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Flow Field Tomography with Uncertainty Quantification using a
Bayesian Physics-Informed Neural Network

Joseph P. Molnar and Samuel J. Grauer
Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802 USA

We report a new approach to flow field tomography that uses the Navier–Stokes and advection–diffusion equations to regularize
reconstructions. Tomography is increasingly employed to infer 2D or 3D fluid flow and combustion structures from a series of line-
of-sight (LoS) integrated measurements using a wide array of imaging modalities. The high-dimensional flow field is reconstructed
from low-dimensional measurements by inverting a projection model that comprises path integrals along each LoS through the
region of interest. Regularization techniques are needed to obtain realistic estimates, but current methods rely on truncating an
iterative solution or adding a penalty term that is incompatible with the flow physics to varying degrees. Physics-informed neural
networks (PINNs) are new tools for inverse analysis that enable regularization of the flow field estimates using the governing physics.
We demonstrate how a PINN can be leveraged to reconstruct a 2D flow field from sparse LoS-integrated measurements with no
knowledge of the boundary conditions by incorporating the measurement model into the loss function used to train the network. The
resulting reconstructions are remarkably superior to reconstructions produced by state-of-the-art algorithms, even when a PINN is
used for post-processing. However, as with conventional iterative algorithms, our approach is susceptible to semi-convergence when
there is a high level of noise. We address this issue through the use of a Bayesian PINN, which facilitates comprehensive uncertainty
quantification of the reconstructions, enables the use of a more intuitive loss function, and reveals the source of semi-convergence.

Index Terms—Bayesian inference, fluid diagnostics, inverse problems, physics-informed neural networks, regularization, tomog-
raphy, uncertainty quantification

I. INTRODUCTION

NON-INTRUSIVE, spatially-resolved measurement tech-
niques are required for research on fluid dynamics in

order to observe novel phenomena, develop models of flow
behavior, and provide data for the validation of computational
codes [1]. Quantitative optical diagnostics can be used to probe
a target flow without disrupting its development, but many
optical measurements are confined to a cross-section of the
flow field or provide line-of-sight (LoS) integrated information
and thereby fail to fully resolve the variables of interest.
Flow field tomography employs multiple simultaneous LoS
measurements, called projections, in conjunction with a re-
construction algorithm to infer quantitative 2D or 3D distribu-
tions of key variables (velocity, temperature, mole fractions,
etc.). This paper describes a new framework for tomographic
imaging of flow fields that is based on physics-informed
neural networks (PINNs) [2], [3]. Our approach significantly
improves upon state-of-the-art methods for estimating the
quantity (or quantities) of interest (QoI), including signal
processing techniques that employ a PINN to post-process
volumetric flow field measurements. Furthermore, we use a
Bayesian implementation to conduct uncertainty quantification
(UQ), which is needed for scientific measurements but is often
overlooked in flow field tomography due to complications
associated with ill-posed inverse problems [4].

Numerous tomographic modalities have been developed to
characterize reacting and non-reacting flows that contain gas-,
liquid-, and/or solid-phase constituents. Common variants in-
clude tomographic particle image velocimetry (PIV) [5], laser
absorption spectroscopy [6], chemiluminescence [7], laser-
induced fluorescence [8], laser-induced incandescence [9], X-
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ray imaging [10], and background-oriented schlieren [11],
among others. These diagnostics are united by common math-
ematical properties. In each case, individual projections are
described by a path or volume integral through the flow field,
and the full set of integrals for a measurement system consti-
tutes a “forward model.” Reconstruction consists in inverting
this model for a series of measurements to estimate a 2D or 3D
distribution of the QoI. However, reconstruction is an ill-posed
problem that inherently amplifies noise and is almost always
rank deficient in the context of flow field tomography [12]. In
other words, absent an impracticable quantity of projections or
an axisymmetric target, there exists an infinite set of solutions
that can fully satisfy the measurements. As a result, regu-
larization is used to incorporate additional information about
the flow into the reconstruction procedure to obtain a unique,
physically-plausible estimate for each set of projections.

In this paper, we use conventional and Bayesian PINNs
(C-PINNs and B-PINNs) to directly reconstruct flow field
variables from a limited set of scalar field projections. This
technique is applicable to numerous tomographic modalities,
including those mentioned earlier. PINNs can incorporate the
equations governing fluid motion through the use of a physics
loss term to estimate various QoI, and previous work employed
a PINN in the context of flow field tomography to infer
velocity fields from the temperature field reconstructed by
BOS tomography [13]. We show how a PINN can be used
for tomographic reconstruction per se, as opposed to post-
processing reconstructions with a PINN, by embedding the
projection model into the loss function. Our approach reduces
errors associated with the initial reconstruction algorithm,
which are unavoidable when using the post-processing tech-
nique. Moreover, we show how a B-PINN not only facilitates
UQ but can effectively utilize a wider range of loss functions
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1250-node grid100-beam array20-beam array

Fig. 1. Square domain used in our numerical demonstration of 2D flow
field tomography, including a 20-beam and 100-beam array. The zoom bubble
depicts a section of the low-resolution, 1250-node finite element mesh used
for reconstruction. Not shown are the 40- and 160-beam arrays as well as the
3600-node mesh that were also used in testing.

via the prior than can a C-PINN, including loss functions
that place a greater emphasis on the (known) flow field
physics. The resulting posterior distribution is suitable for
model checking and benchmarking of numerical codes.

II. FLOW FIELD TOMOGRAPHY

In general, tomographic measurements can be described by
a simple path integral,

bi =

∫ L

0

c [ri(s)] ds ≈
n∑
j=1

Ai,jcj , (1)

where bi is a projection (LoS-integrated measurement) from
the ith LoS, corresponding to a pixel or laser beam; c is the
QoI, such as a scalar concentration field; ri is an indicator
function in R2 or R3 that picks out a position along the
ith measurement path; and s is a progress variable that takes
values from 0 to the path length, L. The measurement domain
must be discretized, typically using pixels or triangle elements
in 2D or voxels in 3D. Next, the equality in (1) is approximated
using this basis; the discrete approximation is shown on the
right side of the equation, where cj is the value of c at the
jth basis function (pixel, node, voxel) and Ai,j is the path
(or volume) integral along the ith LoS over the jth basis
function. By convention, the imaging system comprises m
lines-of-sight; the basis contains n functions; the data and
QoI are arranged as vectors, accordingly, b = {bi}mi=1 and
c = {cj}nj=1; and the measurement sensitivities (Ai,j) for each
LoS and basis function are collated into an m× n matrix, A.
As a result, tomographic projections can be modeled by matrix
multiplication,

Ac = b, (2)

and reconstruction consists in inferring the unknown distribu-
tion c that explains the measurements in b. Flow field tomog-
raphy often features time-resolved data. For convenience, the
scalar fields and measurements may be stored in matrix form:

C = [c(1), c(2), . . . , c(K)] (3)

and
B = [b(1),b(2), . . . ,b(K)], (4)

where K is the total number of measurements.

A. Explicit Reconstruction Algorithms

Reconstructing c from b is necessarily ill-posed for one of
two reasons. Either

1) the column rank of A equals n, in which case the
compact kernel in (1) yields an ill-conditioned matrix
such that the pseudoinverse of A amplifies noise in b,
discretization errors, calibration errors, and the like, or

2) there are fewer linearly-independent lines-of-sight than
basis functions such that A has a nontrivial null space
and there exists an infinite set of vectors c that each
perfectly solves (2) [12].

Most imaging systems fall into the latter category. Historically,
iterative solvers, such as the additive algebraic reconstruction
technique (ART) [14], multiplicative ART (MART), and si-
multaneous iterative reconstruction techniques (SIRTs) [15]
have been used to solve (2). Additive ART and SIRT al-
gorithms approach the least-squares solution or a matrix-
weighted Euclidean norm of c (the matrix norm differs de-
pending on the SIRT variant) [15], whereas the MART ap-
proaches the vector c that best satisfies (2) and maximizes the
Kullback–Leibler divergence between the initial and converged
vectors [16]. The latter criterion promotes spatially-sparse
solutions when a voxel basis is employed, which has a direct
physical analog to particle fields in tomographic PIV. For this
reason, derivatives of the MART algorithm remain ubiquitous
in tomographic PIV, e.g., [17], and are the basis of several
major commercial codes.

All three classes of iterative techniques are sensitive to noise
due to the ill-conditioned nature of A. However, ART, MART,
and SIRT algorithms exhibit semi-convergence, meaning that
initial iterations contribute low-frequency solution components
that are robust to noise [18]. Accordingly, iterative solvers are
typically truncated in an ad-hoc manner to promote smooth
estimates of the QoI, called iterative regularization. Still, the
lack of explicit spatial (or temporal) information in these
algorithms leads to large reconstruction errors due to the low
number of viewing angles that is characteristic of flow field
tomography setups.

