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Flow Monitoring Explained:
From Packet Capture to Data Analysis with

NetFlow and IPFIX
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Abstract—Flow monitoring has become a prevalent method for
monitoring traffic in high-speed networks. By focusing on the
analysis of flows, rather than individual packets, it is often said
to be more scalable than traditional packet-based traffic analysis.
Flow monitoring embraces the complete chain of packet observa-
tion, flow export using protocols such as NetFlow and IPFIX, data
collection, and data analysis. In contrast to what is often assumed,
all stages of flow monitoring are closely intertwined. Each of
these stages therefore has to be thoroughly understood, before
being able to perform sound flow measurements. Otherwise, flow
data artifacts and data loss can be the consequence, potentially
without being observed.

This paper is the first of its kind to provide an integrated
tutorial on all stages of a flow monitoring setup. As shown
throughout this paper, flow monitoring has evolved from the
early nineties into a powerful tool, and additional functionality
will certainly be added in the future. We show, for example, how
the previously opposing approaches of Deep Packet Inspection
and flow monitoring have been united into novel monitoring
approaches.

Index Terms—Flow export, network monitoring, Internet mea-
surements, NetFlow, IPFIX

I. INTRODUCTION

NETWORK monitoring approaches have been proposed

and developed throughout the years, each of them serv-

ing a different purpose. They can generally be classified into

two categories: active and passive. Active approaches, such as

implemented by tools like Ping and Traceroute, inject traffic

into a network to perform different types of measurements.

Passive approaches observe existing traffic as it passes by

a measurement point and therefore observe traffic generated

by users. One passive monitoring approach is packet capture.

This method generally provides most insight into the network

traffic, as complete packets can be captured and further ana-

lyzed. However, in high-speed networks with line rates of up
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to 100 Gbps, packet capture requires expensive hardware and

substantial infrastructure for storage and analysis.

Another passive network monitoring approach that is more

scalable for use in high-speed networks is flow export, in

which packets are aggregated into flows and exported for

storage and analysis. A flow is defined in [1] as “a set of IP

packets passing an observation point in the network during

a certain time interval, such that all packets belonging to

a particular flow have a set of common properties”. These

common properties may include packet header fields, such as

source and destination IP addresses and port numbers, packet

contents, and meta-information. Initial works on flow export

date back to the nineties and became the basis for modern

protocols, such as NetFlow and IP Flow Information eXport

(IPFIX) [2].

In addition to their suitability for use in high-speed net-

works, flow export protocols and technologies provide several

other advantages compared to regular packet capture. First,

they are widely deployed, mainly due to their integration into

high-end packet forwarding devices, such as routers, switches

and firewalls. For example, a recent survey among both com-

mercial and research network operators has shown that 70%

of the participants have devices that support flow export [3].

As such, no additional capturing devices are needed, which

makes flow monitoring less costly than regular packet capture.

Second, flow export is well understood, since it is widely

used for security analysis, capacity planning, accounting, and

profiling, among others. It is also frequently used to comply

to data retention laws. For example, communication providers

in Europe are enforced to retain connection data, such as

provided by flow export, for a period of between six months

and two years “for the purpose of the investigation, detection

and prosecution of serious crime” [4], [5]. Third, significant

data reduction can be achieved – in the order of 1/2000 of the

original volume, as shown in this paper – since packets are

aggregated after they have been captured. Fourth, flow export

is usually less privacy-sensitive than packet export, since

traditionally only packet headers are considered. However,

since researchers, vendors and standardization organizations

are working on the inclusion of application information in

flow data, the advantage of performing flow export in terms

of privacy is fading.

Despite the fact that flow export, as compared to packet-

level alternatives, significantly reduces the amount of data to

be analyzed, the size of flow data repositories can still easily

exceed tens of terabytes. This high volume, combined with the
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Fig. 1. Evolution of flow export technologies and protocols.

high speeds at which the data is processed, and the increasing

types of information that can be exported, make that flow data

can be considered a form of “Big Data”. Capturing, collecting

and analyzing data is therefore a challenging task, which is

the main incentive for this paper.

A. Objective

Many papers, specifications and other documents on

NetFlow and IPFIX have been written over the years. They

usually consider the proper operation of flow export protocols

and technologies, and the correctness of the exported data as

a given, while barely discussing how to perform sound and

accurate flow measurements. This paper focusses especially

on that. The objective of this tutorial is to provide a clear

understanding of flow export and all stages in a typical

flow monitoring setup, covering the complete spectrum from

packet capture to data analysis. After reading this tutorial,

the reader should be able to decide which choices to make

when setting up a flow monitoring infrastructure. The reader

is assumed to be familiar with basic networking protocols, but

not necessarily with flow export and network measurements.

B. Approach

We have used several approaches for collecting the informa-

tion contained in this paper. First, we surveyed the literature

where relevant and applicable. As a complement to this survey,

we have included information based on our own experience.

This experience has been gained in a variety of ways: research

in the area of flow export, involvement in the standardization

of IPFIX, operational experience, talks with network operators,

and experience in developing both hardware- and software-

based flow exporters. Finally, we have included measurements

to illustrate and provide more examples and insights into

the presented concepts. These measurements are based on a

packet trace consisting of one day of network traffic between

the campus network of the University of Twente (UT), and

the Dutch national research and education network SURFnet,

accounting for 2.1 TB of data. Various sections throughout

this paper will refer to these measurements.

C. Organization

The remainder of this paper is organized as follows. Sec-

tion II shortly outlines the history of flow export protocols,

and puts flow export in a broader context by comparing it to

related technologies. An overview of a typical flow monitoring

architecture and the most important concepts is presented in

Section III, which is also the basis for Section IV–VII. In these

sections, each of the stages of the architecture is described in

detail. In Section VIII, we describe several lessons learned that

are most important when setting up flow monitoring, based on

our experience over the past decade. We close this paper in

Section IX, where we draw our conclusions. A list of acronyms

is provided as Appendix.

D. How to Read this Paper?

Although this tutorial targets a wide audience of both

experts in the field of flow monitoring and people unfamiliar

with the subject, we believe that some sections are more

relevant to certain audiences than others. Section II and III are

intended for all readers, as they provide a general background

on flow monitoring. Researchers interested in creating or

revising an existing flow monitoring setup for the sake of

network measurements are encouraged to study all contents of

Section IV–VII as well. Network operators that use an existing

packet forwarding infrastructure for flow monitoring, can skip

the material on packet capture in Section IV, as packet capture

functionality is typically an integral part of such networking

devices. Readers new to flow monitoring are advised to focus

on Section V besides Section II and III. Finally, we believe

that Section VIII provides useful insights to all readers.

II. HISTORY & CONTEXT

In this section, we discuss both the history of flow mon-

itoring and present flow monitoring in a broader context by

comparing it to related technologies. The chronological order

of the main historic events in this area is shown in Fig. 1 and

will be covered in Section II-A. A comparison with related

technologies and approaches is provided in Section II-B.

A. History

The published origins of flow export date back to 1991,

when the aggregation of packets into flows by means of packet

header information was described in [6]. This was done as

part of the Internet Accounting (IA) Working Group (WG)

of the Internet Engineering Task Force (IETF). This WG
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concluded in 1993, mainly due to lack of vendor interest.

Also the then-common belief that the Internet should be free,

meaning that no traffic capturing should take place that could

potentially lead to accounting, monitoring, etc., was a reason

for concluding the WG. In 1995, interest in exporting flow

data for traffic analysis was revived by [7], which presented

a methodology for profiling traffic flows on the Internet

based on packet aggregation. One year later, in 1996, the

new IETF Realtime Traffic Flow Measurement (RTFM) WG

was chartered with the objectives of investigating issues in

traffic measurement data and devices, producing an improved

traffic flow model, and developing an architecture for improved

flow measurements. This WG revised the Internet Accounting

architecture and, in 1999, published a generic framework

for flow measurement, named RTFM Traffic Measurement

System, with more flexibility in terms of flow definitions

and support for bidirectional flows [8]. In late 2000, having

completed its charter, the RTFM WG was concluded. Again,

due to vendors’ lack of interest, no flow export standard

resulted.

In parallel to RTFM, Cisco worked on its flow export tech-

nology named NetFlow, which finds its origin in switching.

In flow-based switching, flow information is maintained in a

flow cache and forwarding decisions are only made in the

control plane of a networking device for the first packet of

a flow. Subsequent packets are then switched exclusively in

the data plane [9]. The value of the information available in

the flow cache was only a secondary discovery [10] and the

next step to export this information proved to be relatively

small. NetFlow was patented by Cisco in 1996. The first

version to see wide adoption was NetFlow v5 [11], which

became available to the public around 2002. Although Cisco

never published any official documentation on the protocol,

the widespread use was in part result of Cisco making the

corresponding data format freely available [2]. NetFlow v5

was obsoleted by the more flexible NetFlow v9, the state of

which as of 2004 is described in [12]. NetFlow v9 introduced

support for adaptable data formats through templates, as

well as IPv6, Virtual Local Area Networks (VLANs) and

Multiprotocol Label Switching (MPLS), among other features.

