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Abstract

Image saliency detection has recently witnessed signif-

icant progress due to deep convolutional neural networks.

However, extending state-of-the-art saliency detectors from

image to video is challenging. The performance of salient

object detection suffers from object or camera motion and

the dramatic change of the appearance contrast in videos.

In this paper, we present flow guided recurrent neural

encoder (FGRNE), an accurate and end-to-end learning

framework for video salient object detection. It works by

enhancing the temporal coherence of the per-frame feature

by exploiting both motion information in terms of optical

flow and sequential feature evolution encoding in terms of

LSTM networks. It can be considered as a universal frame-

work to extend any FCN based static saliency detector to

video salient object detection. Intensive experimental re-

sults verify the effectiveness of each part of FGRNE and

confirm that our proposed method significantly outperforms

state-of-the-art methods on the public benchmarks of DAVIS

and FBMS.

1. Introduction

Salient object detection aims at identifying the most vi-

sually distinctive objects in an image or video that attract

human attention. It has drawn a lot of attention due to the

need for solving this problem in many computer vision ap-

plications such as image and video compression [12], ob-

ject segmentation [37], visual tracking [38] and person re-

identification [43]. Although image based salient object de-

tection has been extensively studied during the past decade,

video based salient object detection is much less explored
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due to its high complexity and the lack of large-scale anno-

tated video datasets.
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Figure 1. The challenges of still-image saliency detector and

the effectiveness of temporal coherence modeling in video based

salient object detection.

In recent years, due to the success deployment of deep

convolutional neural networks (CNN), the performance of

salient object detection in static image has been increased

by a significant margin [21, 10, 18, 20]. Nevertheless, di-

rectly applying these methods to video salient object de-

tection is non-trivial and challenging. The performance of

salient object detection suffers from object or camera mo-

tion and the dramatic change of the appearance contrast in

videos. As shown in the second row of Fig. 1, state-of-

the-art still-image salient object detectors (e.g. DSS [10])

deteriorates drastically from the inability to maintain the vi-

sual continuity and temporal correlation of salient objects

between consecutive frames.

Cognitive studies have shown that visual contrast is the

key factor that leads to a specific region becoming salient

in static images. For dynamic videos, the difference be-

tween consecutive frames caused by object motion are

more attractive to people’s attention [13]. Such tempo-

ral information has been exploited in existing video salient

object detection methods either in the form of graphics

model [35, 3] or simply embedded in a convolutional neu-

ral network [36]. Graphics model based methods generally

employ generative framework which first infers an initial

saliency map from either intra-frame appearance contrast
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information [3] or inter-frame gradient flow field [35], and

further incorporates an energy function with some heuris-

tic spatio-temporal modeling to encourage the cross-frame

consistency of the output saliency maps. Due to their in-

dependence from training data and the use of handcrafted

low-level features, it is arduous for graphics model based

methods to cope with videos with complex semantic con-

trast and objects motion. Although optical flow has been

exploited in these methods, it is only used in an off-the-

shelf mode for heuristic post-processing. Recently, with

the thriving application of deep CNN in salient object de-

tection of static images, there are also attempts to extend

CNN to video salient object detection [36, 16]. They simply

concatenate consecutive frame images and feed to convo-

lutional neural networks for temporal coherence modeling.

However, since convolutional neural network does not have

the memory function, this naive aggregation of raw frame

images followed by a serious of convolution operations can

not well characterize the continuous dynamic evolution of

video frames in the temporal domain. Moreover, this simple

spatio-temporal modeling strategy lacks explicit compensa-

tion for object’s motion, making it hard to detect the salient

objects with strenuous movement while maintaining tempo-

ral coherence (e.g. object moves beyond the receptive field

of the neural network).

In this work, we present flow guided recurrent neural en-

coder (FGRNE), an end-to-end learning framework to ex-

tend any FCN based still-image saliency detectors to video

salient object detection. It works by enhancing the tempo-

ral coherence of the per-frame feature by exploiting both

motion information in terms of optical flow and sequen-

tial feature evolution encoding in terms of LSTM networks.

