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Abstract. Consider a closed, smooth manifold M of non-positive curvature. Write

p : UM → M for the unit tangent bundle over M and let R> denote the subset consisting

of all vectors of higher rank. This subset is closed and invariant under the geodesic flow

φ on UM. We will define the structured dimension s-dim R> which, essentially, is the

dimension of the set p(R>) of base points of R>.

The main result of this paper holds for manifolds with s-dim R> < dim M/2: for

every ǫ > 0, there is an ǫ-dense, flow invariant, closed subset �ǫ ⊂ UM\R> such that

p(�ǫ) = M .

1. Introduction

The aim of this paper is to generalize a result† of Burns and Pollicott for manifolds of

constant negative curvature to the case of non-positively curved manifolds of rank one.

They showed that, on a compact surface M of constant negative curvature, it is possible

to construct a closed proper subset � of the unit tangent bundle UM which is invariant

under the geodesic flow and full in the sense that its image under the base-point projection

p(�) is the whole surface M . This means that there is an open subset W of UM such that,

for every point p in M , we can find a geodesic passing through p such that the velocity

field of the geodesic avoids that subset W . By the construction, W was always some

neighbourhood of a non-recurrent vector.

For dimension bigger than three, Schroeder improved this result to manifolds with

curvature K < −1 in [7]. He even proved that a neighbourhood like W can be found

for every vector, no matter whether it is recurrent or not.

The next generalization took place in [3]. Buyalo and Schroeder considered a compact

manifold of rank one and proved the existence of a neighbourhood like W for every vector

of rank one.

The result of this paper is that even for vectors of higher rank a neighbourhood W

can be avoided, provided that the set of vectors of higher rank satisfies some dimensional

condition. The main result is the following.

† The proof is unpublished but the result is stated in [4].
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THEOREM 1.1. Let M be a compact manifold of non-positive curvature. Suppose the

s-dimension of the set of vectors of higher rank R> is bounded by

s-dimR> <
dim M

2
.

Then, for every ǫ > 0, there is a closed, flow invariant, full, ǫ-dense subset �ǫ of the

unit tangent bundle UM consisting only of vectors of rank one.

This result was obtained as part of the author’s thesis [6]. The proof as presented in

this paper has been considerably shortened to explain the main ideas. For further details,

please refer to the original thesis.

2. Notation

Throughout this text, M will denote a complete, compact, Riemannian manifold of non-

positive curvature. The unit tangent bundle with the base-point projection is denoted by

p : UM → M . The Riemannian metric on M induces a Riemannian metric (the Sasaki

metric) on the unit tangent bundle UM. Both metrics induce distances, denoted by d(·, ·).

With respect to the metric on UM, we will write Wǫ(v) for an ǫ-neighbourhood of a vector

v ∈ UM.

For an element v ∈ UM, γv denotes the unique geodesic with initial condition

γ̇v(0) = v. The geodesic flow φt is defined by φt (v) := γ̇v(t). We will say that a

geodesic γ avoids an η-neighbourhood of the vector v ∈ UM, if d(γ̇ , v) ≥ η, i.e. the

distance of v to the velocity field γ̇ is bounded below by η.

For a geodesic γ , the set of all parallel Jacobi fields along that geodesic is a vector

space. By rank(γ ), we denote the dimension of this vector space. For a unit vector v,

define rank(v) := rank(γv). The rank of a manifold is defined to be the minimal rank of

its tangent vectors. From a result by Ballmann [2, Appendix 1], closed manifolds of rank

greater than one are quotients of either products or locally symmetric spaces. We will,

therefore, always suppose that M is of rank one, i.e. there is a geodesic γ such that the

only parallel Jacobi fields along γ are multiples of its velocity field γ̇ . The set of all

vectors of rank one is denoted by R1, and the set of all vectors of higher rank by R>.

Both these sets are flow invariant; R1 is open, R> closed. If M is a real analytic manifold,

then both sets are subanalytic (see [5] for a definition). This motivates the definition of the

structured dimension.

