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Flow in an Axially Rotating Pipe

(A calculation of flow in the saturated region)*

By Koji KIKUYAMA**, Mitsukiyo MURAKAMI***,
Kenji NISHIBORI**** and Kazuhiko MAEDA*****

If a flow enters an axially rotating pipe, it receives a tangential
component of velocity from the moving wall, and the flow pattern and
hydraulic loss suffer a change according to the ratio of the rotational

speed to the through flow velocity.

A flow laminarization is set up by an increase in the rotational
speed of the pipe if the flow in the pipe is initially turbulent, and a
flow destabilization is brought conversely about if the flow is

initially laminar.

Velocity distributions and friction coefficient in the fully
developed region of the pipe were calculated by using a modified mixing
length theory, and the results were compared with those by the

experiments.

Key words: Turbulence, Rotating Pipe, Mixing Length, Velocity
Distribution, Friction Factor, Laminarization

1. Introduction

When a flow enters an  axially
rotating pipe, a swirling component of
velocity is given to the flow by the
moving wall and it causes large changes
both in the time-mean velocity profiles
and the turbulent structure of the flow,

" resulting in a change in the flow resis-
tance. .

The effects of the pipe rotation on
the hydraulic loss have been investigated
experimentally by many researchers (1)Vv(3),
The present authors (4) also measured the
time-mean velocity components and hy-
draulic losses in axially rotating pipes
when a fully developed turbulent flow was
introduced into the pipe. The pipe
rotation was found to suppress the
turbulence in the flow, and also to reduce
the hydraulic loss. The axial velocity in
this case approaches a laminar flow
type (parabolic) with an increase in the
rotational speed of the pipe. The
suppression of the turbulence due to the
pipe rotation was also investigated in the
boundary layer flow inside the rotating
pipes when an undeveloped flow with a
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rectangular axial velocity distribution
was introduced into them (5.

Yamada and Imao (6) measured the
velocity profiles and hydraulic loss in a
saturated downstream region of a rotating
pipe when a fully turbulent flow was
introduced in the pipe, and found the same
kind of flow change as in the authors
study. When the inlet flow is laminar,
however, the pipe rotation gives the
opposite effects: the hydraulic 1loss is
increased and the axial velocity profile
tends to be a turbulent flow type.

The changes of the flow patterns in a
rotating system in case of the turbulent
flow entrance were calculated by
Koosinlin, et al.(7) using a modified mix-
ing length theory, Aguilar and Pierce (8)
using an eddy viscosity model, and
Launder, et al.(® wusing a two-equation
model of turbulence. These calculations
are those for the boundary 1layer flow
developing not inside a rotating cylinder
but outside a rotating body.

This paper gives the results of
calculations of velocity distribution and
hydraulic loss in an axially rotating pipe
in a region far downstream from its inlet
section, where the effects of the rotation
on the flow are supposed to be saturated.
The calculation was performed, for the
turbulent inlet condition, by use of a
relationship between the mixing length and
the Richardson  number proposed by
Bradshaw (10) , and the results were confir-
med by experiments. For a laminar flow
entrance, the calculation was reasonably
modified and gave satisfactory results.

2. Nomenclature

a ¢ pipe radius =d/2
: pipe diameter
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it loss of head between two sections
along rotating pipe

mixing length in rotating pipe
mixing length in stationary pipe

N : rotation rate =R.,/R.
» : static pressure
7 ¢ radial distance
' ¢ dimensionless value of # =r/a
R, ¢ Reynolds number based on mean axial
flow velocity - =Und/v
R. ¢ rotational Reynolds number based on
peripheral speed of rotating pipe
=Vod/v
R.: : Reynolds number based on friction
velocity =U.,a/v
R; ¢ Richardson number defined by
Eq. (16)

¢ time-mean axial veloecity
U’ ¢ dimensionless value of U =U/U.