Specifically, we employ an off-the-shelf FCN based image

saliency detector (e.g. DSS [10]) as our host network for

feature extraction and ultimate saliency inference, and a

pre-trained FlowNet [7] for motion estimation between a

frame pair. Our FGRNE learns to improve the per-frame

feature by incorporating a flow guided feature warping fol-

lowed by a LSTM based temporal coherence feature encod-

ing. The output feature map at the last time-step is con-

sidered as our encoded feature and is fed to the upper part

of the host network for saliency inference. Moreover, our

FGRNE also involves another LSTM module to improve

the estimated optical flow from frame pairs with large time

interval. All the three modules of FGRNE including mo-

tion computing and updating, flow guided feature warping

as well as temporal coherence feature encoding are trained

end-to-end with the host network.

In summary, this paper has the following contributions:

• We introduce a flow guided recurrent neural encoder

framework to enhance the temporal coherence mod-

eling of the per-frame feature representation, which

can be exploited to extend any FCN based still-image

saliency detector to video salient object detection.

• We propose to incorporate an optical flow network

in FGRNE framework to estimate the motion of each

frame, which is further used in feature warping to ex-

plicitly compensate for object’s motion.

• We proposed to exploit a ConvLSTM in our FGRNE

for sequential feature encoding, which can capture the

evolution of appearance contrast in temporal domain

and is complementary to feature warping towards an

improved performance for video salient object detec-

tion.

2. Related Work

2.1. Still­Image Salient Object Detection

Image salient object detection has been extensively stud-

ied for decades. Conventional methods can be divided into

bottom-up approaches based on low-level features [8, 15, 5]

and top-down models guided by high-level knowledge [14,

40, 22]. In recent years, the profound deep CNN has pushed

the research on salient object detection into a new phase

and has become the dominant research direction in this

field. Deep CNN based methods can be further divided into

two categories, including region based deep feature learn-

ing [19, 42, 32] and end-to-end fully convolutional network

based methods [20, 10, 18, 33, 17]. Methods in the first

category separate an image into regions, and treat each re-

gion as an independent unit for deep feature extraction and

saliency inference. They are generally space and time con-

suming due to significant redundancy in feature extraction

and storage. To overcome this deficiency, deep FCN based

models have been developed to directly map a raw input

image to its corresponding saliency map in an end-to-end

trainable way. These kind of methods can make the best

of feature sharing mechanism and generate the hierarchical

feature of each region in a single network forward opera-

tion. They can produce superior saliency maps and have be-

come the fundamental component in state-of-the-art meth-

ods of this field.

In contrast to these still-image based salient object de-

tection methods, we focus on video salient object detection,

which incorporates both temporal and motion information

to improve the feature map representation for saliency in-

ference. It can be considered as a universal framework to

extend any FCN based models to video salient object detec-

tion, and can easily benefit from the improvement of still-

image salient object detectors.

2.2. Video Salient Object Detection

Compared with saliency detection in still images, detect-

ing video salient objects is much more challenging due to

the high complexity in effective spatio-temporal modeling

3244



and the lack of large-scale annotated video datasets. It is

far less explored in the research community. Earlier meth-

ods to this problem can be considered as simple extensions

of some static saliency models with extra crafted temporal

features [24, 9]. More recent and noteworthy works gener-

ally formulate video saliency detection as a spatio-temporal

context modeling problem over consecutive frames, and in-

corporates energy functions with handcrafted rules to en-

courage both the spatial smoothness and temporal consis-

tency of the output saliency maps [3, 35, 6]. However, these

approaches all belong to unsupervised generative models

and depend on handcrafted low-level features for heuristic

saliency inference, and hence are not able to handle com-

plex videos that require knowledge and semantic reasoning.

Though recently an unpublished work by Le et al. [16] pro-

poses to incorporate deep CNN feature in a spatio-temporal

CRF framework for temporal consistency enhancement, it

still suffers from the deficiency of multi-stage pipeline and

its high-computational costs. The most relevant work with

us is [33], which exploits a second FCN to improve the tem-

poral coherence of the saliency map generated from an ini-

tial static FCN based saliency network, by taking as input

the concatenation of successive frame pair as well as the ini-

tial saliency map and directly mapping to a refined saliency

map in a forward network operation. Since convolutional

neural network does not have the memory function, it is not

able to well model the continuous evolution of video frames

in the temporal domain. Moreover, this rough strategy of

spatio-temporal modeling lacks explicit compensation for

objects motion, making it hard to detect the salient objects

with strenuous movement.

