short-term alternating pumped-storage
cycles.

Over the reliable sampling periods, the ADCP recorded
East- and North-velocity components on the water column
at a time increment of 5 min.

Taking into account the water level in Lake Grimsel and
the pressure recorded by the ADCP, the exact altitude of
the devices on the reservoir bottom was determined. Data
reveal that the instruments are placed slightly higher than
predicted, probably due to the reservoir bottom evolution
since 2006. Table 1 gives the altitude of the ADCP and
the corresponding first bin of velocity recording. Except
for the Nov1 campaign where ADCP were placed in the
steeper surroundings of the intake/outlet, the first sampling
bin is always located below the intake/outlet platform and
permits to cover the entire in- and outflow section.

Raw ADCP velocity data reveal that the first
20 to 30 m above the instrument include reliable veloc-
ity records, before very high values start appearing up to
the lake surface. These high velocities arise from insuf-
ficient suspended particles in the measuring cell to get
a representative velocity average over the sampled water

Figure 4. Temperature Tw on the reservoir bottom recorded by P1 (top), Lake Grimsel level (Gr, dashed line) and pressure p recorded
by P1 (middle) and pumped-storage discharge QTurb, Pump of Grimsel 2 plant (bottom) during ADCP sampling periods Sept (a), Nov1
(b) and Nov2 (c). Arrows indicate the plant exploitation discharge corresponding to the presented flow patterns in Figure 11.
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Table 1. Altitude (m a.s.l.) of ADCP instruments and of the first sampling point as well as Lake Grimsel level.

P1 P2 P3 Lake Grimsel level

Sept Device 1839.0 1840.0 1835.0 1907.2–1908.6 (1910a)
1st bin 1842.0 1843.0 1838.0

Nov1 Device 1839.0 1845.0 1863.0 1899.9–1900.9 (1900a)
1st bin 1842.0 1848.0 1866.0

Nov2 Device 1838.0 1835.0 1835.0 1900.3–1901.9 (1900a)
1st bin 1841.0 1838.0 1838.0

aConstant value assumed for numerical simulations.

volume, so that standard deviation of the velocity for these
cells is much larger. Thus, no reliable data were recorded
over an intermediate zone of about 30 m until the free sur-
face, which is clearly marked by excessive values due to a
signal amplification at the water–air interface.

Temperature measured on the lake bottom remained
almost constant at Tw = 5.5°C in September (Figure 4(a)),
with variations of ± 0.15°C. During November cam-
paigns, a continuous decrease from Tw = 4.5 to 3.5°C
indicates the process toward inversely stratified reservoir
conditions (Figure 4(b),(c)). Mid-term evolution of deep
water temperature seems not to be affected by the pumped-
storage activity. However, some temperature peaks were
recorded by the ADCP located closest to the intake/outlet
structure during turbine operations and are probably related
to the heat dissipation by the hydraulic machines.

Meteorological data

Wind direction and wind speed data for seiche estimations
and TKE calculation were available from the weather sta-
tion ‘Grimsel Hospitz’ located next to Spittellamm Dam,
provided by the Swiss Federal Office of Meteorology and

Climatology (MeteoSwiss) and the Swiss Federal Office of

Energy (SFOE). As the weather station was out of order in
September 2008, no data are available for the first mea-
suring campaign. For the three weeks measuring period
in November 2008, data at a time interval of 10 min was
considered. Main wind direction was transversal to Lake
Grimsel, direction S and S-SE, with maximum wind speed
up to Ua = 12 m/s (Figure 5(a)). Air temperature varied
from Ta = − 5 to 5°C and precipitation was limited to less
than P = 1 mm over relatively short periods. No impor-
tant rainfall or flood event is thus expected to affect flow
conditions in the lake.

Data processing

As described before, ADCP records comprised two inter-
ference zones with excessively high velocities, the first
originating from the loss of signal at a distance of some
20–30 m from the instrument and the second corre-
sponding to the free surface of the reservoir. Obvious
outliers in the time series of East or North-components

Figure 5. Wind direction and magnitude (a) and evolution of air
temperature Ta and precipitation P (b) for the period from 5th
November to 21st 2008 (meteorological data from MeteoSwiss,
with permission).

were not considered for the illustration of flow fields as
they originate from a signal loss during the measurement.
This unavoidably led to gaps in the raw velocity time
series, sometimes also in the interesting zone of mea-
surements. Consequently, average velocity resultants were
calculated over five time steps, slightly smoothing the pro-
file by a centered moving average but allowing keeping
the information on the dynamic processes in front of the
intake/outlet.

