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Abstract. In this paper we propose a new approach to data mining
and knowledge discovery based on information flow distribution in a flow
graph. Flow graphs introduced in this paper are different from those pro-
posed by Ford and Fulkerson for optimal flow analysis and they model
flow distribution in a network rather than the optimal flow which is used
for information flow examination in decision algorithms. It is revealed
that flow in a flow graph is governed by Bayes’ rule, but the rule has an
entirely deterministic interpretation without referring to its probabilistic
roots. Besides, a decision algorithm induced by a flow graph and depen-
dency between conditions and decisions of decision rules is introduced
and studied, which is used next to simplify decision algorithms.

Keywords: flow graph, data mining, knowledge discovery, decision al-
gorithms.

Introduction

In this paper we propose a new approach to data analysis (mining) based on
information flow distribution study in a flow graph.

Flow graphs introduced in this paper are different from those proposed by
Ford and Fulkerson [4] for optimal flow analysis and they model rather flow
distribution in a network, than the optimal flow.

The flow graphs considered in this paper are not meant to model physical
media (e.g., water) flow analysis, but to model information flow examination
in decision algorithms. To this end branches of a flow graph can be interpreted
as decision rules. With every decision rule (i.e., branch) three coefficients are
associated: the strength, certainty and coverage factors.

These coefficients have been used under different names in data mining (see,
e.g., [14, 15]) but they were used first by �Lukasiewicz [8] in his study of logic
and probability.

This interpretation, in particular, leads to a new look at Bayes’ theorem. Let
us also observe that despite Bayes’ rule fundamental role in statistical inference
it has led to many philosophical discussions concerning its validity and meaning,
and has caused much criticism [1, 3, 13].
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This paper is a continuation of some of the authors’ ideas presented in [10, 11],
where the relationship between Bayes’ rule and flow graphs has been introduced
and studied (see also [6, 7]).

This paper consists of two parts. Part one introduces basic concepts of the
proposed approach, i.e., flow graph and its fundamental properties. It is re-
vealed that flow in a flow graph is governed by Bayes’ rule, but the rule has
an entirely deterministic interpretation that does not refer to its probabilistic
roots. In addition, dependency of flow is defined and studied. This idea is based
on the statistical concept of dependency but in our setting it has a deterministic
meaning.

In part two many tutorial examples are given to illustrate how the introduced
ideas work in data mining. These examples clearly show the difference between
classical Bayesian inference methodology and the proposed one.

The presented ideas can be used, among others, as a new tool for data mining,
and knowledge representation. Besides, the proposed approach throws new light
on the concept of probability.

1 Flow Graphs

1.1 Overview

In this part the fundamental concepts of the proposed approach are defined and
discussed. In particular flow graphs, certainty and coverage factors of branches
of the flow graph are defined and studied. Next these coefficients are extended
to paths and some classes of sub-graphs called connections. Further a notion of
fusion of a flow graph is defined.

Further dependences of flow are introduced and examined. Finally, depen-
dency factor (correlation coefficient) is defined.

Observe that in many cases the data flow order, represented in flow graphs,
explicitly follows from the problem specification. However, in other cases the
relevant order should be discovered from data. This latter issue will be discussed
elsewhere.

1.2 Basic Concepts

A flow graph is a directed, acyclic, finite graph G = (N,B, ϕ), where N is a set
of nodes, B ⊆ N ×N is a set of directed branches, ϕ : B → R+ is a flow function

and R+ is the set of non-negative reals.
Input of a node x ∈ N is the set I(x) = {y ∈ N : (y, x) ∈ B}; output of a

node x ∈ N is defined by O(x) = {y ∈ N : (x, y) ∈ B}.
We will also need the concept of input and output of a graph G, defined, re-

spectively, as follows: I(G) = {x ∈ N : I(x) = ∅}, O(G) = {x ∈ N : O(x) = ∅}.
Inputs and outputs of G are external nodes of G; other nodes are internal

nodes of G.
If (x, y) ∈ B, then ϕ(x, y) is a throughflow from x to y.
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With every node x of a flow graph G we associate its inflow

ϕ+(x) =
∑

y∈I(x)

ϕ(y, x), (1)

and outflow

ϕ−(x) =
∑

y∈O(x)

ϕ(x, y). (2)

Similarly, we define an inflow and an outflow for the whole flow graph, which
are defined by

ϕ+(G) =
∑

x∈I(G)

ϕ−(x), (3)

ϕ−(G) =
∑

x∈O(G)

ϕ+(x). (4)

We assume that for any internal node x we have ϕ+(x) = ϕ−(x) = ϕ(x), where
ϕ(x) is a throughflow of node x.

Then, obviously, ϕ+(G) = ϕ−(G) = ϕ(G), where ϕ(G) is a throughflow of
graph G.

The above formulas can be considered as flow conservation equations [4].

Example
We will illustrate the basic concepts of flow graphs by an example of a group of
1000 patients put to the test for certain drug effectiveness.

Assume that patients are grouped according to presence of the disease, age
and test results, as shown in Fig. 1.

For example, ϕ(x1) = 600 means that these are 600 patients suffering from
the disease, ϕ(y1) = 570 means that there are 570 old patients ϕ(z1) = 471
means that 471 patients have a positive test result; ϕ(x1, y1) = 450 means that
there are 450 old patients which suffer from disease etc.

Thus the flow graph gives clear insight into the relationship between different
groups of patients.

Let us now explain the flow graph in more detail.
Nodes of the flow graph are depicted by circles, labeled by x1, x2, y1, y2, y3, z1,

z2. A branch (x, y) is denoted by an arrow from node x to y. For example, branch
(x1, z1) is represented by an arrow from x1 to z1.