Numerous explicit regularization schemes have been pro-
posed to overcome the limitations associated with iterative
techniques, although iterative methods are often still used to
solve an augmented (i.e., regularized) system of equations.
Early examples of explicit regularization featured the use
of spatial filtering to smooth c in between each iteration
of a SIRT solver [19] or the use of a wavelet basis to
control the frequency content of reconstructions [20]. Classical
methods of regularization have also been adapted for flow
field tomography, including Tikhonov [21] and total variation
(TV) [22] regularization. These methods add a penalty term
to the residual of (2) in order to avoid solutions that have
undesirable characteristics. The Tikhonov penalty utilizes the
discrete Laplacian of c to produce spatially-smooth recon-
structions, and TV regularization is based on the Manhattan
norm of the gradient of c, which also yields smooth estimates
but may permit sharp discontinuities between smooth sub-
regions of the domain. Bayesian algorithms were initially
introduced to flow field tomography to interpret Tikhonov
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(x, y, t) → (c, u, v, p)

e1 = ux + vy
e2 = ut + uux + vuy + px – Re–1(uxx + uyy)
e3 = vt + uvx + vvy + py – Re–1(vxx + vyy)
e4 = ct + ucx + vcy – Pe–1(cxx + cyy)
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Fig. 2. Architecture of a PINN used in 2D flow field tomography: the network has a deep, fully-connected structure that maps spatio-temporal coordinates
fed into the input layer, (x, y, t), to QoI, c, u, v, p. Partial derivatives of the inputs with respect to the outputs are computed by AD and plugged into the
governing PDEs, and the residuals are collected into a physics loss term. The data loss may be constructed in one of two ways: (1) outputted concentrations
(Cout) are compared to concentration data from a conventional reconstruction algorithm (Cest), which may contain significant errors, or (2) the PINN output
is used to predict projection data via the measurement model (ACout), and the predicted measurements are compared to experimental projections, B. The
former method, post-processing, was introduced in [13], and the latter method, direct reconstruction, is the focus of this paper.

and TV reconstructions for the purpose of UQ [4], [23],
but the Bayesian framework also enables the use of explicit
statistical information about a flow field through the use of
auto-correlation functions [24], [25]. Each of these techniques
has been deployed to process data from a wide variety of 2D
and 3D flow field tomography tests. Nevertheless, without ex-
ception, the supplemental information is very general (usually
advancing some form of smoothness), and the penalty terms
are not fully-compatible with the flow physics. Moreover,
smoothing techniques intrinsically limit the spatial resolution
of a tomographic sensor [26] so an alternative approach is
desirable.

B. Deep Learning Reconstruction Algorithms

Recent progress in machine learning, brought about by
deep neural nets (DNNs), cheap computing power, and large
troves of data, has enabled all manner of progress in im-
age classification, natural language processing, and control
applications to name a few [27]. Convolutional neural nets
(CNNs) have been particularly successful in the realm of
image processing and were therefore adapted for tomographic
reconstruction by numerous groups. For instance, Huang et
al. [28], [29], [30] conducted 2D laser absorption tomography
and 3D chemiluminescence tomography via CNNs, and Wei
et al. [31], [32] used CNNs to reconstruct 3D mole fraction
and temperature fields from laser absorption measurements
of methane and ethylene flame doublets. These examples
employed the common supervised training paradigm, in which
phantom distributions (ctrain) paired with synthetic measure-
ments (btrain = Actrain) are used to train the network.
Phantoms for training have been obtained from previous
reconstructions [29], [30], random Gaussian fields [28], [31],
and large-eddy simulations [32]; random errors are usually
added to btrain to make the reconstruction procedure robust
to noise. While this approach can yield accurate estimates

of the QoI when the training set accurately represents the
target physics, the application of DNN-based reconstruction
to targets that exhibit unique flow structures is not reliable.

Deep learning has been used to post-process conventional
tomographic estimates to improve the accuracy and resolu-
tion of reconstructed fields as well as to infer additional
QoI. Notably, the group of Karniadakis reconstructed the
temperature field induced by natural convection above a hot
espresso cup via BOS tomography. The authors then fed their
reconstructions to a PINN to both refine the temperature field
as well as determine the velocity and pressure fields [13].
Unfortunately, by starting from error-laden reconstructions,
this technique fails to fully capitalize on the available informa-
tion, as substantiated in section III. Apart from [13], several
groups developed CNNs to increase the resolution of flow
fields in post-processing, e.g., [33], [34], but these examples
relied upon supervised training and CNNs are less effective
than PINNs at incorporating flow physics into the estimation
procedure [35].

Cai et al. [36] took an initial step beyond PINN-based post-
processing with their development of artificial intelligence
velocimetry (AIV). The authors used a PINN to estimate 2D
and 3D flow fields in a microfluidic channel from a series of
images that were recorded with a single camera. The PINN
outputted image intensities that were compared to experimen-
tal images in a data loss term. Additional losses were included
to enforce a no-slip boundary condition along the channel
walls as well as the Navier–Stokes equations throughout the
domain. Unlike CFD-based analysis, AIV does not rely on
inlet or outlet boundary conditions. Flow fields produced by
AIV were comparable to estimates from other methods such as
Deep-PIV [37], optical flow [38], and manual platelet tracking.
However, the authors did not examine the influence of noise
on the reliability of inferred fields. Moreover, the data loss
term in AIV did not account for the LoS-integrated nature of
the image data, which is a crucial consideration in flow field
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tomography and is central to our direct methodology.

C. Direct Reconstruction with a PINN

Physics-informed neural nets employ a simple DNN ar-
chitecture to solve both forward and inverse problems that
are governed by one or more partial differential equations
(PDEs) given a limited number of observations [2]. PINNs
map spatio-temporal coordinates that are fed into the input
layer to the corresponding QoI at the output layer through
a deep, fully-connected, feedforward network; an example of
this architecture can be seen in Fig. 2. The network is essen-
tially a functional representation of the relationship between
inputted spacetime coordinates and the unknown variables. In
a typical deep learning scenario, the outputs of a DNN are
compared to known values (training data), and the network’s
parameters (weights and biases) are tuned via backpropagation
(BP) to minimize the residuals, which collectively form a “data
loss” term. BP uses automatic differentiation (AD) to compute
partial derivatives of the outputs with respect to the weights,
biases, and inputs of a network [39]. PINNs take advantage
of this information to provide an additional loss term: partial
derivatives of the outputs with respect to the inputs are plugged
into the governing PDE(s) and the residuals are aggregated to
form an overall “physics loss.” Simultaneously minimizing the
data and physics loss terms via BP promotes outputs that both
match the data from measurements or simulations and conform
to known physics.

Raissi et al. [3] utilized PINNs to estimate 2D and 3D
fluid flow fields from sparse data. Here, we consider a 2D
case in which (x, y, t) coordinates are mapped to the flow
fields of interest, (c, u, v, p), where c is the concentration of a
passive scalar, u and v are the x- and y-direction components
of velocity, and p is pressure. In this context, fluid motion
is governed by the incompressible Navier–Stokes equations
as well as an advection–diffusion equation. These PDEs are
written in non-dimensional form and rearranged to yield a set
of “physics residuals,”

e1 = ux + vy (5a)

e2 = ut + uux + v uy + px −Re−1 (uxx + uyy) (5b)

e3 = vt + u vx + v vy + py −Re−1 (vxx + vyy) (5c)

e4 = ct + u cx + v cy − Pe−1 (cxx + cyy) , (5d)

where Re is the Reynolds number, Pe is the Péclet number,
and the subscripts ·x, ·y , and ·t indicate a partial derivative
with respect to space or time. Residuals at each node are
organized into a vector at each timestep. That is, e(k) =

{e(k)1,j , e
(k)
2,j , e

(k)
3,j , e

(k)
4,j}nj=1 contains the values of (5a)–(5d) at

each node at the kth timestep, and a matrix of residuals is
defined as follows:

E = [e(1), e(2), . . . , e(K)], (6)

where K is the total number of timesteps used for training, as
in (3) and (4). Finally, the physics loss term is simply

Lphys = ‖E‖2F , (7)

where ‖·‖F denotes the Frobenius norm.

In a previous effort, the data loss term was based on
“known” values of some QoI at selected (x, y, z, t) points
in the flow field [13]. For instance, the concentration field
outputted by the PINN, Cout, could be compared to recon-
structions computed using one of the conventional algorithms
mentioned in section II-A, denoted Cest:

Lest = ‖Cout −Cest‖2F . (8)

However, Cest is subject to reconstruction errors that ulti-
mately corrupt the function learned by minimizing this loss.
As an alternative, we propose to incorporate the measurement
model from (2) into the loss function,1

Lmeas = ‖ACout −B‖2F , (9)

which could be done for most of the modalities listed in the
introduction.2 In other words, a PINN trained with (9) will
learn a function that satisfies the governing physics and the
projection data, as opposed to error-prone reconstructions.
Finally, the loss terms are weighted and combined to form
a total loss,

Ltotal = γLest + Lphys or (10a)
Ltotal = γLmeas + Lphys, (10b)

where the parameter γ determines the relative influence of
physics and data losses. Equations (10a) and (10b) are used
for post-processing (per [13]) and direct reconstruction, re-
spectively.