¢ time-mean axial velocity at pipe
center

Un : mean value of U over a pipe section

U, : friction velocity =v/'z,.0/p0

V : time-mean tangential velocity

Vo ¢ peripheral speed of rotating pipe

W : time-mean radial velocity

#, v, ws fluctuation veloecity components in

%, 6, and r directions, respectively

% 3 axial distance from rotating pipe
inlet

z : radial distance from pipe wall
=q—y
dimensionless value of z =U,z/v

parameter in Eq. (15)

Karman constant

coefficient of friction loss of
rotating pipe

Ao ¢ coefficient of friction 1loss of
stationary pipe

shear stress in x direction

value of 7rz at pipe wall

shear stress in # direction
coordinate in tangential direction
kinematic viscosity

density

s awly
.

Trz

Trxo

<
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3. Theory

3.1 Governing equations of motion

When a flow from a stationary pipe is
introduced into an axially rotating pipe,
a saturated state of flow can be attained
in the sections far downstream from the
pipe inlet and in those sections the time-~
mean velocity profile remains unchanged
toward downstream.

Using a cylindrical coordinate system
as illustrated in Fig. 1, the equations of

dr ¥ Trx 4 Or
OO F
T 46 \ Tro
- / Jo =

2a)

le—  d(

Fig. 1 Cylindrical coordinate

507

motion in the pipe can be written as
follows:

_0p _ 1 0(rtes)

=T o reerete et araaas (1)
1 9(7%trp)
P 02 2} veveernnree e e e s eeraiens (2)
_pv _1 d(ro,) _ oo
TS Ty T s (3)
where
z'm=-—,t16U/6r—PW ........................... (4)
TT”:—ﬂra/ar(V/r)—pm ..................... (5)
Or=—D—2U0W/Or —PuF +orerereesrenisveenns (6)
Og=—D=—PU2  teersrriatatnrinniiiiiiiiiiiin, (7)

In the above equations (U,V,W) and
(u,v,w) are the time-mean and turbulent
components of velocities in®, 8, and »r
directions, respectively. Integration of
Eq. (1) gives

Tre=—(0p/0x) (7/2) ceerernisiinniiiiiiian, (8)

Introducing the friction coefficient of
the pipe, 2 , the pressure gradient along
the pipe can be expressed by the following
equation,

—Op/0x=PAUL2/A4G  +eersverrverirarriiinrnns (9)

From Egs. (8) and (9), (02/0x) can be
eliminated and we have

Tra/P=(A/8) (#/@)Un? «++rerreverrerniruennnn. (10)
On the pipe wall 720 becomes

Tro0)/ 0= (A/8) U2 +svvrersessreersnuerisurinunns, (11)

The equations (1) to (11) are also
valid for a laminar state of flow, if the
turbulent velocity components are made
zero, namely v = v = w = O.

3.2 Mixing length model
3.2.1 In case of turbulent flow
entrance
Using Prandtl's mixing length theory,
the axial shear stress 7»s  in Eq. (10)
can be represented as follows when the
flow state is turbulent.

z'rz=—ﬂ%g‘ —PFK%’)Z
+{,§;(¥)}2Jm ‘?;: ..................... (12)

where [/ 1s the mixing length. Sub-
stitution of Eq. (10) into Eq. (12) yields

R

or "or \r. or
e A O,
- 8Um a Vor (13

For a fully developed turbulent pipe flow
(Re=10%) , the mixing 1length in a
stationary pipe, [, , has been expressed
by the following equation.
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%—x{o 35—0. 2( ) —0.15(%)4} ...... (14)

where & denotes the Karman constant,
and £ = 0.4, If the flow Reynolds number
is reduced under the limit, the value of
the mixing length will deviate from that
obtained by Eg. (14), but the expression
itself may be considered to be available
even in a low Reynolds number range.

In a rotating system, the mixing
length [ may be changed by the effect of
the centrifugal force. To express the
degree of turbulence suppression due to
the centrifugal force, the mixing length
given by Eq. (14) must be modified by
using Bradshaw's formula as,

1/lg=1—BRy cseereeureeerrnsiriniiiiniiiuniinnenne. (15)

where B 1is a constant, and R, is the
Richardson number defined by

. 2V/meforaV)
Re= G0 /o) + 78 ar (VIr) ] (16)

In the above equations, both of R; and
mixing length are assumed to be functions
of the axial and tangential components of
velocities.