For example, inputs of node y1 are nodes x1 and x2, outputs of node x1 are
nodes y1, y2 and y3.

Inputs of the flow graph are nodes x1 and x2, whereas the outputs of the
flow graph are nodes z1 and z2.

Nodes y1, y2 and y3 are internal nodes of the flow graph. The throughflow
of the branch (x1, y1) is ϕ(x1, y1) = 450. Inflow of node y1 is ϕ+(y1) = 450 +
120 = 570. Outflow of node y1 is ϕ−(y1) = 399 + 171 = 570. Inflow of the flow
graph is ϕ(x1) + ϕ(x2) = 600 + 400 = 1000, and outflow of the flow graph is
ϕ(z1) + ϕ(z2) = 471 + 529 = 1000.
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Fig. 1. Flow graph.

Throughflow of node y1 is equal to ϕ(y1) = ϕ(x1, y1)+ϕ(x2, y1) = ϕ(y1, z1)+
ϕ(y2, z2) = 570. ⊓⊔

We will now define a normalized flow graph.
A normalized flow graph is a directed, acyclic, finite graph G = (N,B, σ),

where N is a set of nodes, B ⊆ N × N is a set of directed branches and
σ : B → < 0, 1 > is a normalized flow of (x, y) and

σ(x, y) =
ϕ(x, y)

ϕ(G)
(5)

is a strength of (x, y). Obviously, 0 ≤ σ(x, y) ≤ 1. The strength of the branch
(multiplied by 100) expresses simply the percentage of a total flow through the
branch.

In what follows we will use normalized flow graphs only, therefore by flow
graphs we will understand normalized flow graphs, unless stated otherwise.

With every node x of a flow graph G we associate its inflow and outflow

defined by

σ+(x) =
ϕ+(x)

ϕ(G)
=

∑

y∈I(x)

σ(y, x), (6)

σ−(x) =
ϕ−(x)

ϕ(G)
=

∑

y∈O(x)

σ(x, y). (7)



Flow Graphs and Data Mining 5

Obviously for any internal node x, we have σ+(x) = σ−(x) = σ(x), where σ(x)
is a normalized throughflow of x.

Moreover, let

σ+(G) =
ϕ+(G)

ϕ(G)
=

∑

x∈I(G)

σ−(x), (8)

σ−(G) =
ϕ−(G)

ϕ(G)
=

∑

x∈O(G)

σ+(x). (9)

Obviously, σ+(G) = σ−(G) = σ(G) = 1.

Example (cont.) The normalized flow graph of the flow graph presented in
Fig. 1 is given in Fig. 2.

In the flow graph, e.g., σ(x1) = 0.60, that means that 60% of total inflow is
associated with input x1. The strength σ(x1, y1) = 0.45 means that 45% of total
flow of x1 flows through the branch (x1, y1) etc. ⊓⊔

Let G = (N,B, σ) be a flow graph. If we invert direction of all branches in G,
then the resulting graph G = (N,B′, σ′) will be called an inverted graph of G.
Of course, the inverted graph G′ is also a flow graph and all inputs and outputs
of G become inputs and outputs of G′, respectively.

Example (cont.) The inverted flow graph of the flow graph from Fig. 2 is
shown in Fig. 3. ⊓⊔

Fig. 2. Normalized flow graph.
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Fig. 3. Inverted flow graph.

1.3 Certainty and Coverage Factors

With every branch (x, y) of a flow graph G we associate the certainty and the
coverage factors.

The certainty and the coverage of (x, y) are defined by

cer(x, y) =
σ(x, y)

σ(x)
, (10)

and

cov(x, y) =
σ(x, y)

σ(y)
. (11)

respectively.
Evidently, cer(x, y) = cov(y, x), where (x, y) ∈ B and (y, x) ∈ B′.

Example (cont.) The certainty and the coverage factors for the flow graph
presented in Fig. 2 are shown in Fig. 4.

For example, cer(x1, y1) = σ(x1,y1)
σ(x1) = 0.45

0.60 = 0.75, and cov(x1, y1) = σ(x1,y1)
σ(y1)

= 0.45
0.57 ≈ 0.79. ⊓⊔

Below some properties of certainty and coverage factors, which are immediate
consequences of definitions given above, are presented:

∑

y∈O(x)

cer(x, y) = 1, (12)
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Fig. 4. Certainty and coverage.

∑

x∈I(y)

cov(x, y) = 1, (13)

σ(x) =
∑

y∈O(x)

cer(x, y)σ(x) =
∑

y∈O(x)

σ(x, y), (14)

σ(y) =
∑

x∈I(y)

cov(x, y)σ(y) =
∑

x∈I(y)

σ(x, y), (15)

cer(x, y) =
cov(x, y)σ(y)

σ(x)
, (16)

cov(x, y) =
cer(x, y)σ(x)

σ(y)
. (17)

Obviously the above properties have a probabilistic flavor, e.g., equations (14)
and (15) have a form of total probability theorem, whereas formulas (16) and
(17) are Bayes’ rules. However, these properties in our approach are interpreted
in a deterministic way and they describe flow distribution among branches in
the network.