A detailed analysis of the velocity time series included
a comparison between power spectra of ADCP data series
and discharge data from the plant operator to correlate
velocities and pumped-storage operations. Based on the
Fast Fourier Transform, this approach is often used in sig-
nal processing and allows relating the power of a signal
to its corresponding frequency (Lyons 2004). A rectangu-
lar windowing function was applied for calculation, and
raw ADCP data were used to separately study the E- and
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N-velocity components. However, only the first 20 cells
above the reservoir bottom are considered hereafter, as
with increasing distance from the measuring device, the
spectra of the velocity signal becomes strongly affected by
noise.

Numerical modeling

The flow conditions corresponding to the three measure-
ment periods in Lake Grimsel were simulated numerically
in a 3D ANSYS-CFD model and the corresponding CFX
solver to study the influence of bathymetrical conditions on
the jet direction and backflow zones in the reservoir. Three
basic scenarios were studied, corresponding to the three in

situ measurement periods (Sept, Nov1 and Nov2; Table 1).
Additional simulations were carried out on the first turbine
sequence of the September scenario to study the sensitiv-
ity to temperature differences between the injected and the
resident water.

Geometry and meshing

Based on topographical data recorded during a reser-
voir drawdown in 2006 (Flotron 2006) the lake geom-
etry of equidistant contour lines of 10 m between
1830 and 1910 m a.s.l. was defined. The model repre-
sented 60% of the total Lake Grimsel volume, ending some
1000 m upstream of the intake/outlet location, as this part
of the reservoir was considered of negligible influence on
the flow patterns in the study area. The vertical connec-
tion between intake/outlet and shaft was reproduced with a
length of 5 m.

The edge length of the unstructured tetrahedral mesh-
ing elements was set to 5 m in the surroundings of the
intake/outlet structure and the entire reservoir volume from
1830 to 1860 m a.s.l. From there and up to the lake sur-
face, the elements started growing at a rate of 1.2, but
the edge length of all elements was systematically smaller
than 20 m. Boundaries were meshed with a maximum edge
length of 1 m except for the shaft section and the intake
body on which 0.5 m were imposed. These settings lead to
a computational mesh composed by 1.4 million cells.

Boundary conditions, simulation controls and model

validation

The main assumption regarding boundary conditions
concerns a constant reservoir level at 1910 and
1900 m a.s.l., respectively for the simulation of Sept and
Nov1 & 2 scenarios. Prototype-level variations during the
three measurement periods were limited to only ± 2.0 m.
As the model works at constant water level, continuity was
assured by an artificial withdrawal or injection of water
at the up- and downstream end of the model. Upstream,
water is provided through a 10-m-thick layer at the sur-
face and over the entire reservoir width. Downstream, a
virtual 10-m-high spillway opening over the total width

of Seeuferegg dam allows evacuating water during tur-
bine mode. The reservoir bottom and the two dams were
simulated as no-slip boundaries (v = 0) while at the lake
surface free-slip conditions were applied. The model of
Lake Grimsel and the corresponding boundary conditions
are illustrated in Figure 6.

The effect of Coriolis force is not included in the model.
The authors consider that the deviation due to earth rotation
can be neglected especially as we encounter bathymetric
lateral confinement near the intake/outlet structure by the
valley flanks and bottom. In that case, the influence of the
geometry becomes dominant.

On the lake bottom and along concrete works such
as walls and the top cover of the intake/outlet structure,
flow velocities were also imposed to zero. An in- or outlet
boundary condition was set at the end of the vertical
conduit, leading the water into or out of the reservoir.

a)

b)

Figure 6. Numerical model (ANSYS-CFD) of Lake Grimsel (a)
and detail of the calculation mesh around the intake structure
(b), A is the upstream boundary condition (inlet); B, the Grim-
sel 2 intake structure (inlet/outlet); C, the nine vertical profiles
corresponding to the ADCP positions around the intake/outlet
structure; D, the Gelmer/Grimsel 1 intake (outlet) and E, the
downstream boundary condition (outlet, Seeuferegg Dam with
implemented spillway crest).
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Simulation control comprised a transient analysis
with adaptive calculation time steps, applying a k-ε-
turbulence model. The model solved the corresponding
differential equations applying the second-order backward
Euler method. Simulation time steps were adapted from
t = 1 to 10 s according to the root mean square-
convergence criteria of a residual target of 0.0001. Tran-
sient results were registered every 5 min, respecting the
sampling frequency of the in situ measuring devices.