According to the experiments by the
present authors (4) and also by Yamada and
Imao ©), the profile of tangential
velocity, V, in the rotating pipe does not
exhibit an exact forced vortex type
distribution even in the sufficiently
downstream sections of x/d =120 if the
inlet flow 1is turbulent. 1In this case a
parabolic distribution as expressed by the
following equation is available.

V/Vom=(£/@)7 «erererrrerrvervennmnsennenanens (17)

To express the rotation rate of the
pipe, a dimensionless value defined by the
ratio of the peripheral speed of the pipe
Vs to the mean axial velocity of the flow
Un is introduced:

Substituting Egs. (17) and (18) into
Eq. (16), the Richardson number can be
written as

6N%(r/a)?
{(0U/Un)/8(r /@) +((r/a) N}
_ 6N2p2

T {0/07" (U/Un) 2 +7#2N?

Rf=

where r'=r/a

3.2.2 In case of laminar flow
entrance ]

Pedley (11) analyzed the stability of
a laminar flow with a rigid rotation in a
rotating pipe and showed that the pipe
rotation had a destabilizing effect on the
flow if the axial Reynolds number Re was
greater than 82.9. From the measured

value of the hydraulic loss experienced in
the rotating pipe, within the range of
R.< 2300, it is ascertained that the flow
changes gradually into a turbulent state
as the rotational speed of the pipe is
increased 6). In order to express this
destabilizing effect of the pipe rotation
when a laminar flow is introduced, the
second term on the right hand side of
Eq. (12) must be retained. Then the
mixing 1length [/, is considered to be a
function of the rotational Reynolds number
R., and

Uly=f(Ru) +ovrereeresseirsnssnsnssesiosnnnns (20)

In this case the distribution of the
tangential components of velocity can be

assumed to be a forced-vortex type
expressed as

V/Vomr/@ ceereeeeeeeresvesiessinnieneniennenns (21)

3.3 Relations necessary for descrip-
tion of velocity distribution and
friction coefficient

From Eqg. (11) the friction velocity

U. can be obtained as

Ur=VTroo/P =V AJ8Up +rereeeerererssironns 22)

With use of Eq. (22), Eq. (13) can be
transformed into a dimensionless form as

(@ U] ()

- Rle,. (%)—r’:() ........................ (23)

when the inlet flow is turbulent, and

A0

when the inlet flow is laminar. 1In the
above equations, gU’/g» is replaced by
au’/dr and U’=U/U. , and R,, denotes a
Reynolds number based on the friction
velocity as

Notiecing that both of Egs. (23) and
(24) are quadratic in terms of ( dU’/dr’)
and that the coefficients of each term in
the equations are given by Egs. (14)~(16)
for a turbulent flow entrance and by
Eq. (20) for a laminar flow entrance, the
gradient of the axial velocity ( dU’/dr’)
can be determined at any radial position.
With this value the velocity U’ at any
radial distance is given by

_[f, dU’ ﬂ (311/ )dz ......... (26)

where z/=1—r’ . Integrating Eq. (26)
across pipe section, a dimensionless value
of the mean axial velocity, #n, can be
estimated by the following relation as
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and the value of Reynolds number R, is
given by )

Re=Und/V=2R ity ++erressrsssnsnnanmrezeces (28)

Substituting Eq. (27) into Eq. (22), the
friction coefficient, 2 , is given by

=8/t seererveeseesreeirninenrtatr e e naes (29)

3.4 Boundary conditions and methods
of calculation

To compute the value of ( dU’/dr’ )
numerically from Eq. (23) or (24), the
radius of pipe, a, is divided into one
thousand equal parts. On the pipe wall
(r=a) the mixing length, | , becomes
zero and dU’/dz’ (== dU’/dr’ ) becomes

AU [da’ = (L—2")Ryp +osereeersnssrssesosuencene (30)

This equation can be applied through the
viscous sublayer adjacent to the pipe
wall, and the dimensionless thickness of
which 1is assumed to be the same as in the
stationary pipe as

Zr=Uoz/VS11.6 corervreneininnicniinsiennnnns (31)

When a turbulent flow enters the
rotating pipe, the value of B in
Eq. (15) may be taken as 0.4 and 0.5,
taking account of the experimental data
described later. Much more different
value of. f has been found in the other
studies: Koosinlin and his co-workers
found the result of B = 5 for their study
on the external flow around a rotating
cylinder, and the present authors obtained
the value of f=2 3 in the study on
the boundary layer flow developing in a
rotating pipe (12) ,  Compared with these
data, the value of fp= 0.4 " 0.5, which
is available in the present study, is much
smaller.