1.4 Paths, Connections and Fusion

A (directed) path from x to y, x 	= y in G is a sequence of nodes x1, . . . , xn such
that x1 = x, xn = y and (xi, xi+1) ∈ B for every i, 1 ≤ i ≤ n − 1. A path from
x to y is denoted by [x . . . y].
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The certainty of the path [x1 . . . xn] is defined by

cer[x1 . . . xn] =

n−1
∏

i=1

cer(xi, xi+1), (18)

the coverage of the path [x1 . . . xn] is

cov[x1 . . . xn] =
n−1
∏

i=1

cov(xi, xi+1), (19)

and the strength of the path [x1 . . . xn] is

σ[x1 . . . xn] = σ(x1)cer[x1 . . . xn] = σ(xn)cov[x1 . . . xn]. (20)

The set of all paths from x to y (x 	= y) in G, denoted by < x, y >, will be
called a connection from x to y in G. In other words, connection < x, y > is a
sub-graph of G determined by nodes x and y.

The certainty of the connection < x, y > is

cer < x, y >=
∑

[x...y]∈<x,y>

cer[x . . . y], (21)

the coverage of the connection < x, y > is

cov < x, y >=
∑

[x...y]∈<x,y>

cov[x . . . y], (22)

and the strength of the connection < x, y > is

σ < x, y > =
∑

[x...y]∈<x,y>

σ[x . . . y] =

= σ(x)cer < x, y >= σ(y)cov < x, y > . (23)

If we substitute simultaneously any sub-graph < x, y > of a given flow graph
G, where x and y are input and output nodes of G respectively, by a single
branch (x, y) such that σ(x, y) = σ < x, y >, then in the resulting graph G′,
called the fusion of G, we have cer(x, y) = cer < x, y >, cov(x, y) =cov < x, y >
and σ(G) = σ(G′).

Example (cont.) In the flow graph presented in Fig. 3 for the path p =
[x1, y1, z1] we have cer(p) = 0.75 × 0.70 ≈ 0.53, cov(p) = 0.85 × 0.79 ≈ 0.67.

The connection < x1, z1 > in the flow graph consists of paths [x1, y1, z1] and
[x1, y2, z1]. This connection is shown in Fig. 5 by bold lines.

For this connection we have cer < x1, z1 >= 0.75×0.70+0.20×0.60 ≈ 0.65;
cov < x1, z1 >= 0.85 × 0.79 + 0.15 × 1.00 ≈ 0.82.

The strength of the connection x1, z1 is 0.68 × 0.60 ≈ 0.85 × 0.47 ≈ 0.40.
Connections < x1, z2 >, < x2, z1 >, and < x2, z2 > are presented in Fig. 6, Fig. 7
and Fig. 8, respectively. ⊓⊔
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Fig. 5. Connection < x1, z1 >.

Fig. 6. Connection < x1, z2 >.
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Fig. 7. Connection < x2, z1 >.

Fig. 8. Connection < x2, z2 >.
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Fig. 9. Fusion of the flow graph.

Example (cont.) The fusion of the flow graph shown in Fig. 3 is given in Fig. 9.
The fusion of a flow graph gives information about the flow distribution

between input and output of the flow graph, i.e., it leads to the following con-
clusions:

– if the disease is present then the test result is positive with certainty 0.65,
– if the disease is absent then the test result is negative with certainty 0.79.

Explanation of the test results is as follows:

– if the test result is positive then the disease is present with certainty 0.83,
– if the test result is negative then the disease is absent with certainty 0.60.

⊓⊔

1.5 Dependences in Flow Graphs

Let x and y be nodes in a flow graph G = (N,B, σ), such that (x, y) ∈ B. Nodes
x and y are independent in G if

σ(x, y) = σ(x)σ(y). (24)

From (24) we get
σ(x, y)

σ(x)
= cer(x, y) = σ(y), (25)

and
σ(x, y)

σ(y)
= cov(x, y) = σ(x). (26)

If
cer(x, y) > σ(y), (27)

or
cov(x, y) > σ(x), (28)

then x and y are positively dependent on x in G.
Similarly, if

cer(x, y) < σ(y), (29)
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or
cov(x, y) < σ(x), (30)

then x and y are negatively dependent in G.
Let us observe that relations of independency and dependences are symmetric

ones, and are analogous to those used in statistics.
For every branch (x, y) ∈ B we define a dependency (correlation) factor η(x, y)

defined by

η(x, y) =
cer(x, y) − σ(y)

cer(x, y) + σ(y)
=

cov(x, y) − σ(x)

cov(x, y) + σ(x)
. (31)

Obviously −1 ≤ η(x, y) ≤ 1; η(x, y) = 0 if and only if cer(x, y) = σ(y) and
cov(x, y) = σ(x); η(x, y) = −1 if and only if cer(x, y) = cov(x, y) = 0; η(x, y) = 1
if and only if σ(y) = σ(x) = 0.

It is easy to check that if η(x, y) = 0, then x and y are independent, if
−1 ≤ η(x, y) < 0 then x and y are negatively dependent and if 0 < η(x, y) ≤ 1
then x and y are positively dependent. Thus the dependency factor expresses
a degree of dependency, and can be seen as a counterpart of the correlation
coefficient used in statistics.

Example (cont.) Dependency factors for the flow graph shown in Fig. 9 are
given in Fig. 10.

Thus, there is a positive dependency between the presence of the disease and
the positive test result as well as between absence of the disease and negative test
result. However, there is a much stronger negative dependency between presence
of the disease and negative test result or similarly – between absence of the
disease and positive left test result. More specifically:

– there is slight positive correlation between presence of the disease and posi-
tive test result (η = 0.16),

– there is low positive correlation between absence of the disease and negative
test result (η = 0.20),

– there a negative correlation between presence of the disease and negative
test result (η = −0.19),

– there is high negative correlation between absence of the disease and positive
test result (η = −0.38). ⊓⊔

Fig. 10. Fusion of the flow graph.
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1.6 Flow Graph and Decision Algorithms

Flow graphs can be interpreted as decision algorithms [5].
Let us assume that the set of nodes of a flow graph is interpreted as a set

of logical formulas. The formulas are understood as propositional functions and
if x is a formula, then σ(x) is to be interpreted as a truth value of the formula.
Let us observe that the truth values are numbers from the closed interval [0, 1],
i.e., 0 ≤ σ(x) ≤ 1.