By contrast, our method considers temporal information

in the feature level instead of the raw input frames and in-

corporates LSTM network to naturally encode the sequen-

tial feature evolution. The entire framework is trained end-

to-end and the inference process is highly efficient. Besides,

our method can further incorporate such graphics model

based post-processing technique (e.g. CRF) to improve the

performance.

2.3. Optical Flow based Motion Estimation

Optical flow estimates the per-pixel motion between two

consecutive frames and it is widely used in a variety of

video analysis tasks. Traditional methods are mostly based

on variational formulation, which mainly tackle small dis-

placements and are limited by their high-computational

costs for efficient video applications. Recently, deep learn-

ing based methods have been employed to optical flow

computation [7, 28, 11]. The most representative work is

FlowNet [7] which shows that CNN can be applied to highly

effective optical flow inference. There are also attempts to

incorporate FlowNet in contemporary deep learning frame-

work to enhance the temporal continuity of the represen-

tation of video features, which has brought performance

improvements to various of video comprehension tasks, in-

cluding video recognition [45], object detection [44] and

video object segmentation [29].

Optical flow has been exploited in existing video salient

object detection models, however, it is either used as an

auxiliary motion feature or a handcrafted rule in post-

processing for temporal coherence improvement. Inspired

by [45, 44], we incorporate optical flow to enable fea-

ture warping across frames and compensate for the change

caused by object motion. However, unlike these efforts, the

motion flow is dynamically updated in our framework and

the result of feature warping is exploited to temporal feature

encoding instead of feature aggregation. Moreover, we are

first to integrate optical flow in recurrent neural encoder for

effective spatio-temporal feature learning and have demon-

strated its superior performance on the task of video salient

object detection.

3. Flow Guided Recurrent Neural Encoder

Given the a video frame sequence Ii, i = 1, 2, ..., N , the

objective of video salient object detection is to output the

saliency maps of all frames, Si, i = 1, 2, ..., N . State-of-

the-art salient object detectors for static image are mostly

based on FCN structure [20, 23, 18, 10]. Given a pre-

trained static model N (e.g. DSS [10] model), it can be

considered as a feature extraction module Nfea followed by

a pixel-wise saliency regression module Nreg. The output

saliency map S of a given image I can be computed as

S = Nreg (Nfea (I)). Directly applying this model to each

individual frame usually generates unstable and temporally

inconsistent saliency maps due to the lack of temporal co-

herence modeling in feature representation.

Our proposed FGRNE E aims at enhancing the tem-

poral consistency of feature representation by extra look-

ing at a segment of k former frames. Given a refer-

ence frame Ii, the encoded feature is denoted as Fi =
E (Nfea(Ii),Nfea(Ii−1), ...,Nfea(Ii−k)). As object motion

and the change of its appearance contrast are two core in-

fluencing factors to video saliency, the proposed FGRNE in-

corporates an off-the-shelf FlowNet model [7] and a LSTM

based feature encoder to respectively take care of these two

factors.

As shown in Fig. 2, the architecture of our FGRNE con-

sists of three modules, including motion computing and up-

dating, motion guided feature warping, and temporal co-

herence feature encoding. Specifically, we first compute an

optical flow map for each of the k former frames relative

to the reference frame. Each of the flow map is further fed

to a LSTM in reverse order for motion refinement. Sec-

ondly, the updated flow map at each time step is applied to

warp the feature map accordingly. And finally, each warped

feature is consecutively fed to another LSTM for temporal
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Figure 2. Our overall framework for flow guided recurrent neural encoder. It incorporates a LSTM with reverse sequential input for motion

flow update, a flow guided feature warping module and another LSTM for temporal coherence feature encoding.

coherence feature encoding, which produces the resulted

feature Fi. The output saliency map is thus computed as

Si = Nreg (Fi).