In the case when a laminar flow is
introduced into the rotating pipe, I/l
in Eq. (20) can be assumed to be given by
the following equation.

1/1=0. 012 R %5 vesrervivressisressennssuisanns (32)

In this case the flow in the region of
Z*< 5.0 1is assumed to remain laminar due
to the presence of a viscous sublayer near
the pipe wall. ’

For the velocity profile and the
friction coefficient of the pipe, 2,
calculations can be made by wusing an
assumed value of R, corresponding to the
given values of N, R, and Rw. Value of
(dU’/dr’') at any radial point can be
obtained for this assumed value of R..,
and with this value the axial Reynolds
number can be calculated by use of
Eqs. (27) and (28). The value of R,
calculated by this method may deviate from
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that of R, given initially. If the
differnce between these two values, namely
¢ 9 exceeds the value of R,/1000, the
above process of calculation is repeated
with another corrected value of R, until
¢ falls within the range le] <R./1000 «

4, Apparatus and method of
experiment

In order to confirm the calculated
results, experiments were carried out with
hydraulically smooth pipes of two
different diameters of 4 = 20.0mm and
5.0mm. Figure 2 shows a schematic
outline of the experimental apparatus.
Water delivered from an overflow tank was
led to a rectifying tank, upstream
stationary pipe (/4 = 100d), a rotating
pipe and a downstream stationary pipe,
successively. The rotating pipe was
driven by a variable speed motor.

Static pressure on the rotating pipe
wall was introduced into a stationary
system through the mechanical seals.
Figure 3 shows the location of sections at
which the hydraulic loss of the. rotating
pipes was measured. To exclude the effect
of the 1inlet region on the pressure
measurement, the pressure tappings were
provided at the sections A(x = 1454) and
C(x = 1754) on the pipe 1(d = 20.0mm),
and A(z = 2864) and C(x = 3694) on the
pipe 2(d = 5.0mm), respectively. With
use of hydraulic 1loss of head, /4 ,
obtained " from the statie pressure
difference between the two sections on
each pipe, the friction coefficient, 1 ,
can be evaluated by

N

Overflow Tank

Rectifying Tank MOEOT g tionary
Mechanical Pipe

Upstream Seal

Stationary / F'i P irifice
; 4 i

7 !
Bearing .
Rotating Pipe L'—
1, - 200d {1,
(d =20.0mm) (1004)

(100d)

Fig. 2 Schematic of experimental
apparatus :

Pipe 1 (d=20.0 mm) ‘T :3 ¢
! ~ I : : !
=]
\A ¥ T !
145d i- 30d = |
e -—-————-——1——
- 163d 37d ——-j
Pipe 2 (d=5.0mm ) % C' .
286d fe— 834 i !
388d -
froeeipn X

Fig. 3 Detailed dimensions of rotating
pipes and measuring sections
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X=ht/{(1/d)(Um2/2g)} ........................ (33)

Employing a larger diameter pipe of
d = 20.0 mm, the time-mean velocity
components at the section x = 1634 were
measured by a laser doppler velocimeter.
The measuring section was replaced by a
lucite tube through which the laser beams
could pass, and maximum 50 ppm of milk was
added as a tracer.

The axial Reynolds number R, and the
rotational Reynolds number Rew were
changed over the ranges of
500 =R.s 2X10* and 0 =<R,= 3.5 x10%,
respectively.