According to [3] these truth values can be also interpreted as probabilities.
Thus σ(x) can be understood as flow distribution ratio (percentage), truth value
or probability. We will stick to the first interpretation.

With every branch (x, y) we associate a decision rule x → y, read if x then y;
x will be referred to as condition, whereas y – decision of the rule. Such a rule
is characterized by three numbers, σ(x, y), cer(x, y) and cov(x, y).

Let us observe that the inverted flow graph gives reasons for decisions.
Every path [x1 . . . xn] determines a sequence of decision rules x1 → x2, x2 →

x3, . . . , xn−1 → xn.
From previous considerations it follows that this sequence of decision rules

can be interpreted as a single decision rule x1x2 . . . xn−1 → xn, in short x∗ → xn,
where x∗ = x1x2 . . . xn−1, characterized by

cer(x∗, xn) =
σ(x∗, xn)

σ(x∗)
, (32)

cov(x∗, xn) =
σ(x∗, xn)

σ(xn)
, (33)

and

σ(x∗, xn) = σ(x1, . . . , xn−1, xn), σ(x∗) = σ(x1, . . . , xn−1). (34)

From (32) we have

cer(x∗, xn) =
cer[x1, . . . , xn−1, xn]

cer[x1, . . . , xn−1]
.

The set of all decision rules xi1xi2 . . . xin−1
→ xin

associated with all paths
[xi1 . . . xin

] such that xi1 and xin
are input and output of the graph respectively

will be called a decision algorithm induced by the flow graph.
If x → y is a decision rule, then we say that the condition and decision of the

decision rule are independent if x and y are independent, otherwise the condition
and decision of the decision rule are dependent (positively or negatively).

To measure the degree of dependency between the condition and decision of
the decision rule x → y, we can use the dependency factor η(x, y).

Let us observe that if the conditions and decisions of a decision rule x → y
are independent, then the decision rule is, in certain sense, useless, because such
a decision rule indicates that there is no relationship between conditions and
decisions and the decision can be eliminated from the decision algorithm.
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On the other hand, the most important decision rules are those having the
highest dependency factor and strength, for they indicate a strong relationship
in substantial portion of the data. This property can be used to simplify the
decision algorithms, because we can eliminate less relevant decision rules from
the algorithm, at the cost of its lower classification power.

With every subset of decision rules δ1, . . . , δn of the decision algorithm we
can associate its strength equal to the sum of strengths of the decision rules,

i.e.,
n
∑

i=1

σ(δi), which can be used as a measure of the classification power of the

algorithm.

Example (cont.) The decision algorithm induced by the flow graph shown in
Fig. 4 is given in the table:

certainty coverage strength
x1, y1 → z1 0.71 0.67 0.32
x1, y1 → z2 0.31 0.25 0.14
x1, y2 → z1 0.58 0.15 0.07
x1, y2 → z2 0.42 0.09 0.05
x1, y3 → z2 1.00 0.06 0.03
x2, y1 → z1 0.40 0.18 0.08
x2, y1 → z2 0.20 0.01 0.04
x2, y3 → z2 1.00 0.53 0.28

The corresponding flow graph is presented in Fig. 11.
From the flow graph we can see, e.g., that 71% ill and old patients have a

positive test result, whereas 100% young healthy patients have a negative test
result. From the inverse flow graph we can conclude that positive test result have
mostly (67%) ill and old patients and negative test result display mostly (53%)
young healthy patients.

Consequently, for the decision rule x1, y1 → z1 (and the inverse decision rule
z1 → x1, y1) we have the dependency factor η ≈ 0.19,whereas for the decision
rule x2, y3 → z2 (and its inverse decision rule), we have η ≈ 0.31.

That means that the relationship between young healthy patients and nega-
tive test results is more substantial then – between ill old patients and positive
test result.

The strength of the corresponding decision rules is 0.32 and 0.28, respectively.
Thus they are rather strong decision rules. As the result if we drop all remaining
decision rules from the decision algorithm, we obtain a very simple decision
algorithm consisting of two decision rules, with strength 0.32 + 0.28 = 0.60.
This means that two decision rules instead eight suffices for previous proper
classification of initial data in 60% cases. Adding the next strongest decision
rule x1, y2 → z2 with σ = 0.14, we get a decision algorithm with strength
0.60 + 0.14 = 0.74, which can classify properly of 74% cases.

1.7 Flow Graphs and Rough Sets

In this section we show that some flow graphs can be treated as representations
of approximation spaces. To explain this let us consider an example based on
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Fig. 11. Flow graph for the decision algorithm.

approximation spaces for information systems. Let us consider an information
system IS = (U, A) where U is the universe of objects and A is the set of
attributes of the form a : U −→ Va [9]. Any such information system defines an
approximation space AS = (U,R, ν) [12] where R is a family of sets generated
by descriptors over A, i.e.,

R = {X ⊆ U : X = {u ∈ U : a(u) = v} for some a ∈ A, v ∈ Va} (35)

and ν : P (U) × P (U) −→ [0, 1] is the standard rough inclusion function defined
by

ν (X, Y ) =

{

|X∩Y |
|X| if X 	= ∅

1 if X = ∅.
(36)