For any subset R ⊂ UM, a support of R is a finite union Z =
⋃

Zi of closed

submanifolds Zi ⊂ M (called the strata of Z) such that R ⊂ UZ :=
⋃

UZi , i.e. all

elements of R are tangent to some stratum in Z. The dimension of a support is defined to be

the maximal dimension of one of its strata. By s-dimR we denote the minimal dimension

of a support of R and call this the structured dimension of R. A support Z of R is called

an s-support of R if dim Z = s-dimR, i.e. if Z realizes the structured dimension of R.

Note that 0 ≤ s-dimR ≤ dim M for any subset of UM. For example, for a submanifold

Y ⊂ M , the unit tangent bundle UY has structured dimension s-dim UY = dim Y .

From now on, Z will always denote an s-support of R>.

π : X → M is the universal covering of M by the Hadamard manifold X. The covering

maps π : X → M and dπ : UX → UM induce Riemannian metrics on X and UX.
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With respect to these metrics, geodesics are mapped to geodesics and the rank does not

change. Therefore, we will use the same notation in X as in M . Throughout this paper, we

will mostly work with X but the fact that X has the compact quotient M will be essential.

We will be concerned with some structures in the unit tangent spaces which we will call

spheres and denote by Sr (p). If Sr (p) is the sphere of radius r around the point p in X,

then the set of outward normal vectors to this sphere will be denoted by Sr (p). Another

way to describe this set is via the identity Sr (p) = φr (UpX). For fixed r ≥ 0, the unit

tangent bundle is foliated into these spheres. For r → ∞, the spheresSr (γv(−r)) converge

to the strong unstable leaf of v, i.e. to the outward pointing normal field to the horosphere

at γv(−∞) through p(v). If we only consider ǫ-neighbourhoods of v inside these spheres,

then the convergence is uniform.

3. Construction

We want to construct a closed, flow invariant, ǫ-dense, subset �ǫ of UM which consists

only of vectors of rank one and is full in the sense that p(�ǫ) = M . For fixed η, define a

flow invariant, closed set of rank one vectors by

�̂η := {u ∈ UM | γu avoids an η-neighbourhood of R>}.

We will see that, for η = η(ǫ) small enough, the set �ǫ := �̂η is ǫ-dense and full in the

previous sense. For the moment, we will not focus on the fact that �ǫ is ǫ-dense. To prove

that �ǫ is full, we construct, for every point o ∈ M , a geodesic γ through o which avoids

the η-neighbourhood of R>. Then γ̇ (0) ∈ �ǫ and, hence, o ∈ p(�ǫ).

For the construction, we work in UX. Given a starting point o ∈ X, begin by

constructing a sequence vi of vectors in UoX such that the geodesic segments γvi |[0,ti]

avoid a neighbourhood of R> and ti → ∞. By the hyperbolicity† of the vectors of

rank one, the limit v∞ := lim vi will exist and the geodesic ray γv∞ |R+
will avoid a

neighbourhood of R>.

Now instead of just considering one vector v0, consider a compact, low-dimensional

manifold Y together with a smooth map V0 : Y → UoX and define t−1 := 0. Recursively,

we define a sequence of smooth maps Vi : Y → UoX and times ti → ∞, such that the Vi

converge to a continuous map V∞ sufficiently close to our original map V0.

Suppose Vi and ti−1 are given. We define

ti := min{t ≥ ti−1 + B | d(φt ◦ Vi(Y ), UZ) ≤ 11ǫ}

and deform Vi into Vi+1 as follows, where C and τ are constants provided by Lemma 4.1.

Deform the smooth map φti ◦ Vi : Y → Sti (o) slightly, as explained in Proposition 4.1, to

a C-close map into Sti (o) whose image is τ -far away from UZ. Composing the resulting

map with φ−ti gives a map Vi+1 : Y → UoX. If ti = ∞ for some i, then define Vj := Vi

and tj := ti−1 + (j − i + 1)B for all j ≥ i. By this construction, we have the following

immediate properties.

(1) The image of φtj ◦ Vj+1 is τ -far from UZ (and, hence, from R>). We say that Vj+1

is τ -far from UZ at time tj .

