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Abstract 

This paper presents an unsteady flow theory for flow-induced vibration of tubes 

in crossflow. It includes a general description of motion-dependent fluid forces, 

characteristics of fluid-force coefficients, and mathematical models. The detailed 

results are presented for the constrained mode in the lift direction for various tube 

arrangements. 

1. Introduction 

Various mathematical models have been developed t o  predict flow-induced 

vibration and instability of tubes subject to crossflow (Chen 1987, Price 1993). At 

this time, a number of issues have not been answered and several aspects of the 

problems have not been resolved. This paper is t o  present an unified theory for 

linear and nonlinear response of tubes in crossflow. 

One of the key elements is the motion-dependent fluid forces. A water channel 

is used t o  measure fluid forces on all tubes due to the motion of a tube. From the 

measured fluid forces, fluid damping and stiffness for various tube arrays are 
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obtained. Tests have been performed for a single tube, two tubes, and tube rows. 

These coefficients depend on reduced flow velocity, tube arrangement, oscillation 

amplitude, and Reynolds number. Some general characteristics of these fluid-force 

coefficients are observed. 

Once fluid-damping and fluid-stiffness coefficient matrices are know, a 

mathematical model simulating practical tube arrays can be established and 

analyzed. The unsteady flow theory based on the measured fluid forces can be used 

to study the detailed tube motions, including subcritical vibration, instability 

threshold, and post-instability oscillations. It can also be used to  assess the 

applicable ranges of other simplified theories such as quasistatic and quasisteady 

flow theories. Although fluid-force coefficients can not be obtained easily, the 

unsteady flow theory can describe the motion in detail. 

The unsteady flow theory has also been applied t o  study the nonlinear 

vibration of loosely supported tube arrays. Tube displacements were analyzed to  

characterize the tube behavior by RMS values, power spectral densities, phase 

planes, Poincare maps, Lyapunov exponents, and fractal dimension. The analytical 

results and experimental agree reasonably well (Cai and Chen 1993; Chen, Zhu, 

and Cai 1994). This demonstrates the usefulness of the unsteady flow theory. 

This paper presents an unsteady flow theory to study the import practical 

problems with academic interest. It includes measurement of fluid damping and 

stiffness, and mathematical model for tube vibration. Details are presented for a 

single flexible tube in a rigid tube array. The general theory is applicable for an 

array of elastic tubes. 
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2. Unsteady-Flow Theory of Motion-Dependent Fluid Forces 

Consider a tube oscillating in a rigid tube array (see Fig. 1). The fluid is 

flowing with a flow velocity U. The displacement components of the tube in the x 

and y directions (or lift and drag directions) are u and v, respectively. The motion- 

dependent fluid-force components acting on the tube in the x and y directions are f 

and g, respectively, which can be written as (Chen 1987) 

where p is fluid density, R is tube radius, t is time, and o is circular frequency of 

tube oscillation. a, p, 6, and z are added mass coefficients, a', p', d, and z' are fluid- 

damping coefficients, and a", PI', CT", and 7'' are fluid-stiffness coefficients. 

Various methods can be used to measure fluid-force coefficients (Chen, Zhu, 

and Jendrzejczyk 1994). In this study, the unsteady-flow theory was used. Fluid- 

force coefficients can be determined by measuring the fluid forces acting on the tube 

because of its oscillations. For example, if the tube is excited in the y direction, its 

displacement in the y direction is given by (u = 0 )  

v = vo cos ot. (3) 

The fluid force acting on the cylinder in the x direction can be written 
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where c is the fluid-force amplitude and + is the phase angle by which the fluid force 

acting on the tube leads to displacement of the tube. 

With Eqs. 1 and 3, we can also write the fluid-force component as 

By combining Eqs. 4 and 5,  we obtain 

3 1 x 
CT"= -ccos@-- 

2 u; cr 

and 

1 
0' = 2 c sin+, (7) 

where U, is the reduced flow velocity (U, = xU/oR). 

The added mass coefficient CT in Eq. 6 can be calculated by applying the 

potential-flow theory (Chen 1975 and 1987). The values of cr' and 0'' can be 

calculated from Eqs. 6 and 7 when the force amplitude c and phase angle @ are 

measured. Fluid-force coefficients a', a", p', p", z', and 7'' can be obtained in the 

same manner. 
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Fluid-force coefficients depend on the arrangement and pitch, oscillation 

amplitude and frequency, and flow velocity. For a given tube arrangement, fluid- 

force coefficients are a function of oscillation amplitude (d/D) and reduced flow 

velocity (U,) and Reynolds number, where d is vibration amplitude and D is cylinder 

diameter. For small-amplitude oscillations and large Reynolds number, fluid-force 

coefficients can be considered a function of reduced flow velocity only. 