Hence, ν(X, Y ) is a degree to which X is included in Y , for any X, Y ∈ R.
Assume that A = {a1, . . . , am} and a1 < . . . < am, i.e., A is linearly ordered

by <.
Then one can construct a flow graph G(AS) = (N,B, ϕ) representing the

approximation space AS = (U,R, ν) where
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1. N = {nX : X ∈ R};
2. nXBnY if and only if for some ai ∈ A, aj ∈ A, v ∈ Vai

, v′ ∈ Vaj
we have

X = {u ∈ U : ai(u) = v}, Y = {u ∈ U : aj(u) = v′}, and aj is the
immediate successor of ai in the linear order a1, . . . , am;

3. For any nodes nX , nY ∈ N :
(a) ϕ(nX , nY ) = |X ∩ Y |/|U |;
(b) cer(nX , nY ) = |X ∩ Y |/|X |;
(c) cov(nX , nY ) = |X ∩ Y |/|Y |.

Hence, the flow graph G(AS) can be treated as a view of the approximation
space AS relative to the given order < of attributes from A. Such views as well
as their fusions can be used in inducing patterns for concept approximations.

2 Applications

2.1 Introduction

In this section we give several tutorial examples showing how the presented ideas
can be used in data analysis.

The examples have been chosen in such a way that various aspects of the
proposed methodology are revealed.

In the example shown in section 2.2 (Smoking and Cancer) the probabilistic
nature of data analysis is pointed out and relationship between statistical and
flow diagram based methodology is revealed.

In the next example discussed in Section 2.3 (Hair, Eyes and Nationality)
relationship between different sets of data is examined and the result need not
to be necessarily interpreted in probabilistic terms.

Similar remark is valid for the next two examples.
Example given in Section 2.9 (Paint Demand and Supply) has entirely deter-

ministic character and describes simply proportion between various ingredients.
In the remaining examples probabilistic character of data is rather immaterial

and results can be understood as relationship between proportion of various
features in the corresponding data sets.

Observe also that the numerical values of discussed coefficients may not sat-
isfy exactly formulas given in the first chapter due to the round off errors in the
computations.

2.2 Smoking and Cancer

In this section we show an application of the proposed methodology on the
example taken from [5].

In Table 1 data concerning 60 people who do or do not smoke and do or do
not have cancer are shown.

In Fig. 12 data given in Table 1 are presented as flow graph.
Normalized flow graph for the flow graph given in Fig. 12 is shown in Fig. 13.
From the flow graph we arrive at the following conclusions:
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Table 1. Smoking and Cancer.

Not smoke Smoke Total

Not cancer 40 10 50
Cancer 7 3 10

Total 47 13 60

Fig. 12. Flow graph for Table 1.

– 85% non-smoking persons do not have cancer (cer(x0, y0) = 40/47 ≈ 0.85),
– 15% non-smoking persons do have cancer (cer(x0, y1) = 7/47 ≈ 0.15),
– 77% smoking persons do not have cancer (cer(x1, y0) = 10/13 ≈ 0.77),
– 23% smoking persons do have cancer (cer(x1, y1) = 3/13 ≈ 0.23).

From the flow graph we get the following reason for having or not cancer:

– 80% persons having not cancer do not smoke (cov(x0, y0) = 4/5 = 0.80),
– 20% persons having not cancer do smoke (cov(x1, y0) = 1/5 = 0.20),
– 70% persons having cancer do not smoke (cov(x0, y1) = 7/10 = 0.70),
– 30% persons having cancer do smoke (cov(x1, y1) = 3/10 = 0.30).

That means that not smoking persons mostly do not have cancer but smoking
is mostly not associated with having cancer.

From the inverse flow graph, we conclude that the reason for having not
cancer is not smoking but having cancer is not associated with smoking.

Fig. 13. Normalized flow graph for Table 1.
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For the flow graph we have the following dependences: η(x0, y0) = 0.01, η(x0,
y0) = −0.06, η(x1, y0) = −0.09 and η(x1, y1) = 0.15. These means that there
is slight positive dependency between x0 and y0 and much stronger positive
dependency between x1 and y1; x0 and y1 are negatively related and so are x1

and y0.
Let us also observe that in statistical terminology σ(x0), σ(x1) are priors,

σ(x0, y0), . . . , σ(x1, y1) are joint distributions, cov(x0, y0), . . . , cov(x1, y1) are
posteriors and σ(y0), σ(y1) are marginal probabilities.

2.3 Hair, Eyes and Nationality

In Fig. 14 the relationship between color of eyes, color of hair and nationality is
presented in the form of a flow graph.

That means that in this population there are 60% blond, 30% dark and 10%
red haired; 80% blond haired have blue eyes whereas 20% blond haired have
hazel eyes, etc. Similarly we see from the flow graph that 20% persons having
blue eyes are Italian, and 80% persons with blue eyes are Swede, etc.

First let us compute “flow” in the graph and the result is shown in Fig. 15.
We can see from the flow graph that the strongest decision rules showing the

relationship between color of hair and eyes are x1 → y1 (σ = 0.48) and x2 → y2

(σ = 0.27) with η = 0.14 and η = 0.38 respectively. These two decision rules
have strength 0.48+0.27 = 0.75. The dependency factors of these decision rules
indicate that the relationship between dark hair and hazel eyes is much stronger
then the dependency between blond hair and blue eyes.

Similarly the strongest decision rules showing the relationship between color
of eyes and nationality are y1 → z2 (σ = 0.48) and x2 → z1 (σ = 0.36) with
η = 0.21 and η = 0.30, respectively and strength 0.84. This shows that hazel
eyes are more characteristic for Italians, then blue eyes for Swede.