Several vendors besides Cisco provide flow export technology

alike NetFlow v9 (e.g., Juniper’s J-Flow), which are mostly

compatible with NetFlow v9. The flexibility in representation

enabled by NetFlow v9 made other recent advances possible,

such as more flexibility in terms of flow definitions. Cisco

provides this functionality by means of its Flexible NetFlow

technology [13]. Later, in 2011, Cisco presented NetFlow-Lite,

a technology based on Flexible NetFlow that uses an external

packet aggregation machine to facilitate flow export on packet

forwarding devices without flow export capabilities, such as

datacenter switches [14].

Partly in parallel to the NetFlow development, the IETF

decided in 2004 to standardize a flow export protocol, and

chartered the IP Flow Information Export (IPFIX) WG [15].

This WG first defined a set of requirements [16] and evalu-

ated several candidate protocols. As part of this evaluation,

NetFlow v9 was selected as the basis of the new IPFIX

Protocol [17]. However, IPFIX is not merely “the standard

version of NetFlow v9” [18], as it supports many new features.

The first specifications were finalized in early 2008, four years

after the IPFIX WG was chartered. These specifications were

the basis of what has become the IPFIX Internet Standard [1]

in late 2013. A short history on flow export and details on

development and deployment of IPFIX are provided in [2].
Note that the term NetFlow itself is heavily overloaded in

literature. It refers to multiple different versions of a Cisco-

proprietary flow export protocol, of which there are also third-

party compatible implementations. It refers as well to a flow

export technology, consisting of a set of packet capture and

flow metering implementations that use these export protocols.

For this reason, we use the term flow export in this paper to

address exporting in general, without reference to a particular

export protocol. As such, the term NetFlow is solely used for

referencing the Cisco export protocol.

B. Related Technologies & Approaches

There are several related technologies with flow in the name

that do not solve exactly the same problems as flow export.

One is sFlow [19], an industry standard integrated into many

packet forwarding devices for sampling packets and interface

counters. Its capabilities for exporting packet data chunks and

interface counters are not typical features of flow export tech-

nologies. Another difference is that flow export technologies

also support 1:1 packet sampling, i.e., considering every packet

for data export, which is not supported by sFlow. From an

architectural perspective, which will be discussed in Section III

for NetFlow and IPFIX, sFlow is however very similar to flow

export technologies. Given its packet-oriented nature, sFlow

is closer related to packet sampling techniques, such as the

Packet SAMPling (PSAMP) standard [20] proposed by the

IETF, than to a flow export technology. Given that this paper

is about flow export, we do not consider sFlow.
Another related technology, which is rapidly gaining atten-

tion in academia and network operations, is OpenFlow [21].

Being one particular technology for Software-Defined Net-

working (SDN), it separates the control plane and data plane

of networking devices [22]. OpenFlow should therefore be

considered a flow-based configuration technology for packet

forwarding devices, instead of a flow export technology.

Although it was not specifically developed for the sake of

data export and network monitoring, as is the case for flow

export technologies, flow-level information available within

the OpenFlow control plane (e.g., packet and byte counters)

was recently used for performing network measurements [23].

Tutorials on OpenFlow are provided in [24], [25].
A data analysis approach that is often related to flow

export is Deep Packet Inspection (DPI), which refers to the

process of analyzing packet payloads. Two striking differences

can be identified between DPI and flow export. First, flow

export traditionally only considers packet headers, and is

therefore considered less privacy-sensitive than DPI and packet

export. Second, flow export is based on the aggregation of

packets (into flows), while DPI and packet export are typically

considering individual packets. Although seemingly opposing,

we show throughout this paper how DPI and flow export are

increasingly united for increased visibility in networks.
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III. FLOW MONITORING ARCHITECTURE

The architecture of typical flow monitoring setups consists

of several stages, each of which is shown in Fig. 2. The first

stage is Packet Observation, in which packets are captured

from an Observation Point and pre-processed. Observation

Points can be line cards or interfaces of packet forwarding

devices, for example. We discuss the Packet Observation stage

in Section IV.

The second stage is Flow Metering & Export, which consists

of both a Metering Process and an Exporting Process. Within

the Metering Process, packets are aggregated into flows, which

are defined as “sets of IP packets passing an observation point

in the network during a certain time interval, such that all

packets belonging to a particular flow have a set of common

properties” [1]. After a flow is considered to have terminated, a

flow record is exported by the Exporting Process, meaning that

the record is placed in a datagram of the deployed flow export

protocol. Flow records are defined in [1] as “information about

a specific flow that was observed at an observation point”,

which may include both characteristic properties of a flow

(e.g., IP addresses and port numbers) and measured properties

(e.g., packet and byte counters). They can be imagined as

records or rows in a typical database, with one column per

property. The Metering and Exporting processes are in practice

closely related. We therefore discuss these processes together

in Section V.

The third stage is Data Collection, which is described in

Section VI. Its main tasks are the reception, storage and pre-

processing of flow data generated by the previous stage. Com-

mon pre-processing operations include aggregation, filtering,

data compression, and summary generation.

The final stage is Data Analysis, which is discussed in

Section VII. In research deployments, data analysis is often

of an exploratory nature (i.e., manual analysis), while in

operational environments, the analysis functions are often

integrated into the Data Collection stage (i.e., both manual and

automated). Common analysis functions include correlation

and aggregation; traffic profiling, classification, and characteri-

zation; anomaly and intrusion detection; and search of archival

data for forensic or other research purposes.
Note that the entities within the presented architecture are

conceptual, and may be combined or separated in various

ways, as we exemplify in Fig. 3. We will highlight two impor-

tant differences. First and most important, the Packet Observa-

tion and Flow Metering & Export stages are often combined

in a single device, commonly referred to as Flow Export

Device or flow exporter. When a flow exporter is a dedicated

device, we refer to it as flow probe. Both situations are shown

in Fig. 3. We know however from our own experience that

the IPFIX architecture [26] was developed with flow export

from packet forwarding devices in mind. In this arrangement,

packets are read directly from a monitored link or received

via the forwarding mechanisms of a packet forwarding device.

However, especially in research environments where trace data

is analyzed, packet capture may occur on a completely separate

device, and as such should not be considered an integral part of

the Flow Metering & Export stage. This is why we consider the

Packet Observation and Flow Metering & Export stages in this

work to be separate. A second difference with what is shown

in Fig. 2, is that multiple flow exporters can export flows to

multiple devices for storage and pre-processing, commonly

referred to as flow collectors. After pre-processing, flow data

is available for analysis, which can be both automated (e.g.,

by means of an appliance) or manual.
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IV. PACKET OBSERVATION

Packet observation is the process of capturing packets from

the line and pre-processing them for further use. It is therefore

key to flow monitoring. In this section, we cover all aspects

of the Packet Observation stage, starting by presenting its

architecture in Section IV-A. Understanding this architecture

is however not enough for making sound packet captures; also

the installation and configuration of the capture equipment is

crucial. This is explained in Section IV-B. Closely related

to that are special packet capture technologies that help to

increase the performance of capture equipment, which is

surveyed in Section IV-C. Finally, in Section IV-D, we discuss

one particular aspect of the Packet Observation stage in detail

that is widely used in flow monitoring setups: packet sampling

& filtering.

A. Architecture

A generic architecture of the Packet Observation stage is

shown in Fig. 4. Before any packet pre-processing can be

performed, packets must be read from the line. This step,

packet capture, is the first in the architecture and typically

carried out by a Network Interface Card (NIC). Before packets

are stored in on-card reception buffers and later moved to

the receiving host’s memory, they have to pass several checks

when they enter the card, such as checksum error checks.