3. Measuring Fluid-Force Coefficients 

A water channel was used to measure motion-dependent fluid forces. The test 

setup and measurement technique are presented by Chen, Zhu, and Jendrzejczyk 

(1994). 

In this paper, the following cases are presented (Fig. 2): 

a. A single tube. 

b. Two tubes in tandem with a pitch to  diameter ratio of 1.35. 

c.  A tube in the wake of another tube. 

d. Two tubes normal to  flow with a pitch to diameter ratio of 1.35. 

e. A tube row with a pitch to  diameter ratio of 2.7. 

f. A tube row with a pitch to  diameter ratio of 1.35. 
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In each test, the excitation frequency ranges from about 0.2 to  2.2 Hz and the flow 

velocities vary from about 0.05 t o  0.17 d s .  The Reynolds number varies from about 

1200 to  4200. 

Note that in Eqs. 1 and 2, a' and p', and a" and p" are self fluid-damping and 

stiffness coefficients associated with the fluid forces induced in the same direction 

as tube oscillations. 0' and T', and CY'' and 7'' are mutual fluid-damping and fluid- 

stiffness coefficients associated with the fluid forces perpendicular t o  tube 

oscillations. In addition, when one tube is excited, motion-dependent fluid forces on 

the surrounding tubes are also induced (Chen, Zhu, and Jendrzejczyk 1994). In this 

paper these forces are not presented. 

Fluid-damping coefficients a', PI, d, and z', and fluid-stiffness coefficients, a", 

P I ' ,  d', and z", are obtained for all cases, see Fig. 2. To lirnit the length of this paper, 

only the data for a' and a" are presented: 

Fig. 3: a' and a" for a single tube at a flow velocity equal to  0.127 d s  for 

various rms excitation amplitude, d. 

Fig. 4: a' and a" for two tubes in tandem at three flow velocities, 0.07, 

0.11 and 0.15 m/s (Ug is gap flow velocity). 

Fig. 5-7: a' and a" for a tube in the wake of another for three pitch-to- 

diameter ratios at a flow velocity of 0.11 m / s  and various rms excitation amplitude, 

d. 
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0 Fig. 8: a’ and a’’ for two tubes normal to flow with T/D = 1.35 for a series 

of gap flow velocities (Ug), 0.05, 0.07, 0.113,O. 146, and 0.166 d s .  

Figs. 9 and 10: a’ and a” for tube rows with T/D = 1.35 and 2.7 for various 

rms excitation amplitude, d. 

From Figs. 3-10 and other data not presented in this paper, some general 

characteristics of motion-dependent fluid-force coefficients are noticed: 

Reynolds Number: At low reduced flow velocity, fluid-force coefficients 

depend on the reduced flow velocity, Reynolds number, and excitation amplitude. 

This can be seen from the results given in Figs. 3-10. 

0 High Reduced Flow Velocity: When the reduced flow velocity is high, e.g., 

>20 and some >lo, all fluid-force coefficients are approximately independent of 

reduced flow velocity. This characteristic is not only valid for circular cylinders, but 

also for other geometries (Chen and Chandra 1991). 

Drastic changes in the fluid-force coefficients occurred in the region 

corresponding to vortex shedding for a single cylinder and tube rows. In the critical 

region, the magnitudes of the coefficients also depended on the excitation 

amplitude. 

4. Mathematical Model for Flow-Induced Vibration 

Once fluid-excitation and motion-dependent fluid forces are known, the 

response of the tube can be predicted. Consider an elastic tube in a rigid tube array 
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with radius R (= D/2) (Fig. 1). The variables associated with the motion of the 

elastic tube in the x and y directions are flexural rigidity EI, tube mass per unit 

length m, structural damping coefficient Cs, and displacements uand v. The 

equations of motion for the tube in the x and y directions , respectively, are (Chen 

1987) 

a2u a2v z( at at ) a4u aU a2u 
aZ at at2 

E17 +e,-+m-+pxR a ~ + o ~  

-+of-- -pU2(a"u+o"v)= g'(t) pu2 0 (afau at ") at 
-- 

and 

E 1 7  a4v + C , ~ + m ~ + p r r R  av a% 
aZ 

where g'(t) and h'(t) are forced excitations. 

-stiffness coefficients are functions of reduced flow velocity Ur. 