D. Reconstruction Errors

We quantify errors in flow field reconstructions in terms of
a normalized Euclidean distance,

εx =
‖xexact − x‖22
‖xexact‖22

, (11)

where ‖·‖2 is a Euclidean norm; xexact is a vector of con-
centration (c), velocity (u or v), or pressure (p) data from a
known ground truth field; and x is the corresponding estimate.

III. 2D DEMONSTRATION

We demonstrate our approach to physics-informed flow field
tomography with a 2D example that resembles absorption-
based modalities [6]. The target flow contains a passive scalar
that is transported over a cylindrical bluff body, resulting in
an unsteady wake of vortices travelling in the streamwise
direction. Concentration, velocity, and pressure data for a
Re = 100 and Pe = 100 flow was obtained from the
direct numerical simulation (DNS) of Raissi et al. [3]. Their
computational domain consisted of 30,189 nodes distributed
throughout a 20× 40 (dimensionless) area, and they provided
data for 201 timesteps. We selected a 2×2 interrogation region
behind the cylinder having 6561 nodes. A snapshot of the DNS
concentration field in this region can be seen in Fig. 3.

1Similar methods have been used to reconstruct blood flow fields from
magnetic resonance imaging data [40], [41] and wind fields from light
detection and ranging data [42]. Our study represents the first such use of
PINNs for tomographic reconstruction.

2Complications arise in tomographic PIV because the projections are
proportional to LoS integrals over discrete particle fields as opposed to
integrals of the QoI.
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0.65
εc = 1.4×10–3εc = 1.6×10–3εc = 1.1×10–2

PINN
Post-processingBMGTikhonov

Conventional ReconstructionPhantom

Fig. 3. Reconstructions of a 2D flow field from noise-free data. Conventional
(i.e., non-PINN) reconstructions were obtained by Tikhonov regularization
and the Bayesian algorithm described in [25]. The latter reconstructions were
post-processed with a PINN using (10a), which provided a moderate reduction
in concentration field errors as well as velocity and pressure field estimates.

Readers should note that this work is limited by the use of
a single flow scenario. However, PINNs have learned a wide
variety of flow fields, discussed in depth by Cai et al. [35],
including turbulent channel flow [43], pulsatile blood flow
through arteries [44], forced convective flow within a power
electronics enclosure [45], 2D flows with bow and oblique
shock waves [46], and flow induced by natural convection [13].
Successful PINN representation of these flows suggest that,
given a proper measurement model and sufficient projection
data, PINN-based flow field tomography could be deployed in
comparable scenarios. The following tests serve to explicate
the training properties of PINNs with a tomographic measure-
ment model.
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Fig. 4. Average PSD of exact projections from the 100-beam data set as
well as projections corrupted with 2.5% and 5% noise. Note that the high-
frequency signal is almost entirely occluded by noise, which has a magnitude
on par with the low-frequency signal in the case of 5% errors. This is due
to the method for adding noise, i.e., 2.5% and 5% are relative to the largest
single measurement from any beam across the whole data set.

A. Measurements and Grid

Synthetic projection data was generated using path integrals
of the concentration field along “beams.” Measurements were
calculated by high-order quadrature to introduce discrepancies
between exact measurements of the quasi-continuous flow field
and discrete projections of the DNS data, Acexact, to avoid
the “inverse crime” [47]. All of the beam arrays featured four
viewing angles with a 45◦ separation between adjacent views.
Beams in each view were evenly spaced across the domain,
and we tested arrangements with 20, 40, 100, and 160 beams;
the 20- and 100-beam arrays are shown in Fig. 1. In addition
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Fig. 5. Reconstruction errors and losses throughout training: (a) switch-over from post-processing to direct reconstruction and (b) phases of direct reconstruction;
both tests feature noise-free data from 100 beams. In (a), the physics loss plateaus prior to the switch-over due to non-physical reconstruction errors in Cest.
After switching to direct reconstruction, the PINN is able to considerably reduce the measurement and physics losses, and errors in all of the fields are
minimized. In (b), three phases of direct reconstruction can be seen: (I) the concentration field is adjusted to minimize measurement errors while physics
losses increase; (II) the concentration field improves while physics losses level-off, during which time the concentration and streamwise velocity fields improve;
and (III) the measurement and physics losses are simultaneously minimized and the accuracy of all fields increases.
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Fig. 6. Comparison of concentration fields estimated from projection data using a PINN. A ground truth field is shown on the left; reconstructions and
error fields are plotted to the right. The first column of estimates and errors shows the results of post-processing conventional reconstructions of noise-free
projections from 100 beams; the remaining columns depict direct reconstructions. Directly reconstructing noisy data from 20 beams produced quantitatively
and qualitatively better estimates of the concentration field than post-processing reconstructions obtained with more, cleaner data.

to idealized noise-free data, we reconstructed measurements
corrupted by independent and identically distributed (IID)
Gaussian errors having a standard deviation equal to 2.5% or
5% of max(Bexact), resulting in individual projection errors
up to 25% in the 2.5% case and 56% in the 5% case. We
colloquially refer to these errors as noise throughout the text.
Figure 4 depicts the average power spectral density of the
noise-free and noise-laden 100-beam data sets. The magnitude
of noise is evident in this figure: the high-frequency signal is
dominated by high-frequency noise, which is commensurate
with the low-frequency signal in the 5% case.

Flow field variables were represented using the finite el-
ement method with a triangle element mesh, per [25]. We
tested a low-dimensional grid with 1250 nodes, pictured in
Fig. 1, and a high-dimensional grid with 3600 nodes. As such,
the rank of A was considerably lower than the number of
unknowns in each case, resulting in a limited-data imaging
scenario.

B. PINN Architecture and Training

Physics-informed neural nets used in this work were im-
plemented in both TensorFlow [48] and PyTorch [49]. The
networks discussed in this section comprised ten hidden layers
that contained 50 neurons per output variable. We used swish
activation functions because they have been shown to improve
the stability of the gradients needed to calculate (5) compared
to hyperbolic tangent and rectified linear activation func-
tions [3]. Weights were randomly initialized with a standard
normal distribution and biases were set to zero at the start.
Training was performed by minimizing (10a) or (10b) with
the Adam optimizer [50] at a learning rate of 1 × 10−3 for
the first 1000 epochs and 1×10−4 thereafter, where an epoch
indicates one pass through the full data set. The PINNs were
trained until the total loss reached a plateau, defined as a 1000-
epoch stretch over which the 500-epoch running average of
Ltotal decreased by less than 1%. On average, reconstructions
computed on an NVIDIA Tesla P100 graphis processing unit
took 95 hours to satisfy this criterion.

C. Post-Processing vs. Direct Reconstruction

We first set out to compare the performance of a PINN
trained on (10a), i.e., post-processing of a conventional recon-
struction, to a PINN trained on (10b), i.e., direct reconstruction
of the projection data.

Post-processing requires a suitable estimate of the scalar
field to specify the data loss term (Cest in (8)), which can
be obtained using one of the algorithms listed in section II-A.
To start, we reconstructed the scalar field with noise-free data
from 100 beams using Tikhonov regularization, but we found
that these estimates exhibited large errors and barely resembled
the phantoms. One instance from the reconstructed set is
shown to the right of the phantom in Fig. 3. Next, we tried the
Bayesian algorithm described by Grauer et al. [25], in which
the flow is modeled as a multivariate Gaussian process with
an assumed covariance structure. We adopted the exponential
decay matrix from [25] and conducted a parametric study
to optimize the variance and length scale parameters in the
prior, i.e., to ensure best case scalar field reconstructions for
post-processing. These estimates are hereafter referred to as
Bayesian multivariate Gaussian (BMG) reconstructions. Fig-
ure 3 depicts a BMG reconstruction alongside the correspond-
ing Tikhonov estimate. The BMG concentration field is visibly
superior to the Tikhonov one, although both reconstructions
contain sizable artifacts. We then post-processed the BMG
fields with a PINN using (10a) by setting Cest to be the
Bayesian estimates; the final panel of Fig. 3 depicts a resultant
concentration field from this procedure. Average concentration
field errors were 1.1 × 10−2 for the Tikhonov estimates,
1.6×10−3 for the BMG reconstructions, and 1.4×10−3 after
post-processing the latter fields with a PINN. In addition to
mitigating reconstruction errors in Cest, post-processing pro-
duced estimates of the velocity and pressure fields. However,
several large-scale artifacts in the conventional estimates were
left untouched by the PINN since those structures were treated
as known by the data loss function in (10a). As a result, the
supplemental fields were also prone to significant inaccuracies.