The second step is timestamping. Accurate packet times-

tamps are essential for many processing functions and anal-

ysis applications. For example, when packets from different

observation points have to be merged into a single dataset,

they will be ordered based on their timestamps. Timestamping

performed in hardware upon packet arrival avoids delays as

a consequence of forwarding latencies to software, resulting

in an accuracy of up to 100 nanoseconds in the case of the

IEEE 1588 protocol, or even better. Unfortunately, hardware-

based timestamping is typically only available on special NICs

using Field Programmable Gate Arrays (FPGAs), and most

commodity cards perform timestamping in software. How-

ever, software-based clock synchronization by means of the

Network Time Protocol (NTP) or the Simple Network Time

Protocol (SNTP) usually provides an accuracy in the order

of 100 microseconds. For further reading, we recommend the

overviews on time synchronization methods in [27], [28].
Both packet capture and timestamping are performed for

all packets under any condition. All subsequent steps shown

in Fig. 4, are optional. The first of them is packet truncation,

which selects only those bytes of a packet that fit into a pre-

configured snapshot length. This reduces the amount of data

received and processed by a capture application, and therefore

also the number of computation cycles, bus bandwidth and

memory used to process the network traffic. For example, flow

exporters traditionally only rely on packet header fields and

ignore packet payloads.
The last step of the Packet Observation stage is packet

sampling and filtering [29]. Capture applications may define

sampling and filtering rules so that only certain packets are

selected for measurement. The motivation for sampling is to

select a packet subset, while still being able to estimate prop-

erties of the full packet stream. The motivation for filtering is

to remove all packets that are not of interest. Packet sampling

& filtering will be discussed in detail in Section IV-D.

B. Installation & Configuration

In this subsection, we describe how packet captures should

be made in wired, wireless, and virtual networks, and how

the involved devices should be installed and configured. Most

packet captures are made in wired networks, but can also be

made in wireless networks. Due to the popularity of virtual

environments, packet captures in virtual networks are also

becoming more common.
Most network traffic captures are made in wired networks,

which can range from Local Area Networks (LANs) to back-

bone networks. This is mainly due to their high throughput

and low external interference. Packet capture devices can be

positioned in-line and in mirroring mode, which may have a

significant impact on capture and network operation:

• In-line mode – The capture device is directly connected

to the monitored link between two hosts. This can

be achieved by installing additional hardware, such as

bridging hosts or network taps [30]. Network taps1 are

designed to duplicate all traffic passing through the tap

and provide a connection for a dedicated capture device.

They use passive splitting (optical fiber networks) or

regeneration (electrical copper networks) technology to

pass through traffic at line rates without introducing

delays or altering data. In addition, they have built-in

fail open capability that ensures traffic continuity even

if a tap stops working or loses power. Once a tap

has been installed, capture devices can be connected

or disconnected without affecting the monitored link. In

Fig. 3, Flow probe 1 receives its input traffic by means

of a network tap.

1Another commonly used name is Test Access Port (TAP).
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• Mirroring mode – Most packet forwarding devices can

mirror packets from one or more ports to another port,

to which a capture device is connected. This is com-

monly referred to as port mirroring, port monitoring,

or Switched Port ANalyzer (SPAN) session [31]. Port

mirroring requires a change in the forwarding device’s

configuration, but does not introduce additional costs as

for a network tap. It should be noted that mirroring

may introduce delays and jitter, alter the content of the

traffic stream, or reorder packets [32]. In addition, care

should be taken to select a mirror port with enough

bandwidth; given that most captures should cover two

traffic directions (full-duplex), the mirror port should have

twice the bandwidth of the monitored port, to avoid

packet loss. In Fig. 3, Flow probe 2 receives its input

traffic by means of port mirroring.

Packet captures in wireless networks can be made using any

device equipped with a wireless NIC, under the condition that

the wireless traffic is not encrypted at the link-layer, or the

encryption key is known. Wireless NICs can however only

capture at a single frequency at a given time. Although some

cards support channel hopping, by means of which the card

can switch rapidly through all radio channels, there is no

guarantee that all packets are captured [33]. In large-scale

wireless networks, it is more common to capture all traffic

at a Wireless LAN (WLAN) Controller, which controls all

individual wireless access points and forwards their traffic

to other network segments by means of a high-speed wired

interface. This is shown in Fig. 5, where the high-speed

uplink suitable with traffic from and to all access points can

be captured. Besides having a single point of capture, the

advantage is that link-layer encryption of wireless transmission

protocols does not play a role anymore and captures can be

made as described above for wired networks.
Deployment of packet capture devices in virtual networks

is very similar to deployment in wired networks, and is

rapidly gaining importance due to the widespread use of virtual

machines (VMs). Virtual networks act as wired LANs, but are

placed in virtual environments, e.g., to interconnect VMs. We

therefore do not consider Virtual Private Networks (VPNs) as

virtual networks, as they are typically just overlay networks in

physical networks. Virtual networks use virtual switches [34],

which support port mirroring and virtual taps. Furthermore,

the mirrored traffic can be forwarded to dedicated physical

ports and captured outside the virtual environment by a packet

capture device.

Key to monitoring traffic is to identify meaningful observa-

tion points, ultimately allowing capture devices to gather most

information on traffic passing by the observation point. These

observation points should preferably be in wired networks.

Even in wireless networks one should consider capturing at

a WLAN controller to overcome all previously discussed

limitations. In addition, deployment of network taps is usually

preferred over the use of mirror ports, mainly due to effects

on the packet trace of the latter. Port mirroring should only

be used if necessary and is particularly useful for ad-hoc

deployments and in production networks where no taps have

been installed.

C. Technologies

For most operating systems, libraries and Application Pro-

gramming Interfaces (APIs) for capturing network traffic are

available, such as libpcap or libtrace [35] for Linux and BSD-

based operating systems, and WinPcap for Windows. These

libraries provide both packet capture and filtering engines,

and support reading from and writing to offline packet traces.

From a technical point of view, they are located on top of the

operating system’s networking stack.

Since the networking stacks of operating systems are de-

signed for general-purpose networking, packet captures usu-

ally suffer from suboptimal performance. The overall capture

performance depends on system costs to hand over packets

from the NIC to the capture application, via a packet capture

library; packets have to traverse several layers, which increase

latency and limit the overall performance as they add per-

packet processing overhead. Several methods have been pro-

posed to speed up this process [36]:

• Interrupt mitigation and packet throttling (Linux NAPI)

reduce performance degradation of the operating system

under heavy network loads. Interrupt mitigation decreases

the number of interrupts triggered by NICs during times

of heavy traffic, as all interrupts convey the same message

about a large number of packets waiting for processing.

This reduces the system load. Packet throttling is applied

when a system is overloaded with packets; packets are

already dropped by the NIC, even before they are moved

to the software.

• Network stack bypass techniques, such as PF RING,

avoid the per-packet processing overhead caused by the

various OS networking layers.

• Memory-map techniques for reducing the cost of copying

packets form kernel-space to user-space.

All these methods provide software-based optimizations

for making packet captures. To be able to deal with higher

packet rates, however, hardware-acceleration cards have been

introduced. They use FPGAs to reduce CPU load during

packet capture and guarantee packet capture without loss

under modest CPU load [37]. Other capabilities of these

cards are precise timestamping (with GPS synchronization),

traffic filtering, and multi-core traffic distribution by means

of multiple receive queues. They use Direct Memory Access

(DMA) to receive and transmit packets. In that way, they also
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address the problem of passing packets efficiently from NICs

to the capture application.

Modern commodity NICs provide a cost-effective solution

for making high performance packet captures on links with

speeds up to 10 Gbps [38]. Features provided by controllers on

these NICs (e.g., Intel 82599, Myri-10G Lanai Z8ES) include

multiple receive queues by means of Receive Side Scaling to

distribute packets across multiple CPUs [39], and a DMA

engine to off-load CPU processing. To be able to use these

features, vendors provide a set of libraries and drivers for

fast packet processing, such as Intel DPDK2 and PF RING

DNA/Libzero3.

It is important to fully understand the performance of the

packet capture process to create and operate reliable monitor-

ing applications. Care should be taken when selecting a packet

capture library or system: Most packet capture benchmarks

show throughputs for situations without any further process-

ing, which may overestimate the real performance when some

form of packet processing is used. An example of such packet

processing is flow export, which will be discussed in the subse-

quent sections. Key to high-performance packet processing is

efficient memory management, low-level hardware interaction,

and application optimizations.

D. Packet Sampling & Filtering

The goal of packet sampling and filtering is to forward

only certain packets to the Flow Metering & Export stage.

A combination of several sampling and filtering steps can be

adopted to select the packets of interest.

Packet sampling4 aims at reducing the load of subsequent

stages or processes (e.g., the Metering Process within the Flow

Metering & Export stage) and, consequently, to reduce the

consumption of bandwidth, memory and computation cycles.

Therefore, sampling should be used whenever it is expected

that the number of monitored packets will overload the fol-

lowing stage. The ultimate goal is to turn the uncontrolled loss

of packets caused by overload into a controlled one by using

sampling.

2http://www.dpdk.org/
3http://www.ntop.org/products/pf ring/libzero-for-dna/
4See [40] and [41] for an introduction to sampling in the context of network

management.