The lake volume was defined as continuous, non-
buoyant and isothermal fluid (clear water), respecting
water characteristics at a temperature of Tw = 5.5°C.
However, differences in sediment concentration or tem-
perature between the two lakes might affect flow patterns
in front of the intake/outlet, especially during generating
mode, when density differences between resident and
inflowing water lead to jet stratification. To approach such

a)

b)

Figure 7. Computed flow velocities at the trash rack of
the Grimsel 2 intake/outlet structure for turbine operation at
QTurb = 90 m3/s; numerically computed velocity map around
the intake/outlet section of the structure (a) and comparison of
flow velocities v at different levels Hi of the intake/outlet section
(b) found experimentally in a physical model (VAW 1982) and
computed by the numerical model.

behavior, two additional scenarios simulate flow fields
when warmer or colder water from the upper reservoir
is injected into Lake Grimsel. Temperature differences of
∆Tw = ± 0.5°C were admitted in these cases, based on
the ADCP observations.

The correct behavior and the reliability of the numeri-
cal model were evaluated based on the velocity distribution
at the trash rack of the intake/outlet structure, which had
been tested in a physical model prior to the construction
of the pumped-storage plant (VAW 1982). The numerical
model slightly overestimates flow velocities in the upper
part of the intake/outlet section between H i = 5 to 6 m but
otherwise reproduces very well the behavior found experi-
mentally (Figure 7). It can thus be considered well adapted
for the analysis of flow phenomena in Lake Grimsel.

Results and discussion

The ADCP recorded velocity components in East vE and
North direction vN, indicated in Figure 3(a). Three aspects
of flow patterns were analyzed based on the flow veloc-
ity data extracted from the measuring devices. First, the
main frequencies of the velocity time series were compared
to those of the discharge series to correlate flow patterns
recorded to the pumped-storage operation of the plant. Sec-
ond, the main flow directions both measured in situ and
calculated numerically were studied and opposed. Finally,
a quantitative analysis was driven to compare flow veloci-
ties recorded by the ADCP to the values calculated by the
numerical model.

On the one hand, the qualitative and quantitative analy-
sis of flow patterns is supported by 1D flow profiles, which
represent velocities in the planes built by the ADCP, that is,
resultants projected on the measurement lines. On the other
hand, 2D velocity vectors were plotted along the water
column above the measurement locations.

In numerical simulations, all nine ADCP positions were
analyzed for the three different in situ measurement peri-
ods. The model identified the main influences of topogra-
phy on the flow fields and recirculation cells and provided
order of magnitude data regarding flow velocities and tem-
poral response of flow patterns. Simulated velocity profiles
cover the entire water column, from the very bottom to
the free surface. Some of the information retrieved from
the numerical model was thus complementary to the in

situ measurements, especially the behavior of flow patterns
in the near-bottom zone and in intermediate depths which
lacked accurate in situ sampling.

Correlation between flow velocities and operation

discharge

Plant operation discharge signal is characterized by three
main peaks, at frequencies of f = 0.3 × 10−5, 1 × 10−5

and 2.2 × 10−5 Hz corresponding to periods 1/f of
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approximately 96, 24 and 12 h (Figure 8). These frequen-
cies are present for all three measurement terms, whereas
Sept scenario has a slightly higher magnitude.

Generally, velocity spectra flatten out into noise spec-
tra at frequencies around f = 4 × 10−5 Hz. Data sets
recorded further away from the device present more fluc-
tuations and do not show distinct peaks (gray lines in
Figures 8 and 9). The signals of the first recording cells
show the interaction between the temporal evolution of
velocity profiles and pumped-storage operation.

For P1 and P2 of the Sept measurement line, the E-
component shows a clear response to the three main peaks
of discharge with a main frequency of f = 1 × 10−5 Hz
or a period of about 24 h. The signal of N-components
is more scattered and distinct peaks are absent. At P3,
E-velocities present similar behavior, but a response of N-
components close to the bottom is observed at a frequency
of f = 0.3 × 10−5 Hz or a period of some 96 h.

The velocity spectra of data recorded in Nov1 line
presents different characteristics. P1 and P2 both reveal
a correlation between pumped-storage cycles and N-
velocity component (Figure 9(b), above). Additionally,

an important peak amplitude of E-velocity component
is observed at P2 at a frequency of f = 1 × 10−5 Hz
(period 1/f about 24 h) for the bins 2 to 6, confirming the
redirection of the flow toward the East of the intake/outlet.