5. Comparison between calculat-
ions and experiments

5.1 In case of turbulent flow
entrance

5.1.1 Velocity distributions

The calculated mean velocity profiles
for the axial component 7 and the
tangential velocity component V assumed by
Eq. (17) are shown for R.= 10%, 2x 10%,
and 5x 10* in Figs. U4(a), (b), and (e),
respectively, in which the experimental
results for the same Reynolds numbers are
also plotted for comparison, In this
calculation the mixing 1length, !, is
determined from Eq. (15) with g = 0.4,
The results calculated with B = 0.5 are

also plotted in the same figures for

reference. The thickness of the viscous
sublayer in the calculations is taken to
be 0 =Z*<11.6. When R, = 10% as
indicated in Fig. U4(a), the calculated
profiles of the axial velocity are in
close agreement with the experiments for
all of the rotation rates within the range
of 0 =Ng3. An examination of the
velocity profiles U/U, shows that they
approach gradually a parabolic shape with
an increase in N, and correspondingly, the
effect of turbulence suppression due to
the pipe rotation becomes remarkable.
When R. = 2x10* (Fig. 4(v)), the
calculated velocity curves with
B = 0.4(solid 1lines) have a little lower
values than the measured curves in the
central region of the pipe, and the
difference increases by a slight amount as
N 1is increased. The axial velocity
profiles calculated with g = 0.5 are also
shown by the broken lines, the coincidence
being better than the case with B = 0.4,
When R.= 5 x10%(Fig. 4(c)), being a
Reynolds number higher than the above, the
calculated profiles with the values of
B = 0.4 and 0.5 agree fairly well with the
experimental data obtained by Yamada et
al., when N = 1.0. The validity of the
velocity profile assumption for the
tangential component by Eq. (17) may be
confirmed well in Figs. 4(a), (b), and
(e).

The dimensionless values of the
maximum axial velocity, U,/U,, are plotted
against N in Fig. 5. The values of U./U,
are seen to increase 1linearly with an

increase in N within the range of N>1,
and the agreement between the caluculated
and measured values is almost
satisfactory(g = 0.4). Though  the
calculated value of U,/U, decreases as R,
increases, the experimental data remain
almost unchanged for different Reynolds
numbers within the range 10" <R.< 10°.

Re = 1.0 x 104

£
2
jen)
E .0
8=0.4 O N= 0 =
® N= 0.5 >
e =0.5 & N= 1.0 >
o N= 1.5
0.5 | 0>
0 N 0
1.0 0.5 0 0.5 1.0
r/a
(b) Re=2x10"%
2.0
&
2
=]
1.5
1.0 1.0
Theory Experiment =
<
8=0:4 ON=1 =
(Yamada (6)
ool —— g=0.5 — 0.5
\®
@
0 I 0
1.0 0.5 0 0.5 1.0

(c) Rg=5x10"

Fig. 4 Velocity distributions for
turbulent flow entrance
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On the other hand it tends to be zero at
2.0 the pipe center. The value of R;

. Th‘z"gz 0.4) l lp - increases with an increase of N, and the
2 ’ ’ 4 curves of ‘R, are flattened over the
S ‘Re = 10 greater part of the section.
1.8 e Re =5 x 10% Figures -~ 9(a) and (b) show the
——-Re = 10° | distributions = of /e calculated by

Egs. (14) and (15) across the section.
The values of [/a are taken to be zero in
the region Z*=< 11.6. The experimental
Experiment values of /g are those which are
obtained from the relation of Eq. (13)

O Re= 104
4 using the measured values of the velocity
A Re=1.5x 104 gradient  dU /dr and the friction
@® Re= 2 x10
® Re= 5 ><104 0.08
(Yamada (6) ) Theory o N=0
{ 0.06| 8=0.4 | o n-o0.5
2 3 4 “ ] - 8=0.5| @ N=1.0
N 0.04 & N=15
20=0.3164r30-%% @ N = 2.0
0.03- N=0.3 4 N=0.5
Fig. 5 Relationship between U./U, and N N=1.0(3 N gj'glyam"’da
0.02 -

When N exceeds about 3.5, the value of
U./Un may be taken to be constant i.e. 2,
and the distribution of the axial