Several sampling strategies are defined in [29], where two

major classes of sampling schemes can be distinguished:

Systematic sampling schemes deterministically decide which

packets are selected (for example every N th packet in a

periodic sampling scheme). In contrast, random sampling

selects packets in accordance to a random process. The main

challenge when using sampling is to obtain a representative

subset of the relevant packets. In general, random sampling

should be preferred over systematic sampling when both are

available, because the latter can introduce unwanted corre-

lations in the observed data. For example, a measurement

using periodic sampling would be likely biased towards or

against periodic traffic. This restriction can be relaxed when

it is known in advance that the monitored traffic is highly

aggregated, i.e., it comprises of traffic from many different

hosts, applications, etc. In such a situation, the influence of the

sampling scheme is less noticeable, although its quantitative

impact on the resulting flow data depends on the nature of the

traffic [42].

Packet sampling obviously entails loss of information. De-

pending on the employed sampling scheme, some properties

of the original packet stream can be easily recovered. For

example, if a simple random sampling scheme is used, the total

number of packets or bytes can be estimated by multiplying the

measured numbers by the inverse of the sampling probability.

Reciprocally, it means that sampling with a rate of 1:N results

in a reduction of load to the Metering Process (in terms of

number of packets and bytes to process) by a factor of N .

Other characteristics of the original data are affected in a more

complex way. For example, longer flows are more likely to be

sampled than shorter ones. A simple scaling would yield a

biased estimation of the flow length distribution. Methods to

estimate sampled flow statistics have been discussed in [42].

Several publications propose new sampling schemes with the

goal to mitigate the effects of sampling, for example by

automatically adapting the sampling rate according to the

traffic load [43].

The role of packet filtering is to deterministically “separate

all the packets having a certain property from those not having

it” [29]. Similar to sampling, filtering can be used to reduce

the amount of data to be processed by the subsequent stages.

Again, two major classes can be distinguished: With Property

Match Filtering, a packet is selected if specific fields within the



8

TABLE I
COMMON IPFIX INFORMATION ELEMENTS [44]

ID Name Description

152 flowStartMilliseconds Timestamp of the flow’s first packet.

153 flowEndMilliseconds Timestamp of the flow’s last packet.

8 sourceIPv4Address
IPv4 source address in the packet

header.

12 destinationIPv4Address
IPv4 destination address in the

packet header.

7 sourceTransportPort Source port in the transport header.

11 destinationTransportPort
Destination port in the transport

header.

4 protocolIdentifier
IP protocol number in the packet

header.

2 packetDeltaCount Number of packets for the flow.

1 octetDeltaCount Number of octets for the flow.

packet (and/or the router state) are equal to a specified value or

inside a specified value range. Typically, such filters are used

to limit packet capturing to specific IP addresses, applications,

etc. Hash-Based Filtering applies a hash function to the packet

content or some portion of it, and compares the result to a

specified value or value range. Hash-Based Filtering can be

used to efficiently select packets with common properties or,

if the hash function is applied to a large portion of the packet

content, to select packets quasi-randomly.

V. FLOW METERING & EXPORT

The Flow Metering & Export stage is where packets are

aggregated into flows and flow records are exported, which

makes it key to any flow monitoring system. Its architecture

is shown in Fig. 6. The packet aggregation is performed within

the Metering Process, based on Information Elements that

define the layout of a flow. Information Elements are discussed

in Section V-A. After aggregation, an entry per flow is stored

in a flow cache, explained in Section V-B, until a flow is con-

sidered to have terminated and the entry is expired. Expiration

of flow cache entries is discussed in Section V-C. After one

or more optional flow-based sampling and filtering functions,

which are discussed in Section V-D, flow records have to

be encapsulated in messages. This is where IPFIX comes

in, which is defined in [18] as “a unidirectional, transport-

independent protocol with flexible data representation”. IPFIX

message structures and types are discussed in Section V-E.

Furthermore, a transport protocol has to be selected, which

is discussed in Section V-F. Finally, we provide an extensive

analysis of open-source and commercial flow metering and

export implementations in Section V-G.

A. Information Elements

Fields that can be exported in IPFIX flow records are named

Information Elements (IEs). The Internet Assigned Numbers

Authority (IANA) maintains a standard list of IEs as the

IPFIX Information Element registry [44]. Use of the IANA

registry for common IEs is key to cross-vendor operability

in IPFIX. Besides IANA IEs, enterprise-specific IEs can be

Application
HTTP, DNS, etc.

Transport
TCP, UDP

Network
IP

Link
Ethernet

Common IEs

Fig. 7. Network layers considered for IEs.

defined, allowing for new fields to be specified for a particular

application without any alterations to IANA’s registry. IEs

have a name, numeric ID, description, type, length (fixed or

variable), and status (i.e., current and deprecated), together

with an enterprise ID in the case of enterprise-specific IEs [45].

A subset of IEs defined in [44] is shown in Table I, which is

often considered the smallest set of IEs for describing a flow.

These IEs are for transport-layer and network-layer fields, and

supported by most flow exporters. However, in contrast to what

the name “IP flow information eXport” (IPFIX) suggests, IEs

can be defined for any layer, ranging from the link-layer (L2)

up to and including the application-layer (L7), as shown in

Fig. 7. For example, IEs have been defined for Ethernet [46],

such as sourceMacAddress (ID 56) and vlanID (ID 58).

We refer to the support for application-layer IEs as application

awareness. In other words, flow exporters with application

awareness combine DPI with traditional flow export.

There are also other IEs that are different from the default

transport- and network-layer IEs shown in Table I in terms of

type and semantic. For example, since many IEs are identical

to what can be retrieved using widely used Simple Network

Management Protocol (SNMP) Management Information Base

(MIB) variables, such as interfaceName (ID 82), a cur-

rent standardization effort is working to define a method

for exporting SNMP MIB variables using IPFIX [47]. This

avoids the repetitive definition of IEs in the IANA registry.

Another example are IEs for exporting octet sequences, such

as ipPayloadPacketSection (ID 314), which can be

useful for exporting sampled packet chunks.

Guidelines on the definition of globally unique IEs are

provided in [48], which are intended for both those defining

new IEs and reviewing the specifications of new IEs. Before

defining a new IE, one should be sure to define an IE that 1)

is unique within the IANA IE registry, 2) is self-contained,

and 3) represents nonproprietary information. After definition,

the IE specification should be sent to IANA, after which the

request for approval is evaluated by a group of experts, named

“IE-Doctors”. Upon approval, IANA is requested to apply the

necessary changes to the IE registry. The same process applies

to requests for IE deprecation.

The configuration of Metering Processes in terms of IEs is

not standardized and varies from exporter to exporter. How-

ever, flow collectors are always instructed by flow exporters

by means of templates, which are used to describe which

IEs are used for which flow. This approach is also used by

NetFlow v9, although it is not compatible with IPFIX, because

of the different message formats used by the two protocols.

NetFlow v5 does not provide template support and is therefore

fixed to its initial specification. This considerably limits the

applicability of NetFlow v5, since no protocol evolution is pos-
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sible. NetFlow v5 cannot be used for monitoring IPv6 traffic,

for example. It is however often suggested that NetFlow v5 is

the most widely deployed flow export protocol and therefore

still a relevant source of flow information [49], [50].

In addition to what has been described before, several more

advanced mechanisms with respect to IEs have been defined:

variable-length encoding and structured data. Variable-length

encoding can be used for IEs with a variable length in

IPFIX, despite of IPFIX’ template mechanism being opti-

mized for fixed-length IEs [1]. As such, longer IEs can

be transferred efficiently since no bytes are wasted due to

a fixed-size reservation. Structured data in IPFIX [51] is

useful for transferring a list of the same IE, by encapsulating

it in a single field. A clear use-case for this are MPLS

labels; since every packet can carry a stacked set of such

labels, one traditionally has to define a dedicated IE for

every label position, e.g., mplsTopLabelStackSection,

mplsTopLabelStackSection2, etc. With structured

data, an MPLS label stack can be encoded using a single IE.

B. Flow Caches

Flow caches are tables within a Metering Process that store

information regarding all active network traffic flows. These

caches have entries that are composed of IEs, each of which

can be either a key or non-key field. The set of key fields,

commonly referred to as the flow key, is used to determine

whether a packet belongs to a flow already in the cache or to a

new flow, and therefore defines which packets are grouped into

which flow. In other words, the flow key defines the properties

that distinguish flows. Incoming packets are hashed based on

the flow key and matched against existing flow cache entries.

A match triggers a flow cache update where packet and byte

counters are tallied. Packets not matching any existing entry

in the flow cache are used to create new entries. Commonly

used key fields are source and destination IP addresses and

port numbers. Non-key fields are used for collecting flow

characteristics, such as packet and byte counters.