3.1. Motion Computing and Updating

Given a reference Ii and a window of k former frames,

we first apply the embedded FlowNet F [7] to individu-

ally estimate k initial flow fields {Oi→j = F (Ii, Ij)| j =
i−1, i−2, ..., i−k} relative to the reference frame. The re-

sulted flow field Oi→j is a position offset map of two chan-

nels. It computes the pixel displacement (u, v) for every

pixel location (x, y) in Ii to the spatial location (x′, y′) in

Ij , i.e., (x′, y′) = (x + u, y + v), where u and v respec-

tively represent the pixel offsets in horizontal and vertical

directions.

As the FlowNet is originally trained from pair data of

consecutive frames, it may not be accurate enough to reflect

the motion relationship between two frames with long time

interval. Intuitively, the closer to the reference frame, the

more accurate the estimated motion flow. We can gradually

employ flow maps of closer frames to refine that of larger

time interval. Based on the above consideration, we propose

to combine a ConvLSTM [39] with CNN based FlowNet to

jointly learn the flow map and refine in reverse order.

ConvLSTM is an extension of traditional fully con-

nected LSTM which has convolutional structures in both

input-to-state and state-to-state connections. All of the

data transfered in ConvLSTM can be regarded as 3D ten-

sors with the last two dimensions being spatial dimen-

sions. Let X1,X2, ...,Xt denote the input to ConvLSTM

and H1,H2, ...,Ht stand for its hidden states. At each time

step, the output hidden state of ConvLSTM is updated base

on its own input as well as the encoded past states from its

previous input, which is formulated as

Ht = ConvLSTM (Ht−1, Ct−1,Xt) , (1)

where C is the memorized cell state of the ConvLSTM at its

previous time-step. Following [39], the ConvLSTM mod-

ule consists of the input gate it, forget gate ft and output

gate ot, the overall updating equations can be listed in (2),

where ‘∗’ denotes the convolution operator, ‘◦’ denotes the

Hadamard product, and σ(·) stands for the sigmoid func-

tion:

it = σ (Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ (Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh (Wxc ∗ Xt +Whc ∗ Ht−1 + bc)

ot = σ (Wxo ∗ Xt +Who ∗ Ht−1 +Wco ◦ Ct−1 + bo)

Ht = ot tanh (Ct)

(2)

To update the optical flow field with ConvLSTM, the

LSTM layer is unrolled for a window of k flow fields and

the size of the hidden state is set to be the same as the in-

put flow map. We sequentially feed the k initial motion

flow to the ConvLSTM cells in reverse order, i.e., X1:k =
Oi→(i−1), Oi→(i−2), ..., Oi→(i−k). The hidden states are

the encoding of the updated flow field, which is further fed

to a convolutional layer with kernel size of 1× 1 to produce

the refined flow map ROi→j , formulated as:

j = i− t

Ht = ConvLSTM (Ht−1, Ct−1, Oi→j)

ROi→j = Conv1×1 (Ht)

(3)

3.2. Motion Guided Feature Warping

As motivated by [45], given a refined flow map ROi→j ,

the feature maps Nfea(Ij) on the jth frame are warped to the

reference frame by applying the following warping func-

tion,

WarpFi→j = W (Nfea(Ij), ROi→j) (4)
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where WarpFi→j refers to the feature maps warped from

frame j to frame i. W (·) is the bilinear warping function,

which is applied on all the spatial locations for each channel

of the feature maps. It is implemented as a bilinear interpo-

lation of Nfea(Ij) at the desired positions w.r.t the optical

flow ROi→j .

3.3. Temporal Coherence Feature Encoding

Although feature warping operation can compensate

for the misalignment of features caused by object or

camera motion. It is still not enough to characterize the

continuous dynamic evolution of video frames as well as

the evolution of appearance contrast in temporal domain.

Base on the above considerations, we proposed to exploit

another ConvLSTM for sequential feature encoding.

Specifically, this ConvLSTM takes a sequence of warped

features (including the feature of the reference frame) as

input, i.e., X1:k denoted in Equation (1) is set to X1:k =
WarpFi→(i−k),WarpFi→(i−k+1), ...,WarpFi→(i−1),Nfea(Ii),
and works by computing the forward hidden sequence for

temporal feature encoding from t = 1 to t = k + 1, and

then updating the output layer. The state updating function

in (1) can be rewritten as follows:

j = i− k + (t− 1)

Ht = ConvLSTM
(

Ht−1, Ct−1,WarpFi→j

)

, t ≤ k

Hk+1 = ConvLSTM (Hk, Ck,Nfea(Ii))

(5)

The hidden states are the encoding of the memorized future

till now. And the hidden state of the last time-step k + 1 is

our final feature encoding.