Note that the fluid-damping and 

The in-vacuum variables are mass per unit length m, modal damping ratio rv 
(Cs/2mo,), and natural frequency fv ( = ~ / 2 r r ) .  The values for fv and cv can be 

calculated from the equation of motion and appropriate boundary conditions or from 

tests in vacuum (practically in air). The modal function q ( z )  of a cylinder vibrating 

in vacuum and in fluid is 
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ije(p2(z)dz = 1, 
d o  

where d is the length of the cylinder. Let 

and 

where a(t) and b(t) are functions of time only. Calculation of Eqs. 8 and 9 yields, 

respectively, 

+o ,a -~U,o , (a"a+o"b)  2 Y 2 2  = f 

7c 

and 

b+ y(za+pb)+z~,ovb-+Jv - ( + a + p 1 b )  
7c 2(3 

2 Y 2 2  +o,b - 3 Uvo, ( fa  + p" b) = g, 
?I: 

where 
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The dot denotes differentiation with respect to time. Natural frequencies, modal 

dampings, and tube response can be calculated from Eqs. 12 and 13; i.e., can be 

written as 

[Mlq + CClq + EKlq = P, 

where 

P = {i}, 
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and 

Natural frequencies and modal damping for coupled vibration can be calculated 

from eigenvalues of Eq. 15 with p = 0. 

5. Fluid-Damping Controlled Instability 

When one of the tubes is allowed to  oscillate in a specific direction while the 

other tubes are rigid, the equations of motion can be simplified significantly. For 

example, when a tube oscillates in the x direction, its equation of motion based on 

Eq. 12 becomes 

d2a da 2 g 

dt2 dt 1+ya' 
-+24a-+a a=- 

where 

(17) 
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Note that o and are the circular frequency and modal damping ratio, respectively, 

for the tube in crossflow. CM is called an added mass coefficient for the tube in flow; 

when Ur = 0, it is equal t o  ajj. When Ur is not equal to  zero, CM depends on Ur as 

well as on a”, which in turn, depends on Ur and oscillation amplitude. 

From Eqs. 17 it is noted that when a’ is positive, it will contribute t o  negative 

damping to  the system. In some cases, the resultant damping may become zero and 

the system will become unstable. From Eq. 18 the critical reduced flow velocity at 

which the modal damping ratio is zero can be calculated from 

where 6 is a mass-damping parameter (6 = 2x<,m/pD2). This is the critical flow 

velocity for fluidelastic instability. 

Equations 17-19 can also be applied to oscillations in the y direction. Replacing 

all a by p in Eqs. 17-19 yields the equations of motion and stability criterion for 

constrained mode in the y direction. From Eqs. 17 and 18, it is noted that when the 
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value of the fluid-damping coeficient, a' or p', is positive, the tube may become 

unstable. The region depends on tube arrangement, location, and flow velocity. 

From the fluid-force coefficients, a' is found to  be positive in a region at lower 

reduced flow velocity for all cases.. 

6. Conclusions 

The unsteady flow theory has been used extensively in the aerospace industry. 

In this paper, a direct-measurement technique for fluid damping and fluid stiffness 

is a convenient way to  characterize the fluid effects on tube vibration in cross flow. 

Similar data have been used successfully in the prediction of fluidelastic instability 

and chaotic vibration of tube arrays in steam generators (Tanaka and Takahara 

1981; Chen 1983a, 1983b; Chen, Zhu, and Cai 1994). 

Fluid-force coefficients depend on tube arrangement, pitch, oscillation 

amplitude, reduced flow velocity, and Reynolds number. At high reduced flow 

velocity and Reynolds number, fluid-force coefficients are practically independent of 

reduced flow velocity and oscillation amplitude. Therefore, the mathematical model 

for the coupled flow-tube systems is simpler at higher reduced flow velocity. 

Once fluid damping and fluid stiffness are know, the response of tubes in 

crossflow can be predicted on the basis of the unsteady flow theory. Tube response 

characteristics depend on the fluid damping and fluid stiffness. The system may 

become unstable due t o  fluid damping or fluid stiffness. For a constrained mode in 

the lift direction, the fluid-damping-controlled instability can occur at lower reduced 

flow velocity. 
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Figure Captions 

1. 

2. 

3. 

4. 

Circular tube oscillating in crossflow 

Tube arrangements: (a) a single tube; (b) two tubes in tandem, P = 1.35 D; 

( c )  a tube in the wake of another tube; (d) two tube normal t o  flow, T = 1.35 D; 

(e) a tube row, T/D = 2.7; and (0 a tube row, T/D = 1.35 

Fluid-stiffness and fluid-damping coefficients for a single tube, U = 0.127 m / s  

Fluid-stiffness and fluid-damping coefficients for two tubes in tandem 

5. Fluid-stiffness and fluid-damping coefficients for a tube in the wake of 

another, P/D = 2.70 and T/D = 1.35 

6. Fluid-stiffness and fluid-damping coefficients for a tube in the wake of 

another, P/D = 4.05 and T/D = 1.35 

7. Fluid-stiffness and fluid-damping coefficients for a tube in the wake of 

another, P/D = 4.05 and T/D = 2.70 

8. Fluid-stiffness and fluid-damping coefficients for two tubes normal to flow 

9. Fluid-stiffness and fluid-damping coefficients for a tube row, T/D = 2.70 

10. Fluid-stiffness and fluid-damping coefficients for a tube row, T/D = 1.35 
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