Given that source and destination IP addresses are normally

part of the flow key, flows are usually unidirectional. In

situations where both forward and reverse flows (between a

source/destination pair) are important, bidirectional flows [52]

may be considered. Bidirectional flow records have counters

for both directions, and a special IE (biflowDirection,

ID 239) to indicate a flow’s initiator and responder. Since

source and destination IP addresses are still part of the flow key

in a setup for bidirectional flows, special flow cache support

is needed for identifying matching forward and reverse flows.

Several parameters should be considered when selecting or

configuring a flow cache for a particular deployment, such as

the cache layout, type and size. The flow cache layout should

match the selection of key and non-key fields, as these are the

IEs accounted for each flow. Given that there are many types of

IEs available, flow cache layouts should be able to cope with

this flexibility. For example, application information in flow

records is becoming more and more important, which can be

concluded both from the fact that IEs are being registered for

applications in IANA’s IE registry, as well as flow exporters

with application identification support are being developed.

Flow caches, thus, should support flexible flow definitions per

application.

Flow caches can also differ from each other in terms of

type. For example, IPFIX defines flows that consist of a single

packet, commonly referred to as single-packet flows5 [26].

A regular flow cache typically cannot be used for single-

packet flows, as the cache management (e.g., the process that

determines which flow has terminated) of such caches is often

not fast enough. To overcome this problem, some vendors im-

plement dedicated caches for such flows, sometimes referred

to as immediate cache [53]. An example use case for single-

packet flows and immediate caches is a configuration with

a very low packet sampling rate, such as 1:2048, where it

is expected that no more than one packet is sampled per

flow. In those situations, one can avoid resource-intensive

cache management by using an immediate cache. Besides

caches for single-packet flows, it is possible to use caches

from which flow entries cannot expire, but are periodically

exported, named permanent cache [53]. These caches can be

used for simple flow accounting, as they do not require a flow

collector for collecting flow records; as flow cache entries

are never expired, packet and byte counters are never reset

upon expiration and therefore represent the flow state since

the Metering Process has started.

The size of flow caches depends on the memory available

in a flow exporter and should be configured/selected based on

the expected number of flows, the selected key and non-key

fields, and expiration policies. Given that expiration policies

have the strongest impact on the required flow cache size, we

discuss them in the next subsection.

C. Flow Cache Entry Expiration

Cache entries are maintained in the flow cache until the

corresponding flows are considered to have terminated, after

which the entries are expired. These entries are usually expired

by the Metering Process according to given timeout parameters

or when specific events have occurred. IPFIX, however, does

not mandate precisely when flow entries need to be expired

and flow records exported. Instead, it provides the following

reasons as guidelines on how Metering Processes should expire

flow cache entries [26]:

• Active timeout – The flow has been active for a specified

period of time. Therefore, the active timeout helps to

report the activity of long-lived flows periodically. Typical

timeout values range from 120 seconds to 30 minutes.

Note that cache entries expired using the active timeout

are not removed from the cache; counters are reset, and

start and end times are updated.

• Idle timeout – No packets belonging to a flow have been

observed for a specified period of time. Typical timeout

values range from 15 seconds to 5 minutes.

• Resource constraints – Special heuristics, such as the

automatic reduction of timeout parameters at run-time,

5In terms of expiration, which is discussed in Section V-C, these flows are
said to have a zero timeout.
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can be used to expire flows prematurely in case of

resource constraints.

Other reasons for expiring flow cache entries can be found

in various flow exporter implementations:

• Natural expiration – A TCP packet with a FIN or RST

flag set has been observed for a flow and therefore the

flow is considered to have terminated.

• Emergency expiration – A number of flow entries are

immediately expired when the flow cache becomes full.

• Cache flush – All flow cache entries have to be expired

in unexpected situations, such as a significant change in

flow exporter system time after time synchronization.

We survey how flow exporters handle flow cache entry

expiration in practice in Section V-G.
The configured active and idle timeout values have impact

on the total number of flow records exported for a particular

dataset and the number of flow entries in the flow cache. On

the one hand, using longer timeout values results in a higher

aggregation of packets into flow records, which is generally

positive and desirable to reduce the load on flow collectors. On

the other hand, using longer timeout values means that it takes

longer before a flow becomes visible to the Data Analysis

stage.
To illustrate the expiration behavior of a typical flow

exporter, we have performed several experiments using the

dataset presented in Section I-B on the impact of active and

idle timeout values on 1) the number of resulting flow records,

and 2) the maximum flow cache utilization. nProbe, an open-

source flow exporter that will be discussed in Section V-G,

has been used for exporting the flows without sampling. All

experiments have been performed twice: Once by varying the

active timeout value while maintaining a fixed idle timeout

value, and once by varying the idle timeout value while

maintaining a fixed active timeout value.
The experiment results are shown in Fig. 8. The figure

shows the maximum number of concurrently used flow cache

entries for various timeout values. Several conclusions can

be derived from the experiment results. First, as shown in

Fig. 8(a), an increasing idle timeout value results in fewer

flow records, which is the case because of more packets being

aggregated into the same flow record. This implies that flow

entries stay in the flow cache for a longer time, resulting

in a higher flow cache utilization. Second, the number of

exported flow records and the maximum flow cache utilization

stabilize for an increasing active timeout value, as shown in

Fig. 8(b). This can be explained by the fact that most flow

entries are expired by the idle timeout because of the very

large active timeout value. Third, as soon as the idle timeout

value equals the active timeout value (i.e., 120 seconds for

our experiments), as shown in Fig. 8(a), the number of flow

records and the flow cache utilization stabilize again, which

is due to the fact that flow records are expired by the active

timeout. We have also measured the impact of using natural

expiration based on TCP flags and conclude that it barely

affects the total number of flow records and the flow cache

utilization.
Besides showing the relation between active and idle time-

out behavior, the results in Fig. 8 provide insight into the
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cache utilization.
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Fig. 9. Sampling & Filtering in a flow exporter.

minimum flow cache size required for monitoring the link in

this specific example, which has a top throughput of roughly

2 Gbps. For example, given an active and idle timeout values

of 120 and 15 seconds, respectively, the maximum flow cache

utilization never exceeds 230k cache entries. More insights

into flow cache overload and dimensioning are provided in

Section VIII-A.

D. Flow Record Sampling & Filtering

Flow record sampling and filtering provide a means to select

a subset of flow records, with the goal to reduce the processing

requirements of the Exporting Process and all subsequent

stages. In contrast to packet sampling and filtering, which

are performed as part of the Packet Observation stage, flow

record sampling and filtering functions are performed after the

Metering Process and therefore work on flow records instead

of packets. This is shown in Fig. 9. As a consequence, either

all packets of a flow are accounted, or none.
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Version number (2) Length (2)

Export time (4)

Sequence number (4)

Observation domain ID (4)

Set ID (2) Length (2)

Record 1

Record 2

Record n

S
et

Fig. 10. IPFIX message (simplified) [1].

The techniques for performing flow record sampling and

filtering are similar to packet sampling and filtering, which

have been described in Section IV-D. We distinguish again

between systematic sampling and random sampling [54].

Systematic sampling decides deterministically whether a flow

record is selected (for example, every N th flow record in

periodic sampling). In contrast, with random sampling, flow

records are selected in accordance to a random process. As

for packet sampling, random sampling should be generally

preferred over systematic sampling when in doubt about the

characteristics of the traffic, because the latter can introduce

unwanted correlations in the observed data.
Flow record filtering can be distinguished between Prop-

erty Match Filtering and Hash-Based Filtering [54]. Property

Match Filtering for flow records works similarly to Property

Match Filtering for packets, but rather than filtering on packet

attributes, filtering is performed on flow record attributes. It is

particularly useful when only flow records for specific hosts,

subnets, ports, etc. are of interest. With Hash-Based Filtering,

flow records are selected if the hash value of their flow key lies

within a predefined range of values. Hash-Based Filtering can

be used for selecting a group of flow records from different

observation points. Flow records from different observation

points can be correlated because the flow key shared by

packets belonging to the same flow results in the same hash

value.

E. IPFIX Messages

A simplified version of the IPFIX message format [1] is

shown in Fig. 10. The field size in bytes is shown for fields

with a fixed size; other fields have a variable length. The first

16 bytes of the message form the message header and include

a protocol version number, message length, export time and

an observation domain ID. After the header come one or more

Sets, which have an ID and a variable length, and can be of

any of the following types:

• Template Sets contain one or more templates, used to

describe the layout of Data Records.

• Data Sets are used for carrying exported Data Records

(i.e., flow records).