Nov2 line in the invert is again presenting a strong
correlation between discharge and E-velocity components,
with higher amplitudes than observed at the same dis-
tance from the intake in September (Figure 9, below).
Again, both velocity components have a main frequency
of f = 1 × 10−5 Hz (period 1/f about 24 h), the predom-
inant frequency for all measured profiles.

Seiche periods in longitudinal and transversal direc-
tions of Lake Grimsel were computed considering a
lake length of 6 km and a width of 500 m, as well
as depth ranges from 37 m to 100 m. Thus, longitu-
dinal seiches would result in frequencies from fL = 1.6
to 2.6 × 10−3 Hz corresponding to a period of some
6 to 10 min and transversal ones from fT = 1.9 to
3.1 × 10−2 Hz (0.5 to 1 min). As peaks in this frequency
range are not observed for the recorded velocity signals,
it is assumed that no significant internal oscillation was
altering the flow field measurements.

Figure 8. Power spectra for discharge Q and velocity components vE,N at P1 (top), P2 (middle) and P3 (bottom) for the Sept measurement
line; E-velocity components (a) and N-velocity components (b). Discharge spectrum is represented by the blue line, velocity spectra at
5 m (continuous), 10 m (dashed) and 20 m (dotted) above the reservoir bottom are represented by black lines.
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Figure 9. Power spectra for discharge Q and velocity components vE,N for Nov1 (above) and Nov2 measurement lines (below); E-ve-
locity components (a) and N-velocity components (b) at P1. Discharge spectrum is represented by the blue line, velocity spectra at 5 m
(continuous), 10 m (dashed) and 20 m (dotted) above the reservoir bottom are represented by black lines.

Main flow directions in the vicinity of the intake/outlet

structure

Figure 10 presents typical axial flow velocity profiles for
pumping and turbine sequences during campaigns Sept

and Nov1 and reveals the already-mentioned non-valid
sampling zones near the surface and in the mid-water body.
1D profiles show that only the profiles close to the intake
are affected when water is pumped out of the reservoir.

(a) (b)

(c)
(d)

Figure 10. Typical flow velocities v recorded by the three ADCP, projected on the measurement lines for periods of pumping (outflow,
a) and turbine (inflow, c) for the Sept scenario and for pumping (b) and turbine mode (d) for the Nov1 Scenario.
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P2 and P3 on the Sept line do not clearly show the influ-
ence of the pumping operations and present non-structured
fluctuations.

In the flat part of the reservoir (W-E), only small axial
velocities are measured, indicating that either velocities are
low in this area, or not oriented in the measurement plane.

During turbine sequences (inflow), globally higher
axial velocities are measured than during pumping mode.
Some 5 m above the reservoir bottom the Sept line
flow directions at P1 and P2 start pointing toward the
intake/outlet most of the time, revealing a backflow phe-
nomenon in front of the intake structure (Figure 10(c)).
Only P3 in the flat reservoir part indicates velocity vec-
tors pointing away from the intake/outlet. This observation
confirms the well-known flow field caused by a jet issu-
ing into a reservoir such as during hydropower operation
as well as industrial applications. For the Nov2 line, which
is located in the flat part of the reservoir bottom as well,
similar behavior was observed, with backflow zones about
5 m above the bottom. However, flow directions pointing
away from the structure are more frequent.

The Nov1 line reveals that flow to the North of
the intake (profile on the right of the intake/outlet in
Figure 10(b)) is not primarily orientated in the intake-
ADCP direction. Apparently, flow is deviated quickly after
expulsion in the zone close to the steep rock slope. To the

South, where the slope is less steep, velocity profiles show
a clear tendency away from the intake/outlet.

To get additional information about the main orien-
tation of velocity vectors, plots including 2D velocity
profiles along the water column three-dimensional plots
were established and presented in Figure 11. As discussed
for axial velocities, inflowing water is mainly directed
toward E-SE (corresponding to the Nov2 measurement
line, Figure 11(e)), indicating the presence of a large-
scale circulation cell developing due to the confining
topography.

During pumping mode, main influence is observed at
the profile to the North of the intake, probably amplified
by the recirculation cell in the reservoir, which starts rotat-
ing counterclockwise during turbine mode and continues
turning even after stopping the power generation.

The deep zone of the water body is agitated contin-
uously and moves not only when pumps or turbines are
working, but also during periods with no in- or outflow
from the power plant.