The difference between post-processing and direct recon-
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Fig. 7. Concentration, velocity, and pressure gradient fields from a 2D flow:
(row one) phantom distributions from a DNS, (row two) post-processing of
BMG reconstructions of noise-free data from 100 beams, (row three) direct re-
construction of noise-free data from 20 beams, (row four) direct reconstruction
of noisy (2.5%) data from 20 beams, (row five) direct reconstruction of noise-
free data from 100 beams, (row six) direct reconstruction of noisy (2.5%)
data from 100 beams. Errors in Cest produced by the conventional (BMG)
algorithm corrupt subsequent post-processing (row two); direct reconstruction
yielded noticeably refined fields with less measurement data, even in the
presence of noise.

struction is effectively illustrated through the use of a switch-
over from (10a) to (10b), the latter of which utilizes the to-
mographic measurement model to compare the PINN’s output
to projection data instead of error-laden reconstructions. To
test this hypothesis, we set up a PINN to minimize (10a)
for 45,000 epochs, at which point the loss function was
converted to (10b). Figure 5a depicts average concentration
and velocity field errors as well as losses throughout training.
All fields quickly improved from their initial random state,
stabilizing after approximately 10,000 epochs, at which point
the PINN’s output nearly matched the conventional Bayesian
reconstructions. This can be seen in the comparison between
Cest (i.e., the BMG reconstructions) and Cout in Fig. 5a. A
striking change can be seen at the switch-over: the outputted
concentration field departs from Cest and rapidly approaches
Cexact. This suggests that errors in Cest are incompatible with
the flow field physics and produce a high physics residual
that cannot be overcome due to the trade-offs between sat-

isfying (7) and (8). During the direct reconstruction stage,
physics losses fell far below their plateau at the end of post-
processing, errors in all fields were considerably reduced after
the switch-over. Average errors in the post-processed fields
were εc = 1.4×10−3, εu = 1.8×10−1, εv = 6.8×10−1, and
εp = 7.3 × 10−1. Errors in the directly reconstructed fields
were εc = 1.9 × 10−5, εu = 6.3 × 10−3, εv = 2.7 × 10−2,
and εp = 1.1 × 10−1. This amounts to substantial decreases
in error of 99%, 97%, 96%, and 85%, respectively!

In order to verify that direct reconstruction could be con-
ducted without a conventional precursor (that is to say, without
training a PINN on (10a) to predict Cest before switching to
measurement losses), we trained another PINN on (10b) from
the outset. Figure 5b depicts the errors and losses recorded
at the start of this test. We observed three distinct regimes of
training behavior. First was a measurement dominated regime
(phase I), during which the concentration field was quickly
altered to satisfy the projection data, i.e., minimize Lmeas. As
with conventional tomography, minimizing the measurement
loss per se is insufficient for reconstruction since there are
infinitely many concentration fields that satisfy the projection
data, most of which are non-physical. Moreover, there were no
meaningful changes to the velocity fields nor to the pressure
field during the first regime. In fact, the physics losses,
which began at a very low value, increased throughout the
first regime since the concentration field developed significant
structure while the other fields remained effectively random.
After several dozen epochs, the physics losses leveled off
(but did not appreciably improve) and the measurement losses
started to decrease once again. The peak of Lphys marked the
beginning of a hybrid regime (phase II) during which errors in
the streamwise velocity field started to diminish. Measurement
losses approached the physics losses after around 200 epochs
of training, indicating the onset of a fully-coupled regime
(phase III). This also coincided with maximum continuity
and momentum residuals, i.e., (5a)–(5c), since there was
no meaningful progress in the transverse velocity field to
accompany new structure in u from phase II. All flow fields
were simultaneously improved and all losses simultaneously
minimized during the third and final phase of training, which
continued until convergence.

We note two important aspects of the results in Fig. 5.
First, the flow fields produced at the end of switch-over test
were virtually identical to those produced by the PINN trained
solely on (10b), which suggests that curriculum learning is
not necessary for direct reconstruction. Second, the training
regimes in Fig. 5b were observed in every noise-free case that
we tested. The effects of noise are significant, however, and
we discuss them in detail in the next section, along with our
procedure for reconstructing noisy data with a C-PINN.

Figure 6 depicts a snapshot of the DNS-based ground truth
concentration field alongside a series of estimates obtained
by post-processing and direct reconstruction. Post-processing
was conducted using BMG reconstructions of noise-free pro-
jections from 100 beams, as before. Also shown are direct
reconstructions of projections from 20 beams and 100 beams,
both with noise and without. Errors fields are plotted below
each reconstruction and the Euclidean error is listed below
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that. Figure 7 shows the corresponding velocity and pres-
sure gradient fields next to the same set of concentration
fields.3 In our switch-over test, training the PINN on (10a)
produced the “post-proc.” fields and subsequent training on
(10b) produced the “direct 100 beams, no noise” fields. The
quantitative reduction in error plotted in Fig. 5a corresponds to
the qualitative improvement in estimates of c, u, v, and |∇p|
shown in Figs. 6 and 7. Direct reconstruction was far more
accurate than post-processing. Indeed, there was a near-perfect
visual correspondence of all fields directly reconstructed from
20 noise-free projections to the ground truth flow fields as well
as a reduction in error of two orders of magnitude relative
to the post-processed results. Moreover, direct reconstructions
of v and |∇p| from 20 noisy projections were comparable
to their post-processed counterparts, despite the availability
of five times more data with zero measurement errors in the
latter case. In all our tests, the concentration fields derived
from post-processing were noticeably corrupted by the recon-
struction errors in Cest, and the velocity and pressure gradient
fields bore little resemblance to the phantoms. This further
confirms our supposition that reconstruction errors in Cest are
incompatible with the physics residuals returned by (5).

D. Measurement Error and Semi-Convergence

Idealized projections, bexact = Acexact, are never available
in practice, and the inevitable discrepancies between bexact

and real data can have appreciable adverse effects on a recon-
struction. Such discrepancies arise due to model errors, e.g.,
stemming from the approximation in (1), beam misalignment
or calibration errors, laser intensity fluctuations, read noise,
thermal noise, and so on. Hence, it is crucial to assess the
stability of reconstructions in the presence of measurement
errors.

When applied to noisy (or otherwise error-laden) data,
iterative reconstruction algorithms such as the additive ART,
MART, and SIRTs usually approach the exact solution for a
few steps before changing course towards a relatively poor
estimate [18]. This behavior is called semi-convergence and
has been the subject of numerous theoretical and numerical
analyses, e.g., [15], [18], [51], [52], [53]. We observed a
similar phenomenon during the direct reconstruction of noisy
projections with a PINN. Figure 8 contains concentration
field error and continuity loss traces from three tests, using
projections from arrays with 40, 100, and 160 beams; the data
in these tests were corrupted with 5% IID Gaussian errors, per
section III-A. In each case, there was a progressive decrease in
εc for approximately 500 epochs after which the concentration
field errors began to increase. The qualitative effect of this
trend can be seen in the sample 40-beam reconstructions
located above the trace plots. The left-most concentration field
was outputted near the point of semi-convergence, i.e., the
minimum value of εc, while the snapshot on the right was
outputted at 6000 epochs, well after semi-convergence. The
former reconstruction is similar to the phantom (cf. the exact

3Throughout this paper, we plot |∇p| instead of p since the physics
residuals feature px and py and a reference pressure is required to infer
p. Errors in |∇p| are denoted εp.
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Fig. 8. Semi-convergence was observed in the presence of measurement noise
regardless of the number of projections. A stopping criterion was determined
using the reconstruction phases observed in Fig. 5b. Network parameters
were extracted from the point at which a five-epoch running average of
the continuity residual reached 95% of its maximum value, which roughly
corresponds to the transition from phase I to II. This procedure yielded a
good approximation to the true concentration error minimum. It should be
noted that training was conducted at a fixed learning rate of 1 × 10−3 to
generate these figures (i.e., instead of switching to 1 × 10−4 after 1000
epochs), although this did not materially affect our results.

concentration field shown in Figs. 3–7) whereas the latter
estimate contains significant artifacts (note the larger data
range).

Conventional iterative reconstruction algorithms exhibit
semi-convergence because early iterations add components to
c that have a low spatial frequency while later contributions
feature high-frequency components that are more easily influ-
enced by errors in b (see the PSDs in Fig. 4). This tendency
can be deduced through a singular value decomposition of A,
which is left-multiplied by the corresponding preconditioner
matrix in the case of a SIRT algorithm [18]. It so happens
that most flow fields of interest have significant low-frequency
content, resulting in semi-convergence, although this is not
mathematically necessary (meaning that one can devise a
phantom which does not lead to semi-convergence). Crucially,
the measurement residual, ‖Ac(k) − b‖22, continues to mono-
tonically decrease with further iterations in spite of semi-
convergence. In other words, the fully-converged, error-prone
reconstruction accurately reflects the information implicit in
the objective function, subject to noisy data. In principle, this
can be overcome through the use of an objective function
that contains more comprehensive and/or accurate information,
which is the aim of regularization and motivates our use of
Lphys.