• Options Template Sets are used for sending meta-data to

flow collectors, such as control plane data or data applica-

ble to multiple Data Records [55]. For example, Options

TABLE II
COMPARISON OF TRANSPORT PROTOCOLS FOR IPFIX

SCTP TCP UDP

Congestion awareness + + –

Deployability – + +

Graceful degradation + – –

Reliability + + –

Secure transport + + –

Template Sets can be used to inform flow collectors about

the flow keys used by the Metering Process.

Sets are composed of one or more records. The number

of records in an IPFIX message is usually limited to avoid

IP fragmentation. It is up to the Exporting Process to decide

how many Records make up a message, while ensuring that

the message size never exceeds the Maximum Transmission

Unit (MTU) of a link (e.g., 1500 bytes) [1]. An exception to

this rule is a situation in which IEs with variable lengths that

exceed the link MTU are exported.

An example of a template, a corresponding Data Record,

and a flow record is shown in Fig. 11. The template is shown

at the top of the figure, and consists of an ID (257) and 9 IEs. A

corresponding Data Record points at the appropriate template

by listing its ID. This is mandatory to provide a means for flow

collectors to associate Data Records with their templates. Also

multiple flow records are included in the Data Record, which

must adhere to the full set of IEs listed in the template.

F. Transport Protocols

After constructing an IPFIX message for transmission to a

flow collector, a transport protocol has to be selected. A key

feature of IPFIX is support for multiple transport protocols [1].

A comparison of transport protocols for IPFIX is provided in

Table II, where ‘+’ stands for supported or good, and ‘-’ for

unsupported or poor.

The Stream Control Transmission Protocol (SCTP) [56] is

the mandatory transport protocol to implement for IPFIX. It

provides a congestion-aware and sequential packet delivery

service; packets are kept in sequence as with TCP, and packet

boundaries are preserved as with UDP, i.e., the receiver can

distinguish between individual packets, rather than a stream of

bytes as with TCP. SCTP also provides multiple streams per

connection, which can be used to avoid head-of-line blocking

when multiple logical separate streams (e.g., one per template)

are exported simultaneously [57]. The partial reliability exten-

sion [58] to SCTP provides further flexibility: The Exporting

Process can cancel retransmission of unreceived datagrams

after a given timeout. This allows graceful degradation via

selective dropping of exported datagrams under high load,

rather than overloading buffers with pending retransmissions.

Despite these advantages, SCTP is currently the least-

deployed of the three supported protocols. The reason is

primarily a practical one: IPFIX over SCTP can be difficult

6This IE has been abbreviated for the sake of space. The full IE name is
shown in the template.
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Template

Length = 9 IEsTemplate ID = 257

flowStartMilliseconds (ID = 152)

flowEndMilliseconds (ID = 153)

sourceIPv4Address (ID = 8)

destinationIPv4Address (ID = 12)

sourceTransportPort (ID = 7)

destinationTransportPort (ID = 11)

protocolIdentifier (ID = 4)

packetDeltaCount (ID = 2)

octetDeltaCount (ID = 1)

Data Record

Set Header (Set ID = 257)

Record 1

Record 2

Record n

Flow Record

flowStartMilliseconds = 2013-07-28 21:09:07.170

flowEndMilliseconds = 2013-07-28 21:10:33.785

sourceIPv4Address = 192.168.1.2

destinationIPv4Address = 192.168.1.254

dstTransportPort6 = 80sourceTransportPort = 9469

protocolIdentifier = 6

packetDeltaCount = 17

octetDeltaCount = 3329

Fig. 11. Correlation between IPFIX data types (simplified) [1].

to implement, mainly because support for SCTP lags on other

operating systems than Linux and BSD. Bindings to DTLS7

for secure transport may also be hard to find in all but the most

recent versions of TLS libraries. There are also deployment

considerations. Since much more effort has gone into TCP

stack optimization than SCTP stack optimization, the latter

can be slower than TCP. It can also be difficult to send SCTP

packets across the open Internet, as some middleboxes drop

SCTP packets as having an unrecognized IP protocol number.

Also, many Network Address Translation (NAT) devices often

7DTLS is an implementation of TLS for transmission over datagram
transport protocols, such as UDP and SCTP.

fail to support SCTP. However, given its advantages, we

advocate using SCTP for flow export in every situation in

which it is possible to do so.
IPFIX supports transport over TCP as well. TCP provides

congestion-aware, reliable stream transport. It is widely imple-

mented and, as such, it is very easy to implement IPFIX over

TCP on most platforms. Bindings to TLS for secure transport

are also widely available, which makes IPFIX over TLS over

TCP the preferred transport for exporting flow records over

the open Internet. The primary problem with IPFIX over TCP

is that TCP does not degrade gracefully in overload situations.

Specifically, the TCP receiver window mechanism limits the

Exporting Process’ sending rate when the Collecting Process

is not ready to receive, thereby locking the rate of export

to the rate of collection. This pushes buffering back to the

Exporting Process, which is generally the least able to buffer

datagrams. Careful selection of TCP socket receive buffer

sizes and careful implementation of the Collecting Process

can mitigate this problem, but those implementing Collecting

Processes should be aware of it.
The most widely implemented and deployed transport pro-

tocol for flow export is UDP. UDP has the advantage of being

easy to implement even in hardware Exporting Processes. It

incurs almost no overhead, but on its turn provides almost

no service: “Best-effort” (or “unreliable”) delivery of packets

without congestion awareness. As a consequence, UDP should

be used for flow export with care. The lack of any congestion

awareness means that high-volume export may incur signif-

icant loss. The lack of flow control means that Collecting

Processes must use very large socket buffers to handle bursts of

flow records. As the volume of exported flow records increases

dramatically during Denial-of-Service (DoS) attacks or other

incidents involving large numbers of very short flows, the lack

of flow control also may make UDP futile for measuring such

incidents. Another serious problem concerns templates. On

UDP, Exporting Processes must periodically resend templates

to ensure that Collecting Processes have received them. While

IPFIX does provide a sequence numbering facility to allow a

Collecting Process to roughly estimate how many flow records

have been lost during export over UDP, this does not protect

templates. A Collecting Process that loses a template, or that

restarts in the middle of an export, may be unable to interpret

any flow records until the next template retransmission.
A fourth method provided by IPFIX is the IPFIX File

Format [59]. IPFIX messages are grouped together into files,

which can be stored and transported using any of the various

protocols that deal with files (e.g., SSH, HTTP, FTP and NFS).

File transport is not particularly interoperable and therefore

not recommended in general. However, it may be worth

considering in specific cases, such as making IPFIX flow data

widely available via a well-known URL.

G. Open-Source Tools & Commercial Appliances

Open-source and commercial flow exporters existing to date

can be classified into two types: hardware-based and software-

based. Hardware-based exporters can usually achieve higher

throughputs, while software-based ones provide greater flexi-

bility in terms of functionality. Software-based exporters are
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Version 1.8 0.9.9 6.13 0.14.3 0.9.01 1.0.0a 2.4.0

Application
awareness

✓ ✓

Flow cache
entry expiration

Active timeout, idle timeout

TCP FIN/RST TCP FIN/RST

Flow key

Source IP address, destination IP address, source port number, destination port number

IP protocol
number, IP
ToS, SNMP
interface ID

IP protocol
number

IP protocol number,
IP ToS, VLAN ID

IP protocol number
VLAN ID,
IP protocol

number

Flow sampling ✓ ✓

Packet
sampling

✓ ✓ ✓ ✓

NetFlow v5 ✓ ✓ ✓ ✓ ✓

NetFlow v9 ✓ ✓ ✓ ✓

IP
F

IX

Bidirectional
flows

✓ ✓ ✓ ✓ ✓

Structured data
(RFC 6313)

✓

Enterprise-
specific IEs

Application information,
performance metrics,

geolocation information,
TCP metrics, plugins

Performance
metrics

Application
information

Options
templates

✓ ✓ ✓ ✓ ✓

Transport
protocols

SCTP, TCP, UDP UDP
SCTP, TCP,

UDP, file
SCTP, TCP, UDP, file

Variable-length
encoding

✓ ✓ ✓ ✓

1 Only a pre-release version was available at the time of writing.

also less costly. Another classification divides flow exporters

into open-source and commercial exporters. In this section, we

provide both an overview of some available open-source and

commercial flow exporters, and a hands-on guide for those

selecting a new flow exporter.

When selecting a flow exporter for deployment, it is impor-

tant to verify the following criteria:

• Throughput – Throughput is one of the most important

properties of a flow exporter, as it shows how many

flows, packets and bits can be processed per second.