4. Experimental Results

4.1. Experimental Setup

4.1.1 Datasets

We evaluate the performance of our method on two public

datasets: Freiburg-Berkeley Motion Segmentation (FBMS)

dataset [2, 25], and DAVIS [27] dataset. The FBMS dataset

contains 59 videos with 720 annotated sparsely annotated

frames. DAVIS is a newly developed dataset for video ob-

ject segmentation, which contains 50 high quality and full

HD video sequences with 3,455 densely annotated pixel-

level and per-frame ground-truth. It is one of the most chal-

lenging benchmark which covers various video object seg-

mentation challenges such as occlusions, motion blur and

appearance changes.

There exists another dataset SegTrack V2, which is an

extended dataset from the original SegTrack dataset pro-

posed in [30] and contains 14 videos about bird, animal,

car and human with 1,066 densely annotated frame images.

As referred to [36], we combine the whole SegTrackV2, the

training sets of FBMS and DAVIS as our training set, and

evaluate our trained model on the testing sets of DAVIS and

FBMS.

4.1.2 Evaluation Criteria

Similar to image-based salient object detection, we adopt

precision-recall curves (PR), maximum F-measure and

mean absolute error (MAE) as the evaluation metrics. The

continuous saliency map is rescaled to [0, 255] and is bina-

rized using all integer thresholds in the interval. At each

threshold value, a pair of precision and recall value can be

obtained by comparing the binary saliency map against the

groundtruth. The PR curve is obtained from the average

precision and recall over saliency maps of all images in the

dataset. The F-measure is defined as

Fβ =
(1 + β2) · Precision ·Recall

β2 · Precision+Recall
, (6)

where β2 is set to 0.3 as suggested in [1]. We report the

maximum F-measure (maxF) computed from the PR curve.

MAE is defined as the average pixelwise absolute difference

between the binary ground truth G and the saliency map

S [26],

4.1.3 Implementation Details

Our proposed FRGNE has been implemented on the

Mxnet [4], a flexible open source deep learning frame net-

work. FGRNE is compatible with any FCN based still-

image salient object detectors. In this paper, we choose

the state-of-the-art deeply supervised salient object detec-

tion (DSS) [10] method with public trained model as a

baseline and take the updated DSS with FGRNE embedded

as our final model for video salient object detection when

performing ablation study and compared with other bench-

marks. In Section 4.3, we will list more results of our pro-

posed FGRNE on other host networks to demonstrate the ef-

fectiveness of our proposed algorithm. During training, the

frame images are resized to 256*512 before feeding into the

network. While inference, we resize the image to a shorter

side of 256 pixels. We train all the components incorporated

in our framework in an end-to-end mode using SGD with a

momentum of 0.9. The learning rate is initially set to 2.5e-

4 and decayed by 0.9 at every 8k training round. The loss

function is set as same as the host network (e.g. DSS [10]

employs an image-level class-balanced cross-entropy loss).

The window size k is limited by the memory, with its default

value set to 5 in our experiment. We have also explored the

impact of different settings in Section 4.3. Experiments are

performed on a workstation with an NVIDIA Titan X GPU

and a 3.4GHz Intel processor.
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DATASET Metric MST MB+ RFCN DHSNet DCL DSS SAG GF DLVSD FGRNE

DAVIS
maxF 0.455 0.520 0.732 0.778 0.740 0.775 0.528 0.628 0.699 0.798

MAE 0.165 0.183 0.047 0.035 0.061 0.047 0.080 0.067 0.064 0.032

FBMS
maxF 0.540 0.525 0.741 0.744 0.740 0.760 0.572 0.607 0.696 0.783

MAE 0.179 0.204 0.089 0.076 0.133 0.077 0.145 0.101 0.077 0.063

Table 1. Comparison of quantitative results including maximum F-measure (larger is better) and MAE (smaller is better). The best three

results are shown in red, blue, and green , respectively.
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Figure 3. Comparison of precision-recall curves of 10 saliency de-

tection methods on DAVIS and FBMS. Our proposed FGRNE con-

sistently outperform other methods across the two testing dataset.