Numerical results show very low effect of pumping
operation (withdrawal) at Grimsel 2 intake on the sur-
rounding water body. Only at the closest profilers, some
low velocities are observed. Otherwise the developed flow
field around the structure is not generating measurable
velocity vectors in the numerical model.

(a) (b) (c)

(d) (e) (f)

Figure 11. 2-D-velocity profiles near the Grimsel 2 intake/outlet structure during turbine (inflow, left) and pumping modes (outflow,
right); September 17th 13:20 h (a), September 19th 05:00 h (b), November 07th 10:30 h (c) and November 9th 07:30 h (d), November
17th 18:20 h (e) and 02:10 h (f). For the discharge data corresponding to the illustrated flow patterns, please refer to Figure 4.
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Turbine mode creates characteristic flow patterns with
a circumferential inflow from the intake/outlet section on
the lowest 5 to 7 m of the water column. Above this jet
area, a strong backflow zone develops toward the out-
let (Figure 12). These main characteristics correspond
to results of in situ flow patterns. However, the model
presents a higher consistency of flow profiles in time, with
less temporal fluctuation of velocity vectors.

The velocity vectors on the reservoir bottom are slightly
oscillating but keeping their main direction. In contrast to
the 2D ADCP flow fields, the Nov2 line is less influenced
by the inflowing jet, especially P2 seems to be placed in a
sheltered zone of almost no velocities. In fact, during the
entire simulation time, the vertical velocity profile at this
location remains unaffected by the inflowing water.

The measured profiles at P1 and P2 in the Nov1 line
are very well reproduced by the numerical model, empha-
sizing the complexity and instability of the flow fields in
front of the Grimsel 2 intake/outlet. Overall, the main flow
directions and backflow zones computed in the numerical
model correspond well to what has been measured during
the in situ campaigns.

Flow velocities around the intake/outlet structure

Results from the ADCP measurements in September reveal
that during pumping operation, maximum axial velocity
of v = 60 mm/s is reached in N-S direction at y ′

= 30 m
from the intake, with an alteration of the water col-
umn corresponding to the intake height, approximately
(Figure 10(a)). At x′

= 50 m to the East of the structure,
in the flat reservoir part, only some v = 20 mm/s were

recorded. The backflow zone during turbine sequences
presents axial velocities up to v = 50 mm/s (Figure 10(c)).
For the Sept measurement line, only P3 in the flat reser-
voir part indicates velocity vectors pointing away from
the intake/outlet with v = 30 to 50 mm/s during turbine
operation.

When water enters the reservoir, Nov1 line is char-
acterized by the flow deviation to the North and veloc-
ity profiles pointing away from the structure to the
South, which presents relatively high velocities around
v = 70 to 80 mm/s (Figure 10(b)).

Highest absolute velocities up to v = 120 mm/s are
observed close to the intake/outlet, as well as at both profil-
ers in the main flow direction (E-SE, Nov2, Figure 11(e)).
The few still very high velocity vectors located at the limit
toward the blind zone and the water–air interface are not
taken into account. In the backflow zones, mean velocity is
calculated at vm = 30 to 40 mm/s.

These velocity magnitudes can be compared to the
computations carried out by the numerical model. How-
ever, evaluation of the temporal evolution of flow pat-
terns, especially during turbine mode, could not be clearly
stated based on the ADCP measurements. The numerical
model allows systematic estimation of flow development
and average flow velocities could be calculated for the
reaches between the profiler locations. When turbines are
started after pumping or no operation, the flow injected into
Lake Grimsel reaches the two N-S profilers (Nov1) located
30 m from the intake/outlet after t = 5 to 10 min. The first
profilers in the invert at 50 m (Sept and Nov2) is reached
after t = 10 to 20 min, depending on discharge. This corre-
sponds to mean jet velocities of v = 40 to 100 mm/s. The

Figure 12. Development and magnitude of computed flow patterns around Grimsel 2 intake/outlet during turbine mode (inflow); t = 10
(a), 20 (b), 70 (c), 110 (d) and 140 min (e) after the beginning of the turbine sequence on September 16th 2008 07:00 h.
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response time between profilers is t = 30 to 65 min from
P1 to P2 and t = 45 to 75 min from P2 to P3 with cor-
responding flow velocities of v = 20 to 50 mm/s. These
orders of magnitude correspond to the values measured
in prototype both for the near structure zone and for the
measurement locations farther away from the intake/outlet.
Steady flow fields were observed only after 150 minutes of
continuous turbine operation. The temporal development
of velocity profiles computed numerically for a turbine
sequence starting on September 16th 2008 is illustrated in
Figure 12.