A similar semi-convergence mechanism is at work in tomo-
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Fig. 9. While reconstructions are adversely affected by measurement noise,
accurate concentration field estimates can be obtained using the maximum
continuity residual stopping criterion given a sufficient number of projections.

graphic reconstruction with a PINN. Resembling the iterative
linear solvers mentioned above, DNNs trained by gradient
descent have been shown to learn low-frequency components
of the outputs early on, followed by components of increasing
frequency as training continues [54], [55]. In particular, an
analysis of PINNs revealed a spectral bias in training as well
as differential rates of convergence among various components
of the loss term [56]. As a result, early truncation of training
essentially amounts to frequency-based regularization of the
network’s outputs. This effect can be seen in Fig. 8, wherein
the erratic, inaccurate estimate on the right side yielded a
lower overall loss than the more reasonable, semi-converged
estimate on the left side because the fully-converged PINN
was overfitted to high-frequency components of the data that
were dominated by noise. It is interesting to note that this
behavior also appeared in our switch-over test: velocity field
errors during post-processing can be seen to exhibit semi-
convergence in Fig. 5a, with errors in u and v subsequently
increasing as the PINN matched its output to Cest.

One obvious solution to the problem of semi-convergence,
akin to classical regularization, is to place greater emphasis
on the physics residuals by decreasing γ. However, this did
not produce the intended result, as shown in sections III-E,
III-F, and IV. Therefore, given noisy data, it is desirable
to halt training prior to convergence, i.e., to use iterative
regularization. It is not desirable, however, to select the halting
point heuristically (although doing so is common practice in
conventional flow field tomography). Fortunately, the training
regimes introduced above can be used to time the iterative reg-
ularization of direct reconstructions. Recall that the maximum
continuity and momentum losses occurred at the transition
from phase I to II of training on noise-free data, where phases
I and II were relatively quick compared to the final, fully-
coupled phase. While this trend is readily apparent by visual
inspection, as in the continuity traces in Fig. 8, the boundary
between phases is somewhat vague so the details of any precise
metric will be arbitrary. We extracted the network parameters
at the point where a five-epoch average of the continuity
loss reached 95% of its maximum value. This criterion neatly
coincided with the physics loss plateau in all of our tests.

The location of semi-convergence and our stopping point
are indicated in Fig. 8 by a solid turquoise line and dashed
blue line, respectively. In each case, the maximum continuity
loss was nearby the point of semi-convergence, sometimes oc-
curring beforehand and other times afterwards. We conducted

extensive tests using noisy data, outlined in section III-F,
throughout which the value of εc at our stopping point
remained within 8.89 × 10−4 of the true minimum, which
is not known in practice; the average difference between εc at
our stopping point and at semi-convergence was 2.72× 10−4.
Several sample concentration fields obtained using our crite-
rion are shown in Fig. 9, which depicts reconstructions of 20-,
100-, and 160-projection data sets contaminated by 5% noise
(the 40-beam estimate was shown earlier in Fig. 8).

It is important to note that measurement errors have a
greater impact on fields inferred solely from Lphys (u, v, and
p in this case) than on fields that are also included in the data
loss (c). This effect can be seen in Fig. 7, where increases in
εu, εv, and εp from a noise-free case to its noisy counterpart
are considerably larger than the corresponding increase in εc.
Incorporating additional measurements that are sensitive to the
velocity and pressure fields can dramatically improve all of the
reconstructed fields.

E. Optimizing γ

The relative contribution of measurement and physics resid-
uals to Ltotal is an important consideration in direct recon-
struction. We tested eight decibels of the weighting parameter,
γ, ranging from 10−7 to 100, in order to determine the optimal
trade-off between Lmeas and Lphys. Testing was conducted
on 100 clean projections as well as measurements perturbed
by 2.5% and 5% noise. Average concentration field errors
recorded in the first 500 epochs of training are shown in
Fig. 10. While exact c, u, v, and p fields should always
represent a significant minima of Ltotal irrespective of the
weighting parameter, especially in a noise-free test, values
of γ below 10−3 and above 10−1 failed to generate usable
reconstructions. A low weight on the data loss tended to yield
trivial solutions (for instance, Lphys is minimized by zeros),
and data-heavy weighting schemes produced reconstructions
akin to those from a traditional iterative algorithm, like the
ART, sans regularization. Weights of γ = 10−3 and 10−2

produced acceptable reconstructions regardless of the level of
noise. Slightly better performance was realized when γ was
set to 10−3 so we used this value in our tests unless otherwise
mentioned.

Reconstructing noise-free data with γ = 10−3 led to highly-
accurate estimates of all fields, even in the 20-beam case, as
can be seen in Fig. 7. However, error-laden data resulted in
semi-convergence, as described above, limiting the veracity
of reconstructions. Accuracy of the velocity and pressure
gradient fields was acutely limited because these fields were
only learned by minimizing Lphys, and this process had to be
prematurely truncated in order to regularize the concentration
field. It stands to reason that, given an appropriate estimate
of c, increasing the influence of Lphys relative to Lmeas could
counteract the effects of noise; e.g., γ could be decreased near
the point of semi-convergence. Changing the loss function in
this way is known as adaptive training.

Several methods of adaptive training have been devised for
PINNs, which could be applied in the case of direct recon-
struction. For instance, Wang et al. [57] developed a learning
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rate annealing procedure that automatically weights individual
loss terms as a function of their gradient statistics. Several
new parameters were introduced to control this process so Jin
et al. [43] proposed a modification of Wang’s method that
required fewer user-specified inputs. We explored the potential
of dynamic weighting by implementing step-wise reductions
of γ as well as an exponential decay of γ; adjustments to γ
were made at an idealized, predetermined point shortly after
semi-convergence. Three step sizes were assessed, γ2/γ1 =
10−1, 10−2, and 10−3; the exponential decay was conducted
at a rate constant of unity; and both the step and decay tests
were done with 2.5% as well as 5% noise. In several of these
tests, there was a brief decrease in εc, but the minimum value
never fell below the semi-converged value. Moreover, most
cases did not yield an appreciable decrease in error, and all the
revised weighting schemes exhibited a secondary instance of
semi-convergence, meaning that iterative regularization would
be still be required when using an adaptive weighting scheme.
Errors in the velocity and pressure gradient fields did not
improve after re-weighting. These results do not support the
use of adaptive weighting in direct reconstruction with a PINN.
Moreover, the results in section IV suggest that the sensitivity
to γ observed in Fig. 8 is an artifact of the topology of Ltotal.
Therefore, while it is possible to identify an appropriate value

of γ for conventional training, the statistical reconstruction
framework introduced in section IV may be more suitable in
the presence of measurement noise.

F. Parametric Performance Tests

We conducted extensive testing to assess the effects of the
grid resolution, beam count, and magnitude of measurement
errors on the accuracy of direct reconstructions. Like in
previous sections, post-processing was performed on BMG
reconstructions of noise-free data from 100 beams to provide
a baseline for comparison. Measurements from 20, 40, 100,
and 160 beams were directly reconstructed, without noise to
start and subsequently with 2.5% and 5% Gaussian errors.
Moreover, every beam configuration and level of noise was
tested in conjunction with our 1250-node “coarse” grid and
the 3600-node “fine” grid. Average values of εc, εu, εv, and
εp from these tests are listed in table I along with concentration
field errors of the BMG estimates.

The density of inputs, (x, y, t), in space and time is of
considerable interest because it affects the accuracy of re-
constructions as well as the cost of training. There are two
mechanisms by which accuracy is affected. First, residuals
from (5) should be zero throughout the measurement domain
so adding collocation points effectively increases the amount
of training data that is used to learn the flow. Second, the
accuracy of the discrete projection model in (2) increases
with the mesh resolution. Discrepancies between (1) and
(2), called model errors, corrupt reconstructions in much the
same way as measurement noise. Both mechanisms provide a
strong incentive to maximize the number of inputs subject to
constraints on one’s computational resources.