4.2. Comparison with the State of the Art

We compare our method (FGRNE) against 9 recent

state-of-the-art methods, including MST [31], MB+ [41],

RFCN [33], DHSNet [23], DCL [20], DSS [10], SAG [34],

GF [35] and DLVSD [36]. The first six are the latest state-

of-the-art salient object detection methods for static images

while the last three are video-based saliency models. For

fair comparison, we use either the implementations or the

saliency maps provided by the authors. We also fine-tune

all the public static saliency models using the training set as

same as we train our FGRNE, and use the refined model for

comparison.

A visual comparison is illustrated in Fig. 4. As can

be seen, deep learning based static saliency models can

generate seemly promising saliency maps when watched

independently, they are unsurprisingly inconsistent when

putting in a whole sequence. Though existing video-based

models can produce consistent results on videos with rela-

tively slight object motions, they still can not handle videos

with dramatic changes in appearance (object or camera mo-

tion). It is particularly noteworthy that our proposed method

incorporates the off-the-shelf DSS [10] model as our base-

line, it can learn to improve the original feature with tempo-

ral coherence and eventually produce optimized results far

better than the original ones. In general, our method gen-

erates much more accurate and consistent saliency maps in

various challenging cases.

As a part of quantitative evaluation, we show a compar-

ison of PR curves in Fig. 3. As shown in the figures, our

method (FGRNE) significantly outperforms all state-of-the-

art static and dynamic salient object detection algorithms on

both DAVIS and FBMS. Moreover, a quantitative compari-

son of maximum F-measure and MAE is listed in Table. 1,

our proposed method improves the maximum F-measure

achieved by the best-performing static algorithm by 5.24%

and 2.57% respectively on FBMS and DAVIS, and low-

ers the MAE by 17.10% and 8.57% accordingly. When

compared with the best-performing video-based model, our

FGRNE improves the maximum F-measure by 12.50% and

14.16% respectively on the FBMS and DAVIS dataset, and

lowers the MAE by 18.18% and 50% accordingly. An in-

teresting phenomenon is that the current best static saliency

model actually outperforms the state-to-state video-based

salient object detection methods because of the outstanding

fully convolutional network.

Methods Sa Sb Sc Sd Se Sf

feature aggregation? ✓ ✓

flow guided feature warping? ✓ ✓ ✓

flow update with LSTM? ✓

feature encoding with LSTM? ✓ ✓ ✓

maxF 0.775 0.768 0.777 0.780 0.793 0.798

MAE 0.047 0.052 0.036 0.036 0.035 0.032

runtime(ms) 97 112 137 162 184 191

Table 2. Effectiveness of flow guided recurrent neural encoder.

4.3. Ablation Studies

4.3.1 Effectiveness of Flow Guided Recurrent Neural

Encoder

As discussed in Section 3, our proposed FGRNE involves

three major modules, including motion flow updating, mo-

tion guided feature warping and temporal coherence fea-

ture encoding. To validate the effectiveness and necessity

of each of these three modules, we compare FGRNE with

its five variants in Table. 2.

Sa refers to the saliency maps generated from the single-

frame baseline model. To facilitate comparison, we also

finetune the model using the individual frames of our used

training set. It reaches the max Fβ = 0.775 and MAE =
0.047 in the test set of DAVIS, which already outperforms

most of the state-of-the-art methods. This indicates that

the fine-tuned baseline model is competitive and serves

as a valid reference for evaluation. Compared to our en-

tire framework, it is shown that embedding FGRNE to the

baseline model totally leads to a 2.97% F-measure increase

while reducing the MAE by 31.91%.