Most vendors and developers express throughput in Gbps,

without specifying the number of packets that can be

handled per second, which leads to some ambiguity. For

example, 10 Gbps can mean 14.88 Mpkt/s, calculated

based on the minimum allowed frame size for Ethernet,

or 812.84 kpkt/s, calculated based on the maximum

allowed frame size. Moreover, the provided performance

indications often refer to the case where most packets

can be mapped to existing flow cache entries. The rate

at which the device can create new entries in the flow

cache is usually significantly lower. In addition, many

vendors and developers express the throughput of their

flow exporters for the case in which only a limited set of

IEs is used within the Metering Process. It is often the

case that the advertized throughput cannot be achieved

anymore when additional IEs are enabled.

• Flow cache size – As many flow exporters come with a

fixed-size flow cache, it is important to have an under-

standing of how many flows transit in the network, to

avoid flow cache under-dimensioning. The availability of

expiration policies should also be checked, as they affect

the flow cache utilization.

• Supported IEs and accuracy thereof – Many flow ex-

porters, mostly older and hardware-based, support only a

limited set of IEs; MAC addresses, VLAN tags, MPLS

labels, TCP flags, or application information often cannot

be exported. In addition, it should be verified whether

the claimed accuracy of IEs is actually provided. For

example, it is shown in [64] that many high-end packet

forwarding devices do not convey TCP flag information

in flow data, although the required IE (ID 6) is actually

supported. Also the precision of exported timestamps

varies from exporter to exporter; IPFIX supports time-

stamps ranging from second to nanosecond precision,

and care should be taken that the timestamp precision

matches the accuracy prescribed by the IE. Also, the
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timestamp precision should meet the requirements of the

Data Analysis stage. More information on the accuracy

of flow data is provided in Section VIII-D.

In addition to these criteria, one may consider another crite-

rion that is rapidly gaining importance: application awareness.

Application awareness in flow export is relatively young, but

given that it increases visibility in network traffic and the

fact that the number of analysis applications supporting it is

increasing as well, it should be considered when selecting a

flow exporter.

We have compiled a list of open-source flow exporters in

Table III. All presented flow exporters are software-based

and have been updated at least once since 2008. The table

compares both general flow exporter properties (upper part)

and properties specific to the various flow export protocols

(lower part), and can be summarized as follows:

• The flow keys used by the various flow exporters do all

include IP addresses and port numbers, but differ greatly

with respect to the remaining fields. A surprising obser-

vation that can be made is that the typical 5-tuple and

7-tuple8, which are commonly-used terms for describing

IP flows, are only used by four out of seven exporters.

In addition, none of the tools supporting IPFIX allows

for the flexible definition of flow keys (not shown in

Table III).

• All tools support NetFlow v5, NetFlow v9, or both,

except for YAF and QoF, which have been designed

specifically for IPFIX-compliance. ipt-netflow and soft-

flowd do not support IPFIX at all.

• Although “IPFIX support” is advertized for most flow

exporters, some IPFIX-specific features are still unsup-

ported. Support for bidirectional flows, options templates

and variable-length encoding is widely available, while

only YAF supports structured data. This may be due to

the fact that structured data has been standardized only in

2011. Finally, SCTP support is provided by all IPFIX flow

exporters but pmacct, although operating system support

is often still lacking.

• Packet sampling is supported by most tools, while flow

sampling is only available in nProbe and pmacct.

• nProbe, QoF and YAF export several enterprise-specific

IEs, mostly targeted at application identification and

latency measurements.

Besides the open-source flow exporters listed in Table III,

there are flow exporters available that do not export flow

data using NetFlow or IPFIX. These exporters write the flow

data directly to text or binary files, for example, without

the involvement of a Data Collection stage. A well-known

example is tstat [65], which has a strong focus on application

awareness and performance metrics. Since this paper is a

tutorial on NetFlow and IPFIX, we consider such tools out

of the scope of this paper.

The market of commercial flow exporters consists mostly

of appliance products: packet forwarding devices (e.g., routers

and switches), firewalls, and dedicated flow probes. Forward-

8The 5-tuple consists of IP addresses, port numbers and IP protocol number.
The 7-tuple additionally includes IP ToS and SNMP input interface ID.

ing devices and firewalls are often already available in net-

works, and if they have flow export support, the step to enable

this functionality is relatively small. These devices usually ex-

port the vast majority of flows in hardware using Application-

Specific Integrated Circuits (ASICs), so that flow export does

not consume costly CPU time. Although this results in a

very high performance, it also has the disadvantages of being

more expensive and usually less flexible than software-based

solutions. For example, it is almost impossible to fix bugs and

introduce new features in such tailored hardware.

Commercial flow probes are typically part of a flow mon-

itoring system including collection and analysis tools from

the same vendor and overcome several limitations of packet

forwarding devices with flow export capabilities. They usu-

ally come in two types: fully software-based and hardware-

accelerated. Software-based probes (mostly Linux-based) are

often sold on commodity hardware and are therefore much

cheaper than hardware-based flow exporters. They can be

equipped with hardware-acceleration to achieve line-rate pro-

cessing. Hardware-acceleration is usually performed by special

cards with FPGAs or commodity NICs with special firmware.

Even hardware-accelerated solutions rely on software-based

flow exporters, as the acceleration is purely used for packet

timestamping, filtering and packet distribution over CPU cores.

Given their architecture, flow probes are more flexible when it

comes to bug fixing and introducing new features, compared

to packet forwarding devices.

Many vendors have their own implementation of NetFlow,

while others follow with their own NetFlow-alike technolo-

gies, such as Juniper’s J-Flow. Since its standardization by

the IETF, IPFIX is becoming dominant for many vendors.

Experience has shown, however, that commercial solutions

so far do not provide full IPFIX compliance, although many

of them claim to have “IPFIX support”. A list of recognized

commercial flow exporters is provided in Table IV, where we

evaluate these based on export protocol support, application

awareness, and the main selling features (i.e., what the main

features advertized by the vendor are). Since we have no access

to all listed commercial flow exporters, we compare these

devices only by means of information made public by the

vendor by means of feature specifications, manuals, etc. We

have included all available flow probes, those packet forward-

ing devices that (partly) support hardware-based flow export,

and those firewalls exporting flows. It is clear that vendors of

flow probes try to be as flexible as possible with respect to

integration into existing environments (e.g., flow collectors),

as all surveyed appliances support NetFlow v5, NetFlow v9

and IPFIX. Also application awareness is widely supported

among flow probes nowadays. Less flexibility is shown by the

listed packet forwarding devices, mostly because of the fact

that they perform flow export (partly) in hardware. Finally,

the firewall appliances show a clear focus on security-oriented

information export by means of application awareness.
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TABLE IV
COMMERCIAL FLOW EXPORTERS

Vendor Product
NetFlow

v5
NetFlow

v9
IPFIX

Application
awareness

Main selling point(s)

P
ro

b
es

Cisco
NetFlow Generation

Appliance
✓ ✓ ✓ ✓

Cross-device flow export in high-speed
networks

Emulex
(Endace)

Endace NetFlow Generator ✓ ✓ ✓
High-performance flow export based on

Endace DAG Cards

INVEA-
TECH

FlowMon Probe ✓ ✓ ✓ ✓
High-performance flow export (both

software-based and hardware-accelerated)

Lancope StealthWatch FlowSensor ✓ ✓ ✓ ✓
Flow export with focus on application

awareness and performance metrics

ntop nBox NetFlow/IPFIX ✓ ✓ ✓ ✓
Commercial versions of open-source tools

(nProbe, ntop)

F
o

rw
a

rd
in

g
d

ev
ic

es

Cisco Cisco IOS Flexible NetFlow ✓ ✓ ✓ ✓ Application awareness

Enterasys N-Series, S-Series ✓ ✓ Flexible flow export based on ASIC

Extreme
Networks

ExtremeXOS ✓ Flow export on L2 through L4

Juniper Junos J-Flow ✓ ✓ ✓ Flow export on L2 through L4

F
ir

ew
a

ll
s

Barracuda
Networks

Barracuda NG Firewall ✓ ✓
Audit logs and HTTP proxy reporting

using IPFIX

Dell
Sonic Wall Next-Generation

Firewall
✓ ✓ ✓ ✓ Application awareness

Palo Alto
Networks

Next-Generation Firewall ✓ ✓
Flow export with specific IEs, such as

application and user IDs

VI. DATA COLLECTION

Flow collectors are an integral part of flow monitoring

setups, as they receive, store, and pre-process9 flow data from

one or more flow exporters in the network. Data collection is

performed by one or more Collecting Processes within flow

collectors. Common pre-processing tasks are data compres-

sion [59], [66], aggregation [67], data anonymization, filtering,

and summary generation.