Cai et al. [13] found that significant artifacts arise when
post-processing tomographic reconstructions with a PINN if
the density of inputs falls below a critical threshold. We saw
little change in the accuracy of post-processed fields upon in-
creasing the node count from 1250 to 3600, indicating that our
coarse grid of points already exceeded the minimum density
threshold observed by Cai and his colleagues. By contrast,
the same switch significantly improved the accuracy of direct
reconstructions in key tests. For instance, while switching
from our low-resolution grid to the high-res grid only reduced
εc by 0.07% in post-processing, concentration field errors
in the direct reconstruction of 20 noise-free projections fell
by over 90% after changing grids. Crucially, εc decreased
with increasing resolution in all direct tests that featured no
noise or 2.5% noise. However, accuracy gains associated with
adding nodes diminished in the presence of 5% noise, and
even reversed in the 40-beam case (although that particular
result was also adversely affected by our stopping criterion
due to a sharp increase in εc following semi-convergence).
Concentration field errors in the 160-beam test with 5% noise
were effectively invariant to our grids. This suggests that,
given a sufficient number of projections, the resolution of
reconstructions is limited by the intensity of noise rather than
the density of (x, y, t) inputs. Consequently, it is important
to ensure the collection of clean data (or at least an ample
amount of data) if one needs high-resolution reconstructions.
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TABLE I
AVERAGE RECONSTRUCTION ERRORS FROM PARAMETRIC TESTS OF DIRECT RECONSTRUCTION WITH A PINN

Noise Beams εc × 10−5 εu × 10−3 εv × 10−2 εp × 10−2

BMG Coarse Fine Coarse Fine Coarse Fine Coarse Fine

Post-Processing 159.46 136.09 135.99 216.68 181.52 52.80 68.47 82.81 73.16

0.0%

20 303.85 86.67 5.22 41.13 6.01 23.52 3.33 47.39 12.45
40 182.53 11.35 2.66 9.02 4.42 3.64 2.06 10.64 6.51
100 159.46 11.06 1.94 8.94 6.26 3.54 2.71 12.78 10.51
160 156.81 10.56 2.01 8.24 4.29 3.16 1.80 10.12 5.18

2.5%

20 678.24 228.64 181.25 78.56 65.56 76.76 76.40 52.50 65.45
40 464.45 99.44 77.20 64.83 65.34 42.53 41.36 70.26 68.60

100 357.86 70.05 58.74 62.50 63.86 31.58 48.82 59.72 65.80
160 307.16 73.98 64.01 65.09 63.26 44.73 49.60 66.30 61.65

5.0%

20 1138.96 517.26 331.74 64.30 126.04 81.40 85.87 54.14 71.59
40 917.07 162.61 242.86 67.94 109.05 50.63 53.81 75.65 76.71

100 700.81 122.57 97.83 67.59 83.56 50.09 36.48 63.26 64.16
160 571.20 84.83 84.81 71.50 66.38 44.20 49.96 68.87 63.63

Directly reconstructed velocity and pressure fields were
also enhanced through the use of a finer grid in our noise-
free tests, whereas the corresponding fields obtained by post-
processing Cest were invariably degraded when we increased
the number of inputs. By the same token, however, directly
reconstructed velocity and pressure fields did not meaningfully
improve upon switching to the high-resolution grid when the
measurements were subject to noise. In fact, noise had a
similar effect on direct estimates of u, v, and p to the effect of
reconstruction artifacts in Cest. This finding is corroborated by
Fig. 7, in which velocity and pressure fields recovered via post-
processing or the direct reconstruction of noisy data bear little
resemblance to the corresponding phantoms. Accordingly,
errors in u, v, and p were an order of magnitude lower in
direct reconstructions of noise-free data than in all of our other
tests. This suggests that the primary benefit of PINN-based
reconstructions of real data may be limited to fields that are
included in the measurement loss term.

Another important factor in tomographic imaging is the
cost of high-speed lasers and cameras needed to acquire the
projection data as well as constraints on the position of sensors
(i.e., since they often take up considerable space). Therefore,
it is important to employ a signal processing strategy that can
maximally leverage sparse data. In our noise-free tests, direct
reconstruction errors were more or less constant, but small
gains were realized when we doubled the beam count from 20
to 40. Of course, the number of measurements needed to fully-
resolve a flow is likely to be problem specific, with compli-
cated flows requiring more data than simple ones. Regardless,
our results demonstrate that the number of projections required
to produce near-perfect reconstructions is quite low given high-
fidelity measurements. When the measurements were subject
to noise, however, adding more beams consistently improved
the accuracy of concentration field estimates. This can be seen
in Fig. 9: the 160-beam reconstruction closely matches the
ground truth flow field. In general, adding projections helps to
counteract noise (as expected).

Detrimental effects of noise on the accuracy of direct recon-
structions are reported in sections III-D and III-E. However,
we did not explore the role of noise in post-processing since

idealized post-processing already exhibited lower accuracy
than direct reconstructions of less data, even when it had
been corrupted by significant errors. Table I provides evidence
that measurement noise can have severe repercussions in post-
processing: BMG reconstructions of noise-free projections
from 100 beams exhibited large artifacts that were not signif-
icantly mitigated by post-processing, moreover the accuracy
of BMG estimates was substantially degraded by noise, as
can be seen in the tabulated results. Our tests thus serve as a
conservative estimate of the benefits of direct reconstruction
compared to post-processing, thereby validating our claims to
this effect made in section II-B.

IV. BAYESIAN RECONSTRUCTION

Measurement and model errors can affect one’s interpreta-
tion of a signal so it is important to quantify the uncertainties
associated with noise and the models used to process data. This
is especially true in the context of ill-posed inverse problems,
such as flow field tomography, due to the central role of prior
information in regularizing estimates [4]. As with traditional
iterative reconstruction algorithms, measurement errors give
rise to semi-convergence when a PINN is used for tomographic
imaging. While UQ is often done by propagating standard
errors through the equations used for signal processing, either
via a Taylor series expansion or Monte Carlo simulation [58],
these methods fail to account for the uncertainties associated
with prior information. By contrast, the Bayesian framework
for signal processing inherently accounts for prior informa-
tion and it can accommodate model uncertainties [4], [59].
In this section, we show how a B-PINN (Bayesian PINN)
can be used to conduct flow field tomography along with
comprehensive UQ. In doing so, we also explicate the cause
of semi-convergence that arises when using a C-PINN (i.e.,
a conventional or non-Bayesian PINN) to reconstruct noisy
projections.

A. Bayesian Inference with a PINN

Bayesian inference is a statistical framework for parameter
estimation that naturally facilitates UQ. In this framework,
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the data, model parameters, and unknown QoI are treated
as random variables that are characterized by probability
distributions or density functions (PDFs), denoted f(·). These
functions code one’s knowledge of the value taken by one or
more variables, which may be updated in light of measurement
information via Bayes’ equation. When conducting Bayesian
inference with a PINN, as proposed by Yang et al. [60], we
consider a vector of network parameters, θ, which contains all
the weights and biases depicted in Fig. 2, as well as a matrix
of projection data, B. It is also assumed that the Navier–
Stokes and advection–diffusion residuals in E should be zero.
Instead of generating a single PINN, the goal of Bayesian deep
learning is to generate a distribution of networks and thereby a
distribution of outputs, (c, u, v, p). This posterior distribution
reflects uncertainties in the fields of interest associated with
measurement noise and the network’s architecture.

Bayesian deep learning consists in computing the posterior
PDF of θ given the measurements in B, i.e., f(θ|B), using
Bayes’ equation:

f(θ|B) =
f(B|θ)fpr(θ)

f(B)
∝ f(B|θ)fpr(θ). (12)

Besides the posterior density, this expression contains three
key PDFs:

1) The likelihood, f(B|θ), describes the chance of observ-
ing projections, B, of the flow field produced by a PINN
with parameters θ. This chance is usually based on the
distribution of measurement noise.

2) The prior, fpr(θ), encodes one’s knowledge of the net-
work parameters that is independent of the measurement
information. In flow field tomography, the prior contains
the physics residuals.

3) The evidence, f(B), quantifies the probability density
associated with the data. Since the data are fixed in
this context, the evidence is a constant that scales
f(B|θ)fpr(θ) to ensure that the volume of f(θ|B) is
unity. That is,

f(B) =

∫
f(B|θ)fpr(θ) dθ, (13)

which often needs to be calculated by an advanced
numerical method due to the high dimension of θ.

Our likelihood and prior functions are described in sec-
tion IV-B, and section IV-C contains an overview of the
sampling procedure used to approximate the posterior.

With the desired posterior density in hand, posterior distri-
butions of the network’s outputs are employed to visualize
flow fields and quantify uncertainties thereof. We use the
conditional mean (CM) as a representative point estimate,

cCM =

∫ ∞
−∞

c f(c|B) dc, (14)

although it is also common to employ the maximum a poste-
riori (MAP) estimate,

cMAP = arg max
c

[f(c|B)]. (15)

In these expressions, f(c|B) is shorthand for the marginal PDF
of c at some location, (x, y, t), outputted by the distribution

of networks that corresponds to f(θ|B); we also use f(c|B)
and f(C|B) to indicate the posterior density of a vector of
concentration data (e.g., a 2D reconstruction) or a sequence
of such estimates, respectively. Uncertainties are presented in
terms of an equal tailed X% credible interval (CI), which
satisfies ∫ β

α

f(c|B) dc =
X

100
, (16)

where ∫ α

−∞
f(c|B) dc =

∫ ∞
β

f(c|B) dc (17)

and ∆cX = β − α is the width of the interval. We use 95%
CIs in this paper.