The mentioned velocities are valuable for jet propaga-
tion in nearly calm water conditions in the lake, that is,
when the water body flow is not moving any more after
pumping sequences or no operation periods. However, the
developed jet, which is continuously fed by water from
the intake/outlet, can reach higher velocities. At P1, up to
v = 200 mm/s are computed in the model and at P2 and P3,
and computed flow velocities reach v = 80 to 100 mm/s.

The flow connection between the Grimsel 2 and
Gelmer/Grimsel 1 intakes is established only after more
than 9 h of continuous turbine operation at Grimsel 2
(Figure 13). The circumferentially inflow is not creating
a well-oriented jet and velocities decrease quickly with
increasing distance from the intake/outlet. Thus, using the
two plants for suspended sediment transfer from Lake
Oberaar through Lake Grimsel into Lake Räterichsboden
is not a feasible measure.

According to results of the two additional scenar-
ios, based on the first 3 h of turbine mode on Septem-
ber 16th, a temperature difference of �Tw = ± 0.5°C
between inflowing and resident water does not funda-
mentally change the flow patterns in Lake Grimsel. Due
to relatively low-density differences for the simulations,
buoyancy effects remain small and do not change the dis-
tribution of the inflowing jet. However, if fluid properties

Figure 13. Volumetric distribution of flow velocity after t = 9 h
of turbine mode on September 18th. The large-scale recirculation
cell is indicated by the dashed arrow. Only the near structure zone
of the reservoir is agitated.

diverged more, for example, in the case of sediment-laden
water injected into less-turbid water, buoyancy effects
would probably affect the jet trajectory considerably and
change the flow fields near the intake/outlet structure.

Conclusions

In pumped-storage schemes, the thermal stratification and
nutrient content of the water body in the areas close
to the intake/outlet structure is known to be altered by
hydropower exploitation and sediment may sometimes be
resuspended and entrained. Keeping in suspension or even
remobilization of fine sediment could be an interesting
reservoir management strategy if the sedimentation and
filling-up processes represent an operational or structural
safety problem. To highlight the reservoir areas suscepti-
ble to sedimentation and those, which could possibly be
cleaned as they are subjected to high turbulence, knowl-
edge on flow velocities and directions are required. In Lake
Grimsel, the lower reservoir of the Grimsel 2 pumped-
storage scheme in the Swiss Alps, the calculated artificial
TKE input due to hydropower operation is about 25 times
higher than energy naturally generated by wind. There-
fore, it potentially presents the possibility to slow down
fine sediment settling by the means of plant exploitation.
To investigate how in- and outflow sequences influence
flow patterns in a pumped-storage reservoir, Lake Grimsel
was equipped with three ADCP which continuously sam-
pled flow velocities along the water column in front of the
intake/outlet structure.

Frequency analysis of the recorded velocity signal indi-
cates correlation between the sampled flow patterns and
the pumped-storage activity. The predominant period of
the velocity time series is 1/f = 24 h, corresponding to the
daily pumped-storage cycles of the plant. Seiche frequen-
cies were not discovered in the velocity spectra.

1-D and 2-D velocity profiles along the water col-
umn established based on the in situ data reveal that
pumping (withdrawal from the reservoir) only affects the
water body close to the intake while turbine mode (inflow
into the reservoir) generates relatively high flow velocities
perceptible even at some 150 m from the outlet.

Combined with numerical modeling, prototype flow
velocity measurements in the intake/outlet area of a reser-
voir combined with numerical modeling allows detection
of main flow directions and backflow zones in a reser-
voir, quantification of flow velocities in the surroundings
of the intake/outlet and evaluation of temporal response of
the water body to in- and outflow sequences. Due to the
autonomous power supply, the ADCP provide an adequate
mid-term monitoring system.

Pumped-storage activities have a measurable impact on
reservoir dynamics, as shown for the case of Lake Grim-
sel. Especially water ejected into the reservoir induces
large eddy flow fields in the reservoir, depending on lake
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topography and operated discharge. Compared to natural-
wind-induced kinetic energy input, hydropower operation
can become the driver parameter governing flow dynamics
in a storage volume. It could thus be specifically applied for
mixing the water in the vicinity of an intake/outlet struc-
ture, for example after the arrival of a turbidity current, and
thus slow down or even hinder fine sediment settling. As
flow patterns, turbulence, sediment settling and lake strat-
ification are related, flow monitoring in combination with
numerical modeling is a crucial step toward a sustainable
reservoir management.
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