† Compare this with §5.



http://journals.cambridge.org Downloaded: 08 Feb 2011 IP address: 130.60.206.74

1984 B. Reinold

(2) The maps φtj ◦ Vj and φtj ◦ Vj+1 are C-close. We say that Vj and Vj+1 are C-close

at time tj .

(3) Two times tj and tj+1 of deformations are separated by at least time B, i.e. the

deformations happen at discrete, distant times.

In §5, we will see that, by (3), the widening property of the vectors of rank one will

guarantee that the deformation at time tj will not displace the image of φt ◦ Vj much for

earlier times 0 < t < tj . Therefore, the geodesic rays γVj will avoid R> for longer and

longer times and the smooth maps Vj : Y → UoX will converge to a continuous map

V∞ : Y → UoX for j → ∞.

4. Perturbations on the Spheres Sr

Given the s-support Z, we want to describe a deformation �r of UX that respects

the r-sphere foliation (i.e. �r(Sr (o)) ⊂ Sr (o) for all r > r0 and o ∈ X) and such that

the displacement by �r is small but moves every vector away from UZ effectively. For the

moment, suppose that Z consists of only one stratum, hence Z is a closed submanifold of

UM. By the remark at the end of this section, we will see that this restriction has no effect

on Proposition 4.1.

For every time r > r0 and small ǫ, we define a perturbation �r,ǫ of UX\p−1Z that

respects the foliation of UX into spheres of radius r and such that the distance of the image

of �r,ǫ to UZ is at least ǫ. The idea is illustrated in Figure 1 and works as follows. For any

vector v ∈ UX\p−1Z with d(v, UZ) < 4ǫ, let γ denote the shortest geodesic† from Z to

p := p(v). Use parallel transport along γ to move v away from Z to a point q which is

at distance 2ǫ − d(v, UZ)/2 and write v̄ for this vector. Find the vector w in UqX such

that γw(R−) goes through o := γv(−r) (hence, o is the centre of the sphere containing v).

Pull back w by the geodesic flow to a vector on Sr (o) and call this image �r,ǫ(v).

For v far away from UZ, the vector is only slightly displaced and, hence, stays away

from UZ. For v close to UZ, the parallel transport moves the vector very effectively away

from UZ. The readjustment afterwards is comparatively small and, hence, the resulting

vector is far away from UZ. This is summed up in the following lemma.

LEMMA 4.1. Given r0 > 0, we can find constants C, τ, ǫ such that for all λ ∈ ]0, 1] the

maps �r,λǫ have the following properties for all r ≥ r0:

(1) �r,λǫ : UX\p−1Z → UX is continuous and respects the r-sphere foliation of UX.

(2) The image of �r,λǫ has no intersection with the λτ -neighbourhood of UZ:

d(�r,λǫ(v), UZ) ≥ λτ for all v ∈ UX\p−1Z.

(3) The displacement by �r,λǫ is bounded by the global constant λC:

d(�r,λǫ(v), v) ≤ λC for all v ∈ UX\p−1Z.

Remark. If Z is a manifold with boundary, some problems might arise at the boundary,

since the parallel transport could point in the same direction as the geodesic flow and,

hence, will be undone in the last step of the construction. However, these problems can

be overcome if we use a slightly bigger submanifold Z′ ⊃ Z for the construction of �r,ǫ .

Hence, Lemma 4.1 holds in this case, too.

† If ǫ is small enough, γ is unique.
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Z

r d(o, q ′) = r

γ

w
v̄

v

�r,ǫ(v) ∈ Sr (o)p

q = p(v̄)

q ′ := p(�r,ǫ(v))

o := γv(−r)

FIGURE 1. Construction of �r,ǫ .

As a result we can deform submanifolds of spheres away from a stratum Z.

PROPOSITION 4.1. For r0 > 0 given, there are constants C, τ > 0 such that for any

λ ∈ ]0, 1], r > r0, o ∈ X and manifold Y with

dim Y < dim X − dim Z

we can deform any smooth map c : Y → Sr (o) into a smooth map cλ : Y → Sr (o) such

that

• cλ is λC-close to c, i.e.

d(c(x), cλ(x)) ≤ λC for all x ∈ Y.