Sb refers to a naive feature aggregation algorithm on the

baseline model. The feature of the reference frame is sim-

ply updated as the weighted sum of the feature maps in
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Figure 4. Visual comparison of saliency maps generated from state-of-the-art methods, including our FGRNE. The ground truth (GT) is

shown in the last column. Our model consistently produces saliency maps closest to the ground truth.

the watching window, with the weight of jth frame wi→j

set to 1
i−j+1 . It is denoted as Fi =

∑k

l=0
1

l+1Nfea (Fi−l).
It is also trained end-to-end in the same way as we train

our FGRNE. As shown in the table, the F-measure of this

variant drops to 0.768 while the MAE increases to 0.052,

which is even shy of the baseline model. It suggests that

this naive feature aggregation is not suitable for sequential

feature modeling. We speculate that the reason lies in the

misalignment of features caused by changes in scene struc-

ture and appearance.

Sc refers to a simple feature encoding algorithm on the

baseline model, and a degenerate variant of FGRNE. The

motion updating module is turned off and no flow motion

is used, i.e., the motion flow Oi→j is set to all zeros dur-

ing training. The variant is also trained end-to-end in the

same way as FGRNE. As shown in the table, the F-measure

obtains a very slight increase to 0.777, while MAE greatly

decreases by 23.40% to 0.036. However, the performance is

still much inferior to the proposed FGRNE. This indicates

that recurrent neural encoder can learn to exploit feature of

previous frames to improve the temporal coherence of the

reference frame. However, LSTM based feature encoding

alone is not enough.

Sd adds motion guided feature warping to the model of

Sb, without the motion evolution update module turned on.

It is actually a flow guided feature aggregation program. It

increases the F-measure by 1.56% to 0.780 while lowers

the MAE by 30.77% to 0.036 w.r.t the performance of Sb.

It implies that feature alignment is an important operation

before feature aggregation. The evident performance gain

towards that of Sa also reveals the importance of motion

modeling for video salient object detection.

Se adds motion guided feature warping to the model of

Sc. It is a degenerate version of FGRNE without motion

flow updating. All the other factors remain the same. It in-

creases the max F-measure by 2.06% to 0.793 and lowers

the MAE by 2.78% to 0.035 w.r.t the performance of Sc,

which implies that the performance gain of motion guided

feature warping is complementary to the LSTM based tem-

poral coherence modeling. In fact, both object motion and

the change of its appearance contrast are two core influenc-

ing factors to video saliency, which correspond exactly to

the design of two complementary modules in our proposed

FGRNE.

Sf refers to the proposed FGRNE method, which turns

on the motion flow evolution update module in Se. It fur-

ther brings a 0.63% boost to the F-measure to 0.798 while

reducing the MAE by 8.57% to 0.032. This demonstrate

the reverse LSTM can help to refine the motion flow, which

makes up for the lack of FlowNet in estimating optical flow

for frame pairs with large time interval.

Moreover, we have also listed the comparison on runtime

cost of each variant of our proposed FGRNE. As shown in

the figure, incorporating FGRNE to a static model cost an

extra 94ms per-frame. Noted that the feature extraction are

shared during the saliency inference of all the frames in a

given window and our algorithm runs in a sliding window

mode. Therefore, enlarging the window size does not con-

tribute to severe increase of time computation cost.

4.3.2 Sensitivities to Feature Extractor Selection

As described in Section 3, our FGRNE is dependent on a

pre-trained static saliency detector as our host network. The

host network is split into a feature extractor and a pixel-wise

classification module. In principle, it can be split at any
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Figure 5. Sensitivities analysis on different window size settings.

Figure 6. Sensitivities to host model selection.

layer as the host network is fully convolutional. We explore

the effect of adding FGRNE to different levels of feature

extraction on the performance of final results. We respec-

tively experiment on adding feature encoding to the out-

put feature map of Conv3 3, Conv4 3 and Conv5 3 of the

host DSS model. Experimental results shown that FGRNE

is able to improve the temporal coherence on all scales

of feature maps, which results in maxF value of 0.777,

0.789 and 0.798 respectively when choosing feature maps

of Conv3 3, Conv4 3 and Conv5 3. Among them, incor-

porating FGRNE with the feature extracted from Conv5 3

results in the maximum performance gain, which increases

the F-measure by 2.97% and decreases the MAE by 8.57%

w.r.t to its single-frame static version.