The relationship between color of hair and nationality is computed using the
concept of fusion and the result is shown in Fig. 16.

Fig. 14. Initial data.



Flow Graphs and Data Mining 19

Fig. 15. Relationship between color of eyes, color of hair and nationality.

Fig. 16. Fusion of color of hair and nationality.

In this flow graph also degree of independence is given. We can see from
the dependency coefficients that, e.g., there is a relatively strong negative de-
pendency between dark hair and Swede (η = −0.55) blond hair and Italian
(η = −0.17), but there is a positive dependency between dark hair and Ital-
ian (η = 0.25), however the first dependency has very low strength (σ = 0.05),
whereas the second one has much higher strength (σ = 0.20). This means that
in the first case 5% of the population display this property in contrast to the
second case where 20% of the population support the dependency.

Let us also observe that the three decision rules x1 → z1 (σ = 0.20), x2 → z1

(σ = 0.25) and x1 → z1 (σ = 0.40) have very high strength 0.85.
The decision algorithm induced by the flow graph shown in Fig. 15 is pre-

sented in table below:
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certainty coverage strength
x1, y1 → z1 0.20 0.20 0.10
x1, y1 → z2 0.81 0.74 0.39
x1, y2 → z1 0.92 0.23 0.11
x1, y2 → z2 0.08 0.02 0.01
x2, y1 → z1 0.33 0.05 0.01
x2, y1 → z2 0.67 0.04 0.02
x2, y2 → z1 0.89 0.51 0.24
x2, y2 → z2 0.11 0.05 0.03
x3, y1 → z1 0.22 0.05 0.02
x3, y1 → z2 0.78 0.14 0.07
x3, y2 → z1 1.00 0.02 0.01
x3, y2 → z2 0.00 0.00 0.00

Flow graph associated with the decision algorithm is shown in Fig. 17.

Fig. 17. Hair, eyes and nationality.
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One can conclude from the flow graph that the most significant decision rules
are (x1, y1) → z2 (σ = 0.39) and (x2, y2) → z1 (σ = 0.24) with the corresponding
dependency factors η = 0.10 and 0.26, and strength 0.39 + 0.24 = 0.63. That
means that two decision rules enable us to classify correctly of the 63% cases.

Dependency factors indicate that dark hair and hazel eyes are more charac-
teristic for Italians then blond hair and blue eyes for Swede.

Let us also mention that if the data are representative for a larger universe
(form a proper sample of the universe), then the results can be also considered
as promising hypotheses in this extended world. That is, we employ in this
case inductive reasoning, i.e., induce from properties of a part of the universe
properties of the whole universe.

2.4 Production Quality

Consider three industrial plants x1, x2 and x3 producing three kinds of appli-
ances y1, y2 and y3. Some of the produced appliances are defective. The situation
is presented in Fig. 18.

We want to find the relationship between plant and quality of products.
First we compute flow in the flow graph and the result is shown in Fig. 19.
Similarly as in the previous example we can find from the flow graph that

the most significant decision rules describing the relationship between plant and
product are x2 → y2, x3 → y2 and x3 → y3 having together strength 0.18 +
0.10 + 0.40 = 0.68, whereas the relationship between products and quality is
best described by the decision rules y2 → z1, y3 → z1 and y3 → z2 with strength
0.25 + 0.44 + 0.19 = 0.88

In order to find relationship between producers and quality of their products,
we compute the corresponding fusion and the result is given in Fig. 20. It is seen
from the dependency coefficient that all decision rules except the rule x2 → z2

have rather low rather low dependency factor. Because η(x2, z2) = −0.17 plant
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Fig. 18. Relationship between plant, product, and quality.
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Fig. 19. Relationship between plants, products and quality.

x2 produces the lowest ratio of defective products but the corresponding decision
rule has a rather weak strength (σ = 0.05); that is, it has 5% support. In other
words it is the best of all plants. It is interesting to observe that the four strongest
decision rules provide 90% accuracy of classification.

The corresponding decision algorithm is shown below:

certainty coverage strength
x1, y1 → z1 0.83 0.06 0.05
x1, y1 → z2 0.17 0.05 0.01
x1, y3 → z1 0.71 0.13 0.10
x1, y3 → z2 0.29 0.15 0.04
x2, y1 → z1 0.00 0.21 0.00
x2, y1 → z2 0.00 0.03 0.00
x2, y2 → z1 0.89 0.21 0.16
x2, y2 → z2 0.11 0.08 0.02
x2, y3 → z1 0.67 0.08 0.06
x2, y3 → z2 0.33 0.15 0.03
x3, y2 → z1 0.90 0.13 0.09
x3, y2 → z2 0.10 0.05 0.01
x3, y3 → z1 0.70 0.37 0.28
x3, y3 → z2 0.30 0.45 0.12

Flow graph associated with the decision algorithm is given in Fig. 21.
We leave discussion of the flow graph for the interested reader.
Let us observe that in this example we do not have inductive reasoning, what-

soever. The world (universe) we are interested in is “closed” and we search only
for relationships valid in this specific universe. There is no reason to generalize
the obtained results.
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Fig. 20. Fusion between plant and quality.

Fig. 21. Production quality.
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Fig. 22. Initial data.

2.5 Play Blocks

Suppose we are given a set of play blocks of different, shapes (square, round,
triangular), colors (red, blue green) and size (large, small).

Initial data are shown in Fig. 22.
Corresponding flow graph is presented in Fig. 23.
In order to find relationship between shape and size, and size color we have

to compute the corresponding dependency factors but we will omit this com-
putation here. For finding the relationship between shape and color we have to
compute first fusion of shape and color, which is shown in Fig. 24.