• cλ avoids a λτ -neighbourhood of UZ, i.e.

d(cλ(x), UZ) ≥ λτ for all x ∈ Y.

Proof. Choose C̃, ǫ̃ and τ̃ as provided by Lemma 4.1 for r0/2. Without loss of generality,

we can assume that τ̃ < r0/2 since the constants are scalable. Fix these constants and

consider any r ≥ r0 and λ ∈ ]0, 1]. Choose τ ′ > 0 such that on big spheres (radius > r0/2)

vectors are τ̃ λ/6-close if their base points are τ ′-close. Now fix o ∈ X and consider the

differentiable map

ρ : Z\{o} −→ R

p �−→ d(o, p),
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which measures the radius in polar coordinates around o. By Sard’s theorem, the

set of regular values of ρ is dense in R. Hence, we can choose a regular value

r ′ ∈ ]r − τ̃ λ/6, r + τ̃ λ/6[. The inverse image Zr ′ := ρ−1(r ′) is the intersection of

Z with the sphere Sr ′(o) in X. Since r ′ is regular, this intersection Zr ′ is a smooth

submanifold of dimension at most dim Z − dim R = dim Z − 1 in the sphere Sr ′(o) by

the Preimage Theorem. Next note that the geodesic flow φr ′−r identifies the two spheres

Sr (o) → Sr ′(o), moving every vector by exactly |r ′ − r| < τ̃/6λ. Furthermore, we have

natural identifications of spheres with centre o in X and in UX, given by the gradient of ρ:

grad ρ|Sr (o) : Sr (o) → Sr (o) and grad ρ|Sr′ (o) : Sr ′(o) → Sr ′(o).

Now y := p ◦ φr ′−r ◦ c : Y → Sr ′(o) is a smooth map of Y into the sphere Sr ′(o).

By Thom’s Transversality Theorem, we can find a τ ′-close smooth map y ′ : Y → Sr ′(o)

which avoids Zr ′ . Write α for the homotopy of Sr ′(o) with α0 = idSr′ (o) and α1 ◦ y = y ′.

Consider the map

cλ := φr−r ′ ◦ �r,λǫ ◦ grad ρ ◦ α1 ◦ p ◦ φr ′−r ◦ c : Y → Sr (o).

This looks quite monstrous at first glance but we will explain it step by step.

• φr ′−r ◦ c is τ̃ λ/6-close to c, since r ′ − r < τ̃λ/6.

• The base-point distance between φr ′−r ◦ c and grad ρ ◦ α1 ◦ p ◦ φr ′−r ◦ c is just the

distance between y and y ′, which is smaller than τ ′ by definition of α. But τ ′-close

base points imply τ̃ λ/6-close radial vectors and, hence, grad ρ ◦ α1 ◦ p ◦ φr ′−r ◦ c =

grad ρ ◦ y ′ is τ̃λ/6-close to φr ′−r ◦ c and τ̃ λ/3-close to c.

• y ′ avoids Z and, hence, grad ρ ◦ y ′ maps Y into UX\p−1Z and, hence, the map

�r,λǫ ◦ grad ρ ◦ y ′ is well defined. By Lemma 4.1, it is C̃λ-close to grad ρ ◦ y ′ and,

hence, (C̃λ + τ̃ λ/3)-close to our original map c. Again by Proposition 4.1, it avoids

a τ̃ λ-neighbourhood of UZ.

• Projecting this map back to Sr (o) by the geodesic flow φr−r ′ gives a further

displacement of |r − r ′| ≤ τ̃ λ/6 which leaves us with the properties that cλ is

(C̃λ + τ̃ λ/3 + τ̃ λ/6)-close to c and avoids a (τ̃λ − τ̃ λ/6)-neighbourhood of UZ.