0.01

Ao=64/Re

velocities substantially displays a Ao l s
laminar flow pattern. 0.005 | | ' ’
4x103 6 104 2 3 4 6 10°
5.1.2 Friction coefficient Re
Figure 6 shows the relationship Lo .
between the friction coefficient 1, and Fig. 6 Friction coefficient of rotating
the axial Reynolds number R.. Solid and pipe for turbulent flow entrance
broken lines denote the calculated results
for g = 0.4 and 0.5, respectively. The 1.0
value of A calculated with g = 0.4 o [Theory
exhibits a little smaller value than that S 8=0
with g8 = 0.5. 1In this figure the measured 0.6F —eew-
values of A4 are also plotted for various
values of N. It may be found that the 0.4+ —-—— Re=10% ,8=0.5
caleulations of wvelocity profiles and | Experiment K N
friction coefficient yield fairly A Re =104 } Present \‘ IAN
reasonable results, if a value of g in A Re=2 2104 . study \, ©
Eq. (15) is selected between 0.4 and 0.5. 0.2~ 0 Re=10 . k
The relationship between the friction ® Eefz:ig“ Yamada (&) \
coefficient 2 and the rotation rate N is g R:;ms \
shown in Fig. 7, in which 1, is the 0-(1) I Sl »
friction coefficient of a stationary pipe. : ' ' . . N

The values of A/ Ao decrease with an.
increase in N, and this tendency becomes
remarkable for  larger values of R,. The
data by the other researchers also show a

Fig. 7 Relationship between 2/, and N

satisfactory agreement with one another. 4.0 I I [
. ot
5.1.3 Richardson number and mixing w Re = 104 g=0.4
length 3.0 b /N= 2.0
The Richardscn number'Rl: is evaluated | N= 3.0 N=t5
from Eq. (19) when R.= 10", and its | ! ! | :
distributions across the pipe section are 2.0p | ) I| ﬁ
shown in Fig. 8. As the existence of the | -1 |
viscous sublayer near the pipe wall is [ N=1.0 [
assumed, the gradient of the axial LOF[-/—1 — I X
velocity is given by the relationship N=0.5
dU’/dr'= — Re#’ and the Richardson number 0 l ]
R; in this region remains constant and, 0 0.2 0.4 0.5 0.8 1.0
z/a
R BN
"7 (2R./R.)2+N? Fig. 8 Distributions of Richardson

numbers

NII-Electronic Library Service



512

coefficient 2. When R, = 10*(Fig. 9(a)),
the agreement between the calculated( g =
0.4) and measured values is sufficient
except for the case when N = 0.5. The
curves of [/e shift downward as N is
increased, showing a greater suppression
of turbulence for a larger value of N. A
large reduction of l/a for N =3
corresponds to a flow relaminarization
inside the rotating pipe and the value of
U.,/U. becomes approxiamtely 1.9 as shown
in Fig. 5. In Fig. 9(b) the calculated
results for R = 0.4 and 0.5 are plotted
when R, = 2x10%. The agreement with the
experiments is better for B = 0.5 than
for B = 0.4.

5.1.4 Logarithmic velocity distribu-
tion

The wall law in the velocity
distributions is checked in Fig. 10, where
the calculated and experimental results
for different R, and N are plotted
together. The agreement in the both data
is fairly good except for the case of N =
1.0, As is seen in this figure, the
universality of the relationship between
U/U. and 2+ can be secured if N remains
constant.

0.2 T
Experiment Theory
2 ON=0 B=04
.l ® N=0.5
015 e N=1.0
0]
(]

0.05
0 n
o] 0.2 0.4 0.6 0.8 1.0
z/a
(a) Rg=10%
0.2
© Experiment Theory
= ON=0 — =04
0.15. © N=0.5 7777 g= 0.5
@ N
0.1
0.05
0
0

(b) Rg=2x10%

Fig. 9 Distributions of /e

5.2 In case of laminar flow entrance

5.2.1 Velocity distributions

Figures 11(a) and (b) exhibit the
effect of the pipe rotation on the
velocity distributions when R, = 600 and
1000, respectively. When a laminar
condition of flow is introduced into an
axially rotating pipe, the flow will be