Almost all dependency coefficients are very low, which means that there is a
very low relationship between shape and color of blocks, nevertheless there are
strong decision rules in the flow graph, e.g., x3 → z3(σ = 0.22), x3 → z2(σ =

Fig. 23. Relationship between features of play blocks.
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Fig. 24. Fusion of shape and color.

0.12), x2 → x3(σ = 0.19) and x2 → z2(σ = 0.14), which all together yields 67%
accuracy of classification.

Analogously to the example discussed before (see Fig. 21) one can search for
relationship between other features of play blocks.

Also in this example, similarly as in the previous one, we are not interested
in inducing general rules. We are searching only here for relationships in a given
data set, i.e., relations between various properties of a given set of objects.

2.6 Preference Analysis

Suppose that three models of cars x1, x2 and x3 are sold to three disjoint groups
of customers z1, z2 and z3 through four dealers y1, y2, y3 and y4.

Moreover, let us assume that car models and dealers are distributed as shown
in Fig. 25.

Computing strength and coverage factors for each branch we get results
shown in Fig. 26.

In order to find consumer preferences in buying cars we have to compute
fusion between car models and consumer group. The result is shown in Fig. 27.

From the flow graph we can see that consumer group z1 mostly bought car x3

(45%), consumer group x2 mostly bought car x3 (38%) and consumer group z3

mostly bought cars x3 too (69%). We can also conclude from the flow graph that
car x1 was mostly bought by consumer group z2 (57%), car x2 – by consumer
group z2 (60%) and car x3 – by consumer group z2 (39%).

The dependency coefficients reveal that the strangest negative dependency is
between car model x1 and consumer group z3(η = −0.37), whereas car model x1

and consumer group z1 shows the highest positive correlation (η = 0.17), with
corresponding strengths σ = 0.02 and σ = 0.06.

Let us also notice that the five strongest decision rules provided 77% accuracy
of classification.
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Fig. 25. Car and dealer distribution.

Fig. 26. Strength, certainty and coverage factors.

We can also ask how consumer preferences are related to car model and
dealer. To this end we have to find the corresponding decision algorithm but we
postpone this task here.

If this data set is representative for a greater universe then the obtained
results can be induced for the whole universe.
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Fig. 27. Fusion of consumer preferences.

2.7 Voting Analysis

Consider three disjoint age groups of voters y1 (old), y2 (middle aged) and y3

(young) – belonging to three social classes x1 (high), x2 (middle) and x3 (low).
The voters voted for four political parties z1 (Conservatives), z2 (Labor), z3

(Liberal Democrats) and z4 (others).
Social class and age group votes distribution is shown in Fig. 28.
First we want to find votes distribution with respect to age group. The result

is shown in Fig. 29.

Fig. 28. Social class and age group votes distribution.
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Fig. 29. Party votes distribution.

From the flow graph presented in Fig. 29 we can see that, e.g., party z1

obtained 19% of total votes, all of them from age group y1; party z2 – 44%
votes, which 82% are from age group y2 and 18% – from age group y3, etc.

If we want to know how votes are distributed between parties with respect to
social classes, we have to compute fusion of the corresponding graph. Employing
the algorithm presented previously we get the results shown in Fig. 30.

Fig. 30. Fusion of social class and party.
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From the flow graph presented in Fig. 30, we can see that party z1 obtained
22% votes from social class x1 and 78% – from social class x2, etc.

The strongest positive dependency occurs between social class x1 (high) and
party z1 (Conservatives) η = 0.40 and social class x3 (low) and party z4 (others)
η = 0.41, with corresponding strengths σ = 0.04 and σ = 0.02, which are rather
low.

The highest negative correlation (η = −0.28) is between social class x1 (high)
and political party z2 (Labor), with strength σ = 0.02, which is also low.

If we want to know how votes for political parties are distributed in relation
to social class and age of voters, we have to derive the decision algorithm from
the flow graph given in Fig. 30, but we will drop this here. Let us observe only,
e.g., that old members of high social class voted mostly for Conservatives, middle
aged members of middle social class voted mostly for Labor and young members
of low social class voted mostly for Labor.

Let us also observe that the four strongest decision rules yields 0.78 strength,
i.e., these four rules gives 78% accuracy of classification of party members with
respect to social class.

A similar remark about induction as in the previous case of voting analysis
applies here.

2.8 Promotion Campaign

Suppose we have three groups of customers classified with respect to age: young

(students), middle aged (workers) and old (pensioners). Moreover, suppose we
have data concerning place of residence of customers: town, village and country.

Let us assume that the customers are asked whether they will buy certain
advertised product (e.g., a new tooth paste) in a promotion campaign.

The initial data are presented in Fig. 31.
That means that there are 25% young customers, 60% – middle aged and

15% old – in the data base. Moreover, we know that 75% of young customers
live in towns, 20% – in villages and 5% – in the country, etc. We also have from
the database that 75% town customers answered yes, 25% – no, etc.

We want to find a relationship between various customers’ group and the
final result of the promotion.

First, applying the ideas presented previously, we get the results shown in
Fig. 32.

Fig. 32 shows the general structure of patterns between various customers
groups and promotion results.

Suppose we are interested in finding the relationship between age group and
final result of the promotion. To this end we have to compute fusion between
age groups and the promotion result, or – the relationship between input and
output of the flow graph. The result is shown in Fig. 33.

Fig. 33 contains also dependency factors between age groups and the promo-
tion result.

It can be seen from the flow graph that all the dependency factors are very
low and almost close to zero. That means, that in view of the data, practically,
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Fig. 31. Initial data.