This ends the proof if we set C := C̃ + τ̃ /2 and τ := τ̃ /2. ✷

Remark. Proposition 4.1 stays true if Z is not a submanifold of M but a finite union Z =
⋃

Zi of closed submanifolds of M and dim Y < dim X − max dim Zi . To see this, pick

Ci, τi for each of the submanifolds and then choose λi+1 so small that λi+1Ci+1 < τi/8

and λi+1τi+1 < τi/4. Now, after a finite number of displacements, we avoid all Zi since

the (i + 1)st displacement will not undo the previous ones.

5. Hyperbolicity

It is a well-known fact that, in hyperbolic space, geodesics originating in the same point

diverge qualitatively faster than in Euclidean space. Ballmann [1] introduced the term

hyperbolic geodesic for geodesic segments where the distance between close geodesic

segments is less than µ times the Hausdorff distance for some µ ∈ ]0, 1[. Buyalo and

Schroeder [3] use a similar definition to define a hyperbolic vector and show that every

vector of rank one is, indeed, hyperbolic. As a result, a compact set of rank-one vectors

has a widening property explained in the following lemma and illustrated in Figure 2.
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γw

γv

γv(A)

= A

= r1 ≥ r0
o

w

vK̃

d(γv(A), γw)

d(γv(A), γw) < � �⇒ d(v, γ̇w) <
d(γv(A),γw)

N

FIGURE 2. Widening property of K̃.

LEMMA 5.1. Consider a compact set K ⊂ UM consisting of vectors of rank one and

K̃ := dπ−1K . Given N ∈ N and �, r0 > 0, there is a distance A > 0 such that for any

point o ∈ X and vectors v ∈ K̃ and w ∈ UX with γv(−r1) = o = γw(−r2) (r1 > r0,

r2 > 0), the inequality d(γv(A), γw) ≤ � implies d(v, γ̇w) < d(γv(A), γw)/N .

The important point here is that A = A(K,N,�, r0) does not depend on the time r1.

To illustrate the widening property, suppose K , N , �, r0 are given and A is the constant

provided by the lemma. Consider two close geodesics γ and σ starting in o ∈ X. Suppose

that outside the ball of radius r0 around o there is a point γ (t) (t > r0), where the tangent

vector v := γ̇ (t) to γ lies in K̃. Now if σ meets the ball of radius � around the point

γ (t + A), then the velocity field σ̇ is �/N-close to v.

Roughly speaking, we can say that A is the time span after which the distance between

close geodesics widens by a factor of N . Note that, in Euclidean space, it is impossible to

find such A which works for all times t > r0, since the distance between geodesics grows

linearly.

6. Choosing the right constants

Suppose that s-dimR> < dim M − 1 and Z is an s-support of R>. Fix r0 > 2 and find

constants τ , C by Proposition 4.1 for Z. Define new constants

ǫ :=
τ

10
and δ := 10

C

τ
,

fix N ∈ N such that N > 1 + 1
2
δ, fix

δ

N − 1
< � < 2N − δ
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o

γvk+1
γvi γvi+1

vk+1,k+1

vk+1,k

vi,k

vi+1,k = φti+1,k
(vi+1)

vi,i

vi+1,i

vi+1,i+1

Svi (ti)

FIGURE 3. Construction of vi+1,i and ti+1,k .

and choose � > (δ + �)ǫ. Since Proposition 4.1 holds for λτ and λC if λ ∈ ]0, 1], we

can use the same constants δ, N , � and � when working with ǫ′ < ǫ. Fix A as provided

by Lemma 5.1 for the compact set Kǫ := UM\Wǫ(UZ) and B > A+ 8ǫ. Note that, for all

t ∈ R, the compact set Kǫ consists only of vectors of rank one while the compact set R>

consists of vectors of higher rank. Hence, these sets are disjoint and we can define

β := min
t∈[−B,B]

d(φt (Kǫ),R>)/ǫ.

Given a smooth map V0 : Y → UoX, we construct the sequences ti ∈ R+ and

Vi : Y → UoX as explained in §3. We consider one point x ∈ Y and its images

vi = Vi(x) ∈ UoX.