B. Likelihood and Prior PDFs

Equation (1) relates a known concentration field to its
projections, and (2) approximates (1) with a high degree of
fidelity when the grid has sufficient spatial resolution. There-
fore, provided that one has an adequate grid, discrepancies
between the experimental measurements, B, and projections
of the true flow field, ACexact, are dominated by noise. In
flow field tomography, the likelihood quantifies the chance
of observing B for a given value of the unknown parameter
vector, θ, which corresponds to a set of concentration fields
outputted by the PINN, i.e., C(θ). This chance depends on
the distribution of noise, which is often well modeled by a set
of IID Gaussian random variables. The likelihood PDF of this
error model is

f(B|θ) ∝ exp

[
−
‖B−AC(θ)‖2F

2σ2
meas

]
, (18)

where σmeas is the standard deviation of the noise.
Substantive prior information about the network parameters

is derived from the Navier–Stokes and advection–diffusion
equations. That is, a PINN with parameters θ should output
flow fields that satisfy (5). The true distribution of physics
residuals is unknown; hence, a Gaussian PDF is a natural
choice because it is the maximum entropy distribution subject
to a known mean and variance. In this case, the residuals
should have zero mean so the prior density is

fpr(θ) ∝ exp

[
−
‖E(θ)‖2F
2σ2

phys

]
, (19)

where σphys is the standard deviation of the residuals. Selec-
tion of this parameter is a critical consideration that we discuss
in section IV-E.

Depending on the network architecture, it may be necessary
to modify (19) with a cut-off or fade-out beyond some value
of θ since there exists an infinite set of flow fields that satisfy
(5). Indeed, it is common to place a Gaussian prior on θ [60],
[61]. We also note that, while our prior does not contain any
flow-specific information, there are advanced techniques for
learning a better prior when additional, problem specific data
are available [62], [63].
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C. Approximating the Posterior

As is almost always the case in Bayesian deep learning,
there is no closed-form expression of the posterior distribution
obtained by substituting our likelihood and prior PDFs into
Bayes’ equation, let alone the posteriors of c, u, v, and p,
which are of primary interest in flow field tomography. For
this reason, f(θ|B) is usually approximated using a Markov
chain Monte Carlo (MCMC) method or variational inference
(VI) [61]. MCMC algorithms generate samples of the QoI
that collectively behave as if drawn from the posterior as
the chain grows longer. However, the network contains a
large number of unknown QoI and the density of f(θ|B)
is almost always concentrated about a thin manifold. Con-
sequently, common MCMC techniques fail due to the low
probability of randomly approaching the dominant modes of
f(θ|B) in a high-dimensional space or the immense cost of
looping through individual dimensions. Therefore, Bayesian
neural nets are usually sampled using an MCMC variant
called Hamiltonian Monte Carlo (HMC), which was devised
to facilitate sampling in high-dimensions [64]. Yang et al. [60]
computed the posterior PDF of several B-PINNs by HMC and
VI. They found that HMC performed significantly better than
VI so we utilized the Hamiltonian approach to sample our
B-PINN posteriors, accordingly.

Hamiltonian Monte Carlo essentially replaces the random
steps in a basic Metropolis–Hastings MCMC algorithm with
a random trajectory that is inspired by physics. Specifically,
a hypothetical particle at some position, θ, in the probability
space of interest is assigned a momentum, ρ, which has the
same dimension as θ. The particle has kinetic energy (V ) that
depends on its momentum,

V (ρ) =
1

2
ρTM−1ρ, (20)

where M is a “mass matrix”; note that (20) mimics the kinetic
energy formula from classical physics. Potential energy (U ) of
the particle is set to the negative log posterior,

U(θ) = − log [f(θ|B)]

=
1

2

(
σ−2measLmeas + σ−2physLphys

)
+ Z, (21)

which is found by plugging (18) and (19) into (12) (we do not
specify Z since it is a constant and thus does not affect the
path). This function yields a high potential energy in regions
of low density and vice versa such that the particle gravitates
towards the dense modes of the posterior. Summing U and V
results in the so-called Hamiltonian,

H(θ,ρ) = U(θ) + V (ρ), (22)

which represents the total energy of a particle at locations in
phase space, i.e., at joint values of position and momentum,
(θ,ρ). Frictionless motion of the particle is governed by
Hamiltonian mechanics, in which θ and ρ evolve according
to

dθ

dt
=
∂H

∂ρ
= M−1ρ and (23a)

dρ

dt
= −∂H

∂θ
= −∇U(θ). (23b)

Total energy is conserved by (23), i.e., H is constant although
U and V are typically in flux. This property can be exploited
to sample the posterior PDF.

In HMC, a Markov chain of θ is generated by drawing
from a joint distribution of the QoI and momentum and
then marginalizing the latter. To facilitate this, the momen-
tum vector is assigned a centered Gaussian distribution with
covariance M, which is easy to sample. The corresponding
momentum PDF is

f(ρ) ∝ exp [−V (ρ)]. (24)

Conveniently, the PDF of the particle’s position is

f(θ) ∝ exp [−U(θ)] = f(θ|B), (25)

and the joint density of θ and ρ is

f(θ,ρ) ∝ exp [−U(θ)− V (ρ)] = exp [−H(θ,ρ)]. (26)

Given a random momentum drawn from f(ρ), new values of θ
and ρ can be obtained without changing f(θ,ρ) by traversing
the phase space according to (23) for a set duration. Repeating
this procedure with successive draws of ρ produces a chain
of (θ,ρ) samples that are proportional to f(θ,ρ) [64]. The
marginal distribution of f(θ,ρ) is itself proportional to the
desired posterior PDF,∫

f(θ,ρ) dρ ∝ exp [−U(θ)] = f(θ|B), (27)

per (25) and (26). In other words, the target Markov chain
is given by θ components of the phase space samples. To
summarize, HMC utilizes random draws of ρ, which are
straightforward to generate, in conjunction with the geometry
of f(θ|B), via (23), to efficiently explore the posterior of θ
given B.

As mentioned earlier, B-PINNs are specified by a distribu-
tion of θ as opposed to a single vector of parameters. Sample
network parameters obtained by HMC are representative of
this distribution, and marginal PDFs of the outputs can be
approximated by evaluating a PINN with each vector θ at the
desired input locations.

D. B-PINN Architecture and Sampling

Several measures were taken to limit the dimension of θ
and cost of training/sampling when comparing C-PINNs to
B-PINNs. For instance, we used our coarse grid instead of the
fine grid, we restricted training to a seqeunce of ten timesteps
out of 201, and each PINN comprised five hidden layers
instead of ten (although we maintained our initial choice of
50 neurons per output variable). Moreover, while most PINNs
take advantage of weight normalization to improve the speed
and stability of training [65], we opted for consolidated weight
vectors, thereby reducing the number of weight parameters
by half (we also verified that our C-PINN reconstructions
were unaffected by this change). Of course, 3D flow fields
will require a much larger probability space, but we leave
implementation of a B-PINN for 3D flow field tomography as
a topic for future research.

Conveniently, the gradient of U in (23b) can be calculated
by AD, but numerical integration of (23) requires some extra
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Fig. 11. Reconstructions of clean and noisy data using C-PINNs and B-PINNs. The top row depicts reconstructions using values of γ and σphys that were
optimized for conventional reconstruction whereas the bottom row contains reconstructions using parameters optimized for Bayesian estimation. Increasing
the weight of Lphys should improve the accuracy of reconstructions, especially in the context of noisy data. However, this is only true of B-PINN estimates,
which indicates that f(θ|B) (and thereby Ltotal) contains one or more maxima (minima) that does not reflect the dominant posterior mode(s).

scrutiny. The most common integration scheme in HMC is the
leapfrog method [64]. The open source Python package hamil-
torch [66] utilizes PyTorch [49] to conduct HMC sampling of
a Bayesian neural network via leapfrog integration, and we
implemented our B-PINNs using this framework. However,
integration of the Hamiltonian using this package requires
a user-specified step size and path length, both of which
have a controlling influence on the accuracy and efficiency
of HMC. Short steps and/or long path lengths are a waste
of computational effort. By contrast, large steps are prone
to numerical error and short paths result in diffusive motion
(much like random walk MCMC with small steps). These
outcomes are undesirable so either the step size and path length
must be carefully tuned or else an adaptive HMC method
should be employed, e.g., [67]. The mass matrix can also be
tuned to introduce correlations between various components of
ρ, but doing so effectively requires considerable insight about
the morphology of the posterior PDF, which is unavailable
in this application [61]. We conducted extensive parameter
sweeps to identify an appropriate step size, path length, and
mass matrix scale, but we will explore adaptive techniques in
subsequent efforts. Lastly, some degree of numerical error is
unavoidable, causing H to fluctuate, which can lead to biased
samples. This bias is counteracted with a modified Metropolis–
Hastings acceptance criterion, as described by Betancourt [64].

We set the mass matrix to be the identity matrix (M = I),
the integration timestep to be ε = 5 × 10−5, and the path
length to be 50ε. Samples generated using these parameters
exhibited desirable properties including a short correlation
length scale and an adequate acceptance rate of roughly 44%.
In order to reduce the duration of burn-in, we “hot-started” the
Markov chain at a θ position obtained from a pre-trained C-
PINN; burn-in lasted for approximately 600 samples, but we
dropped the first 2000 to provide a factor of safety. The total
chain length was 6000 in each case. On average, sampling in
this manner took 44 computing hours on the same hardware
described above. The average evaluation time for a single

timestep was 74 milliseconds for a C-PINN and 448 seconds
for a B-PINN. This is because the B-PINN comprises many
networks to approximate the posterior distribution, which must
be individually evaluated at each input coordinate.