40

Experiment Theory ' [ l
5 Re x10% N —_— ~104
3 5l 1.0 Re : 10 / al
=} B 0.4 X
o 1.5 0 . ¢F/
e 12.0 )?//q
o210 " x_y'
15 0.5 }
AT N= 1.0 | M,A/
0110 | A
g5 (1.0 s g2
" 17.0 ,g"? A Y
200 * | 3.0 [1.5 fl 4 3 |
Z 2 * N=0.
\ ¥ ] ON 0.5
o U/Uq=5.7510gZ + 5.9
10 | | I 1 |
10 2 4 100 2 4 1000
Z =20,/ v
Fig. 10 Logarithmic velocity
distribution
2.0 | .
£ Re = 600 Rew = 500
g2
= Rew = 1000
1.5 ew = 2000
\Rew = 4000
Experiment
1.0 © Rew =500 £1.0
© Rew = 1000 E“’ _
, =
° ; =
e // =
0.5 0.5
77 |Vive=(x/a)
0 0
1.0 0.5 0.5 T.0
r/a
(a) Re =600
2.0 T I T =
& Re = 10°
5 ) Rew = 500
Rew = 1000
m Rew = 2000 |
Rew = 4000
Experiment l
— o Rew = 500 1.0
Theory ® Rew = 1000 -
® Rew = 2000 i
7 >
® Rew =4000| B9/
L — /.=, 0.5
V/Vo=t/a /8 /4
LS
8 | V/Ve=(x/a)
- 0
0.5 0 0.5 1.0
r/a

(b) Re =103

Fig. 11 Velocity distributions for
laminar flow entrance
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° Theory Experiment
= Re =1000 ® Re=1000
—-e. Re = 600 O Re= 600
2.0 et
Yamada ()
31
A/ A === Rew
1.5 9 64 4
./.
l l- t Xo= 64/Re
1.0— !
4x10 6 8 103 2 3
Rew

Fig. 12 Relationship between 4/4, and
Rey for laminar flow entrance

disturbed by the rotating wall and become
ultimately turbulent. Thus, with the use
of a turbulent flow analogy, degree of the
disturbance is assumed to be decided by a
modified mixing  length defined by
Eq. (32). The axial velocity profiles
calculated by this method (when R,= 10°)
are compared with the experimental results
in Fig. 11(b), showing a good coincidence.
The coincidence, however, becomes a little
poor in case of Re = 600, but their
tendencies are quite similar. For more
advanced calculations, another equation
for the mixing length must be used instead
of Eq. (32).

Distribution of the tangential
velocities in this flow shows a nearly
forced vortex type profile (V/V,= 7/a) as
is seen in Figs. 11(a) and (b), where a
parabolic profile valid for the turbulent
flow entrance is also plotted for
comparison.

5.2.2 Friction coefficient

Figure 12 shows the relationship
between the friction coeffficient 2 ‘and
the rotational Reynolds number R., when a
laminar flow is introduced. The value of
2 is shown dimensionlessly by use of
2 = 64/ R, available for a  stationary
pipe. The value of /4, increases with
R., s which corresponds to the change in
the axial velocity profile. The
calculated curve for R, = 1000 agrees well
with the -experimental results and with a
fine solid curve by Yamada's empirical
equation.

6. Conclusions

Calculations were made for a flow in
the saturated region in an axially
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rotating pipe by using a modified mixing
length theory and the results are compared
with experiment. The following are the
essentials:

(1) When a turbulent flow is introduced
into a rotating pipe, changes in the
velocity  distribution and friction
coefficient due to the tangential velocity
given by the rotating wall can be
accurately calculated with the value of
8 = 0.4~0.5 in Eq. (15). With an
increase in N, the mixing length is
decreased and becomes substantially zero
when N exceeds 3.5, at which the axial
velocity profile changes into a laminar
flow type.

(2) Destabilizing effect appears on a
flow in a rotating pipe when a laminar
flow is introduced into the pipe. Changes
in velocity distribution and friction
coefficient by this effect can be
calculated by use of a modified mixing
length, Eq. (32).
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