As illustrated in Figure 3, define ti,k and vi,k for 0 ≤ k ≤ i − 1 by the equation

d(φti,k (vi), φtk (vk+1)) = d(γ̇vi , φtk (vk+1)),

i.e. vi,k := φti,k (vi) is the vector, tangent to the geodesic γvi which is closest to the vector

vk,k := φtk(vk+1). Now we know that

βǫ < d(vi,i ,R>)

d(vi+1,i, vi,i ) ≤ δǫ

10ǫ ≤ d(vi+1,i ,R>)
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and, step by step, we can prove that vi+1,i = vi ∈ Kǫ ,

βǫ ≤ d(φt (vi),R>) for ti−1 − B ≤ t ≤ ti−1 + B

11ǫ < d(φt (vi), UZ) for ti−1 + B ≤ t < ti

and, for 0 ≤ k < i,

d(vi,k, vk,k) < (δ + �)ǫ

d(vi,k, vk+1,k) < 2ǫ

and vi,k ∈ Kǫ . Furthermore,

ti,i := ti = ti,i−1 and |tk − ti,k | ≤ 4ǫ

and, finally,

βǫ < d(φt (vi),R>) for 0 ≤ t ≤ ti(i ≥ 1) (1)

d(vi+1,i−k, γ̇vi ) <
δ

Nk
ǫ. (2)

By (2), the vi converge to some v∞ with

d(v0, v∞) ≤
δ

N(N − 1)
ǫ

and by (1) for v∞, we have

βǫ ≤ d(γ̇v∞(R+),R>).

Since none of the estimations depended on v0, the convergence is uniform on Y and, hence,

the maps Vi : Y → UoX converge to a continuous map V∞ : Y → UoX. Now we can

prove the following proposition.

PROPOSITION 6.1. There are constants ǫ and c such that, for any η < ǫ, there is an

η′ < η such that, for any compact manifold Y with

dim Y < dim X − s-dimR>,

for any o ∈ X and any continuous map V0 : Y → UoX, we can find a map V∞ : Y → UoX

which is cη-close to V0 and defines a family of geodesic rays avoiding an η′-neighbourhood

of R>, i.e.

d(γ̇V∞(Y )(R+),R>) ≥ η′.

Proof. Take all the constants we had before. Note that, by definition, δ and N are

independent of ǫ. So we can define the global constant c := δ/N(N − 1). Choose β,

B, A and � replacing ǫ by η < ǫ. Write η′ := βη to get the desired result. ✷

For the special case where dim Y = 0 we get the following corollary.

COROLLARY 6.1. Let M denote a compact manifold of non-positive curvature with

s-dimR> < dim M . Then there is an η′ > 0 such that, for every point o ∈ M , we

can find a geodesic ray γ , starting in o whose tangent field avoids an η′-neighbourhood of

the set R> of all vectors of higher rank.
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7. From rays to geodesics

In Proposition 6.1, choose η < ǫ/c. To find a complete geodesic, consider two

complementary submanifolds N1 and N2 of UoX which intersect in exactly two antipodal

points. Deform the inclusion N1 →֒ UoX of one of them so that it avoids R> for all r > 0

and the inclusion N2 →֒ UoX of the other one so that it avoids R> for all r < 0. If ǫ is

smaller than π , then the images of the deformed maps still intersect in at least two points.

Pick one of these points of intersection. It defines a complete geodesic γo which avoids R>

at all times. The deformation of the Ni works if dim Ni < dim X−s-dimR>. We need two

complementary submanifolds, i.e. dim N1 +dim N2 = dim UoX = dim M−1. Combining

these two inequalities we see that the construction works if s-dimR> < dim M/2.

Since the choice of constants is independent of o, we can find such γo for all o ∈ X.

The preimage under dπ of the union of the velocity fields of all such geodesics

dπ−1

(

⋃

o∈X

γ̇o

)

is full and contained in �̂η′ . Hence, �̂η′ is full. To see that �̂η′ is ǫ-dense, note that for

any v ∈ UoX we can choose N1 and N2 such that they intersect in v and −v. Then ǫ-close

to v and −v the images of the deformed maps will intersect and we can suppose that

d(γ̇o(0), v) < ǫ. Theorem 1.1 follows.
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