E. C-PINN Reconstruction vs. B-PINN Reconstruction

Comparative testing of C-PINNs and B-PINNs for flow
field tomography commenced with two data sets consisting of
clean measurements and noisy (2.5%) measurements from 100
beams. We set the width of our likelihood to a nominal value
in the noise-free tests, i.e., σmeas = 0.005 ·max(Bexact), and
we used the actual value of σmeas in our noisy tests. C-PINN
reconstructions were conducted using γ = 10−3, to start,
which was found to be optimal in section III-E, and B-PINN
reconstructions were carried out with a commensurate value
of σphys. At this point, it should be noted that the posterior
produced by (18) and (19) is directly related to the total loss
in (10b) used for direct reconstruction, as can be seen in the
negative log posterior in (21). In fact, maximizing f(θ|B) is
equivalent to minimizing Ltotal when

σphys =
√
γ σmeas, (28)

meaning that C-PINN reconstructions can be interpreted as
MAP estimates. We thus assigned σphys using (28) to syn-
chronize the two methods.

Bayesian reconstructions yield PDFs of (c, u, v, p) at each
input coordinate, instead of a point estimate as in non-
Bayesian algorithms. Hence, it is useful to plot the CM of
these fields such that Bayesian estimates can be visually
compared to conventional reconstructions. The top row of
Fig. 11 contains sample concentration fields produced by C-
PINNs and B-PINNs using γ = 10−3. Conventional estimates
exhibited greater quantitative and qualitative accuracy than
Bayesian estimates in our first set of noise-free tests. This
difference is sensible since the Bayesian procedure assumed
uncertainty in the measurements, despite the absence of
noise, and measurement residuals had a significant effect at



15

γ = 10−3, as illustrated by the relative magnitude of Lmeas

and Lphys in Fig. 5. C-PINN estimates obtained using our
stopping criterion performed well in our noisy tests when γ
was set to 10−3, whereas the fully-converged estimate and the
Bayesian CM were dominated by artifacts. Per the discussion
in section III-D, this behavior simply reflects the information
encoded in the total loss term or, equivalently, in the likelihood
and prior PDFs.

Presumably, true flow fields will satisfy the Navier–Stokes
and advection–diffusion equations. Therefore, so long as the
network is deep and wide enough to approximate the flow and
there are sufficient inputs and measurements for training, then
it should be beneficial to set σphys to a much smaller value
than σmeas, i.e., because we have a high degree of confidence
in the governing physics. We thus conducted another set of
comparisons using γ = 10−7 and the corresponding value
of σphys. Concentration field estimates from these tests are
shown in the bottom row of Fig. 11. All the flow fields
outputted by a C-PINN that was trained using γ = 10−7

were highly inaccurate, which we anticipated based on the
weight parameter tests in section III-E. However, B-PINN
reconstructions dramatically improved after reducing γ in both
the noise-free and noisy tests.

The stark difference between C-PINN and B-PINN recon-
structions at γ = 10−3 and 10−7 speaks to the topology of
Ltotal and f(θ|B). Bayesian estimates depicted in Fig. 11 rep-
resent the mean output of a distribution of networks whereas
the flow fields obtained from a fully-converged C-PINN are
essentially MAP estimates. C-PINN reconstructions of noisy
data, regularized by our stopping criterion, are more difficult
to characterize in this way because they do not minimize
an explicit objective function. While the accuracy of CM
concentration fields improved after switching from γ = 10−3

to 10−7, tantamount to boosting the physics-based prior, the C-
PINN reconstruction (akin to a MAP estimate) got far worse,
as expected from the γ tests shown in Fig. 10. This difference
in behavior was especially striking in the noisy case since
none of the fully-converged C-PINNs produced acceptable
reconstructions of noisy data in any of our tests, including the
networks considered in section III. This strongly suggests the
surface corresponding to f(θ|B) contains one (or more) robust
maxima that does not reflect the dominant posterior mode(s).
As a corollary, the same is likely true of minima in Ltotal. This
implication was corroborated by varying randomly-selected
weights of the network and plotting Ltotal. Each 4D plot of
Ltotal using γ = 10−3 was consistent with a convex function
(exhibiting a locally positive semidefinite Hessian) whereas
plots using γ = 10−7 were not. Consequently, CM estimates
from a B-PINN are more representative of the functional used
to reconstruct the flow than point estimates from a C-PINN,
thereby facilitating the use of a wider range of priors. We
leveraged this flexibility to implement a more stringent physics
prior; CM reconstructions produced by this prior conformed
to the true flow field, unlike any of the MAP estimates.

F. UQ
Bayesian results presented thus far consist of the mean

concentration fields outputted by the chain of PINNs sampled
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Fig. 12. Conditional mean and CI (i.e., ∆c95) maps of the concentration
field distributions outputted by a B-PINN. Reconstructions were conducted
using clean projections from 100 beams and 20 beams. Beam paths are
superimposed on the 20-beam CI to illustrate how regions of uncertainty are
aligned with the gaps between beams.

from a posterior PDF. However, this distribution of networks
conveys additional information about these flow fields, which
can be leveraged to visualize and quantify the uncertainties
produced by noise and model errors. Figure 12 contains plots
of the CMs and CIs (i.e., ∆c95) obtained by reconstructing
noise-free data from 100 beams and 20 beams, respectively, us-
ing the nominal value of σmeas specified above and γ = 10−7

in both tests. The CIs feature pockets and striations of elevated
uncertainty that roughly align with the gaps between beams
as well as a ring of uncertainty that wraps around the edge of
the domain, where measurement information is in especially
short supply. Beam paths are superimposed on the 20-beam
CI map to emphasize these results. Furthermore, there was an
overall increase in uncertainty in the 20-beam test, reflecting
the relative lack of projection data. Results like these can
be used to quickly assess the reliability of estimated flow
structures by visual inspection.

Still more information can be extracted from a B-PINN
by plotting posterior PDFs of the flow fields. This is effec-
tively demonstrated using the best-case C-PINN and B-PINN
reconstructions of noisy data in Fig. 11, i.e., using γ = 10−3

and iterative regularization to generate C-PINN estimates and
γ = 10−7 for the Bayesian reconstructions. Figure 13 presents
marginal posterior PDFs of the concentration, velocity, and
pressure gradient fields at three randomly selected points in the
domain. Ground truth values are indicated with a solid black
line and C-PINN estimates are plotted with a dashed line.
In some regions, the CM from the B-PINN was considerably
closer to the ground truth value than the C-PINN estimate,
whereas conventional PINN reconstructions were better in
other regions. Treating CMs per se as a reconstruction leads to
the conclusion that our B-PINN estimates were less accurate
than our C-PINN estimates, which is apparent in Fig. 11.
However, the PDFs in Fig. 13 illustrate the wide range of
(c, u, v,∇p) values that were consistent with the data and
physics prior throughout the domain. Notably, the ground
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truth values almost always lay in a region of high posterior
density. By comparison, C-PINN results required iterative
regularization and were less amenable to UQ for this reason.
Moreover, Bayesian estimates were obtained using a much
more intuitive functional, which was robust to noise, and
the B-PINN procedure could likely be refined via improved
sampling, using more timesteps, increasing the grid resolution,
and so on. We thus conclude that the information produced by
a B-PINN is more useful than point estimates from a C-PINN
when using reconstructions for quantitative comparisons, e.g.,
to benchmark the results of a CFD simulation.

V. CONCLUSIONS

Physics-informed neural networks have been used to post-
process tomographically-reconstructed flow fields in order to
improve their accuracy and infer additional fields [13]. By
contrast, this work reports the first use of a PINN to directly
reconstruct all the flow fields from a set of projection data
by embedding the projection model into the PINN’s data loss
function. We also implemented a Bayesian PINN to directly
reconstruct flow fields with built-in UQ. Several important
conclusions can be drawn from this work.

1) Direct reconstruction with a PINN was far more accurate
than PINN-based post-processing of the reconstructions
produced by a conventional algorithm. This remained
true even when direct reconstructions were conducted
with fewer, more noisy projections than the data set used
for post-processing.

2) Three regimes of training were identified in the direct
reconstruction of noise-free projections. However, noise-
affected data resulted in semi-convergence near the end
of phase II. Training beyond this point resulted in
overfitting to noise.

3) We devised a stopping criterion, based on the transition
from phase I to II of training, used to regularize direct
reconstructions of noisy data. Our technique accurately
approximated the point of semi-convergence.

4) Bayesian PINNs were implemented to conduct UQ. By
sampling the posterior instead of maximizing it, a B-
PINN can produce CM estimates that better characterize
the objective function than reconstructions from a C-
PINN (akin to a MAP estimate). Bayesian learning
thus facilitates the use of a wider range of objective
functions than conventional training. We exploited this
capability to implement a stricter physics prior, resulting
in accurate reconstructions of noisy projections.

5) Marginal posterior flow field PDFs produced by a B-
PINN can be used for quantitative model comparison
and validation purposes.
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