Fig. 32. Relationship between customers group and promotion.

there is no relationship between age group of customers and the final result of
promotion, but there are three strong decision rules which provide all together
79% of classification accuracy.

We might be also interested in the relationship between customer’s residence
and promotion results. This relationship is shown in Fig. 34. We can see from
the flow graph that there is relatively high negative dependency (η = −0.38)
with strength σ = 0.03 between country customers group y3 and answer z1

(yes). Similarly there is high positive dependency (η = 0.35) with strength σ =
0.16 between country customers group y3 and answer z2 (no). There is also a
substantial degree of negative dependency (η = −0.16) between town customers
group y1 and answer z2 (no), with σ = 0.16.
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Fig. 33. Fusion of age group and promotion.

Fig. 34. Fusion of residence and promotion.

We can conclude from the flow graph in Fig. 34, e.g., that independently of
age town customers mostly give positive answer to the promotion campaign and
country customers give mostly negative answer to the promotion campaign.

Certainly, the results are valid only for the considered data. For another data
(population), the results can be different.

2.9 Paint Demand and Supply

Suppose that cars are painted in two colors y1 and y2 and that 60% of cars
have color y1, whereas 40% cars have color y2. Moreover, assume that colors y1

and y2 can be obtained by mixing three paints x1, x2 and x3 in the following
proportions:
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– y1 contains 20% of x1, 70% of x2 and 10% of x3,
– y2 contains 30% of x1, 50% of x2 and 20% of x3.

We have to find the demand for each paint and supply among cars y1 and y2.
Employing terminology introduced in previous section, we can represent our

problem by means of the flow graph shown in Fig. 35.
Thus, in order to solve our task, first we have to compute strength of each

branch. Next, we compute the demand for each paint. Finally, we compute paint
supply for each car. The final result is presented in Fig. 36.

Suppose now that the cars are produced by three manufacturers z1, z2 and
z3, in proportions shown in Fig. 37.

That means:

– 50% of cars y1 are produced by manufacturer z1

– 30% of cars y1 are produced by manufacturer z2

– 20% of cars y1 are produced by manufacturer z3

Fig. 35. Paint demand.

Fig. 36. Paint supply.
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Fig. 37. Car production distribution.

and

– 40% of cars y2 are produced by manufacturer z1

– 30% of cars y2 are produced by manufacturer z2

– 30% of cars y2 are produced by manufacturer z3

Employing the technique used previously, we can compute car production dis-
tribution among manufacturers as shown in Fig. 38.

For example, manufacturer z1 produces 65% of cars y1 and 35% of cars y2,
etc. Finally, the manufacturer z1 produces 46% cars, manufacturer z2 – 30% cars
and manufacturer z3 – 24% of cars.

We can combine graphs shown in Fig. 36 and Fig. 38 and we obtain the flow
graph shown in Fig. 39.

Fig. 38. Manufacturer distribution.
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Fig. 39. Paint supply demand flow.

In order to find paint demand and supply by each manufacturer, we have to
compute fusion between each paint and manufacture. The corresponding flow
graph is presented in Fig. 40.

The meaning of the obtained results is the following.
Suppose that paints are delivered in the same units, say kg.
Thus manufacturer, e.g., z1, demands 120 kg, 290 kg and 60 kg of paints x1,

x2 and x3, respectively. Whereas paint x1 is delivered to manufacturer z1, z2

and z3 in amounts 120 kg, 80 kg and 70 kg, respectively.
Consequently, we need 270 kg of paint x1, 630 kg of paint x2 and 140 kg of

paint x3.
Observe that this example has an entirely deterministic character and there

is no probabilistic interpretation of the results needed whatsoever. Besides, we
do not need to employ a decision algorithm to solve this task.

Fig. 40. Fusion of paint demand and supply flow.



Flow Graphs and Data Mining 35

In the examples in the previous sections, we considered sets of different ob-
jects, e.g., patients, customers, voters, play blocks, cars, etc. In this example we
have an entirely different situation. We analyze various paints which are not sets
but substances not consisting of elements but having various ingredients (which
are also substances), e.g., blue, red paint etc. Thus we cannot use here set the-
oretical language, and define union, intersection or inclusion of sets (paints).
Therefore we cannot say that blue paint is a subset of green paint, but that blue
paint is an ingredient of green paint. Consequently, a flow graph can be in this
case understood as a language for description of the relationship between various
ingredients (substances), where (x, y) ∈ B means that x is ingredient of y. In
this language cer(x, y) expresses the ratio of substance y to substance x, in x,
whereas cov(x, y) is the ratio of x to y in y. This resembles somewhat the rela-
tion of being a part in a degree introduced in rough mereology by Polkowski and
Skowron (see Section 1.7) but parts and ingredients are two different concepts.
The concept of a part has set theoretical flavor, but ingredient has not.

Also inductive reasoning is not involved here. This example shows simply the
relationship between demand and supply of some goods.

3 Conclusions

We propose in this paper a new approach to knowledge representation and data
mining based on flow analysis in a new kind of flow network.

We advocate in this paper to represent relationships in data by means of flow
graphs. Flow in the flow graph is meant to capture the structure of data rather
than to describe any physical material flow in the network. It is revealed that
the information flow in a flow graph is governed by Bayes’ formula; however, the
formula can be interpreted in an entirely deterministic way without referring
to its probabilistic character. This representation allows us to study different
relationships in data and can be used as a new mathematical tool for data
mining.
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7. S. Greco, Z. Pawlak, R. S�lowiński, Bayesion confirmation measures within rough
set approach, In: S. Tsumoto, R. S�lowiński, J. Komorowski, J. Grzyma�la-Busse
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