4.3.3 Sensitivities to Window Size Setting

Our proposed FGRNE learns to facilitate the temporal co-

herence of the encoded feature by exploiting a window k

former frames. Limited by the memory of our workstation,

k can be set to a maximum of 10. We have explored the

impact of different settings of k = {1, 2, 3, 5, 8, 10} on the

salient object detection performance. Results in Fig. 5 show

that training with 5 and 8 former frames achieves very close

accuracy, with k = 5 performing slightly better. By default,

we set k = 5 during training and inference in our experi-

ments.

4.3.4 Sensitivities to Host Model Selection

As described in Section 3, we adopt a FCN based static

saliency detector as the host model for our FGRNE. To

demonstrate that our proposed method is widely applica-

ble to any FCN based host network model, we apply to in-

corporate our FGRNE in two other recently published FCN

based salient object detection methods, including DCL [20]

and MSRNet [18]. For the latter, due to the limitation of

machine memory, we only experiment on its single scale

version, i.e. SSRNet. As shown in Fig. 6, experimental

evaluation on both F-measure and MAE have shown that

our FGRNE can be trained to effectively enhance the spatio-

temporal coherence of the feature representation, which

greatly boost the performance of video salient object de-

tection.

DATASET LVO LVO+CRF FSEG LMP SFL OUS OUS+CRF

DAVIS 70.9 75.9 70.7 70.0 67.4 73.0 77.1

FBMS 63.5 65.1 68.4 35.7 55.0 72.4 76.2

Table 3. Performance comparison on unsupervised video object

segmentation in terms of mean IoU

5. Comparison with Unsupervised Video Ob-

ject Segmentation Methods

The problem setting of video salient object detection is

very similar to that of unsupervised video object segmen-

tation, except that its goal is to calculate a saliency proba-

bility value for each pixel instead of a binary classification.

To make a fair comparison with the state-of-the-art unsu-

pervised video object segmentation methods, we incorpo-

rate our FGRNE with a static ResNet-101 based pixel-wise

binary classification model with feature extracted from the

final output feature map of Conv5 x. We evaluate our pro-

posed method on both the DAVIS and FBMS datasets in

terms of mean IoU and make a comparison with some state-

of-the-art methods. As shown in Table 3, our proposed

method outperforms LVO [29], the previous state of the

art, by 2.96% and 14.0% on the IoU measure respectively

on DAVIS and FBMS. Noted that as described in [29], the

mIoU value of 75.9% reported on the leaderboard of DAVIS

includes CRF as post-processing, the result of LVO without

CRF is 70.9 as reported in their paper. For fair comparison,

we also report our mIoU results with and without CRF in

the table. As can be seen, our proposed method with CRF

also greatly outperforms LVO by 1.6% and 16.90% respec-

tively on DAVIS and FBMS.

6. Conclusion

In this paper, we have presented an accurate and end-

to-end framework for video salient object detection. Our

proposed flow guided recurrent encoder aims at improving

the temporal coherence of the deep feature representation.

It can be considered as a universal framework to extend

any FCN based static saliency detector to video salient ob-

ject detection, and can easily benefit from the future im-

provement of image based salient object detection methods.

Moreover, as we focus on the learning an enhanced feature

encoding, it can be easily extended to other applications of

video analysis and it is worth exploring in the future.

3250



References

[1] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk.

Frequency-tuned salient region detection. In CVPR, pages

1597–1604. IEEE, 2009. 5

[2] T. Brox and J. Malik. Object segmentation by long term

analysis of point trajectories. ECCV, pages 282–295, 2010.

5

[3] C. Chen, S. Li, Y. Wang, H. Qin, and A. Hao. Video

saliency detection via spatial-temporal fusion and low-rank

coherency diffusion. TIP, 26(7):3156–3170, 2017. 1, 2, 3

[4] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,

B. Xu, C. Zhang, and Z. Zhang. Mxnet: A flexible and effi-

cient machine learning library for heterogeneous distributed

systems. arXiv preprint arXiv:1512.01274, 2015. 5

[5] M.-M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, and S.-M.

Hu. Global contrast based salient region detection. TPAMI,

37(3):569–582, 2015. 2

[6] Y. Fang, Z. Wang, W. Lin, and Z. Fang. Video saliency in-

corporating spatiotemporal cues and uncertainty weighting.

TIP, 23(9):3910–3921, 2014. 3

[7] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbaş,
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