In this section, we discuss the most important characteristics

of flow collectors. We start by describing the various formats

in which flow data can be stored in Section VI-A. After that,

in Section VI-B, we provide best-practices in the field of data

anonymization. Anonymization is a type of data obfuscation

that ensures anonymity of individuals and prevents tracking

individual activity. We close this section with Section VI-C,

where we provide an extensive analysis of open-source and

commercial flow collection implementations.

A. Storage Formats

The functionality and performance provided by flow collec-

tors depend strongly on the underlying data storage format,

as this defines how and at which speed data can be read

and written. This section discusses and compares the various

available storage formats, which should allow one to choose

a flow collector that satisfies the requirements of a particular

setup or application area. We can distinguish two types of

storage formats:

• Volatile – Volatile storage is performed in-memory and

therefore very fast. It can be useful for data processing

or caching, before it is written to persistent storage.

9We talk about pre-processing here, as we assume that processing is done
in the Data Analysis stage.

• Persistent – Persistent storage is used for storing data for

a longer time and usually has a larger capacity. However,

it is significantly slower than volatile storage.

Although flow data often has to be stored for a long time

(e.g., to comply with data retention laws), it can be useful

to keep data in-memory. This is mostly the case when flow

data has to be analyzed on-the-fly, and only results have to

be stored. In those situations, one can benefit from the high

performance of volatile storage. An example use case is the

generation of a time-series in which only the time-series data

itself has to be stored.
When data has to be stored beyond the time needed for

processing, it has to be moved to persistent storage. This,

however, results in a bottleneck, due to the difference in speed

between volatile and persistent storage. Depending on the

system facilitating the flow collection, one may consider to

compress data before moving it to persistent storage (more de-

tails are provided in Section VIII-C). We distinguish between

the following types of persistent storage:

• Flat files – Flat file storage is usually very fast when

reading and writing files, while providing limited query

facilities [68]. Examples of flat file storage are binary and

text files.

• Row-oriented databases – Row-oriented databases store

data in tables by means of rows and are frequently used

in Database Management Systems (DBMSs), such as

MySQL10, PostgreSQL11, and Microsoft SQL Server12.

Accessing the data is therefore done by reading the full

rows, even though only part of the data may be needed

to answer a query.

10https://www.mysql.com/
11http://www.postgresql.org/
12http://www.microsoft.com/sql/
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TABLE V
COMPARISON OF DATA STORAGE FORMATS

Flat files
Row-oriented

databases
Column-oriented

databases

Disk space + – 0

Insertion
performance

+ – 0

Portability
– (binary),

+ (text)
– –

Query
flexibility

– + +

Query
performance

+ (binary),
– (text)

– +

• Column-oriented databases – Column-oriented databases,

such as FastBit13, store data by column rather than by

row. Only fields that are necessary for answering a query

are therefore accessed.

A comparison of these data storage formats is shown in

Table V, where ‘+’ stands for good, ‘–’ for poor, and ‘0’

for average. We evaluate each format based on disk space re-

quirements, insertion performance, portability, query flexibility

and query performance. We consider nfdump a representative

option for binary flat file storage, MySQL for row-oriented

databases, and FastBit for column-oriented databases.

In terms of disk space, flat files have a clear advantage

above the database-based approaches. This is mainly due to

the fact that row- and column-oriented databases usually need

indexes for shorter query response times, which consume more

disk space on top of the “raw” dataset. For example, it is

described in [69] that MySQL with indexes needs almost

twice the capacity of nfdump for a particular dataset. For the

case of FastBit, it is shown to be less capacity-intensive than

MySQL (depending on its configuration) [68], but more than

nfdump. High compression rates can be achieved since data in

a particular column is usually very similar, i.e., homogeneous.

The highest insertion performance can be achieved using flat

files, as new data can be simply added to the end of a

file, without any additional management overhead, such as

updating indexes in the case of MySQL. When it comes to

portability, text-based flat files have the clear advantage of

being readable by many tools on any system. However, flat

files usually provide only limited query language vocabulary,

which makes databases more flexible in terms of possible

queries.

In contrast to database-based approaches, flat file storage

is usually not indexed; sequential scans over datasets are

therefore unavoidable. However, since many flat file storages

create smaller files at regular intervals, this can be considered a

coarse time-based index that limits the size of sequential scans

by selecting fewer input files in a query. Several works have

compared the performance of the various data storage formats

in the context of flow data collection. The performance of

binary flat files and MySQL is compared in [69], where query

response times are measured for a set of queries on subsets

of a single dataset. The authors show that binary storage

13https://sdm.lbl.gov/fastbit/

outperforms MySQL-based storage in all tested scenarios and

advocate the use of binary storage when short query response

times are required. A similar methodology has been used

in [70], where the performance of FastBit is compared with

binary flat files. It is shown that FastBit easily outperforms

binary storage in terms of query response times, which is

explained by the fact that FastBit only reads columns that

are needed for a query. This results in fewer I/O operations.

The performance of FastBit- and MySQL has been compared

in [68], where the authors conclude that FastBit-based storage

is at least an order of magnitude faster than MySQL.
The performance of the described approaches can generally

be improved by distributing flow data over multiple devices.

For example, it is a common practice to use storage based

on a Redundant Array of Independent Disks (RAID) in a

flow collector, which ensures data distribution over multiple

hard drives in a transparent fashion. Even more performance

improvements can be achieved by deploying multiple flow col-

lectors and distributing the data between them. This, however,

requires some management system that decides how data is

distributed (for an example, see [71]).

B. Data Anonymization

Flow data traditionally has a significant privacy protection

advantage over raw or sampled packet traces: Since flow data

generally does not contain any payload, the content of end-

user communications is protected. However, flows can still

be used to identify individuals and track individual activity

and, as such, the collection and analysis of flow data can

pose severe risks for the privacy of end users. The legal and

regulatory aspects of this privacy risk, and requirements to

mitigate it are out of scope for this work – these are largely a

matter of national law, and can vary widely from jurisdiction

to jurisdiction. Instead of surveying the landscape of data

protection laws, we make a general simplifying assumption

that IP addresses can be used to identify individuals and as

such should be protected. Other information available in flows

can be used to disambiguate flows and therefore may be used

to profile end users or to break IP address anonymization.
Best practices for trace data anonymization are laid out by

CAIDA in [75], drawing on the state of the art in anonymiza-

tion techniques surveyed in [76]. The key tradeoff in IP address

anonymization is between privacy risk and data utility. There

is no ‘one-size-fits-all’ flow data anonymization strategy, as

data utility is also dependent on the type of analysis being

done. For example, simply removing IP address information

carries with it the lowest risk of identification, but also makes

the data useless for anything requiring linkage of flows to

hosts; for simple statistics on flow durations and volumes, for

example, such data can however still be useful.
In the more general case, since networks are structured,

a structure-preserving anonymization technique such as the

Crypto-PAn algorithm [77] allows anonymized IP addresses

to be grouped by prefix into anonymized networks. This pre-

serves significant utility for analysis, at the cost of restricting

the space of possible anonymized addresses for a given real

address, making profiling attacks against address anonymiza-

tion easier. Even given this tradeoff, the significantly increased
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TABLE VI
OPEN-SOURCE FLOW COLLECTORS
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Version 3.0.7.5 0.9.1 0.6.0 1.6.10 6.13 0.14.3 3.7.1 1.0.0.a

Anonymization ✓ ✓ ✓ ✓

Storage
formats

Flat files
(binary, text),
row-oriented

DB

Flat files
(binary)

Column-
oriented

DB

Flat files
(binary)

Flat files (binary, text),
row-oriented DB

Flat files
(text),

row-oriented
DB

Flat files
(binary)

Row-
oriented

DB

NetFlow v5 ✓ ✓ ✓ ✓ ✓ ✓ ✓

NetFlow v9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IP
F

IX

Bidirectional
flows

✓ ✓ ✓ ✓

Enterprise-
specific IEs

Any

Application information,
performance metrics,

geolocation information,
plugins

Application
information

Options
templates

✓ ✓ ✓ ✓ ✓ ✓

Structured data
(RFC 6313)

✓

Transport
protocols

SCTP,
TCP,

UDP, file
UDP SCTP, TCP, UDP UDP

SCTP, TCP,
UDP

SCTP,
TCP, UDP,

file

Variable length
encoding

✓ ✓ ✓ ✓

utility of the results leads to a recommendation for Crypto-

PAn.

Given the restricted space of solutions to the anonymization

problem, it has become apparent that unrestricted publication

of anonymized datasets is probably not a tenable approach to

the sharing of flow data [78], as attacks against anonymiza-

tion techniques scale more easily than strengthening these

techniques while maintaining utility. Technical approaches to

data protection are therefore only one part of the puzzle;

non-technical protection, such as sharing of data in vetted

communities of researchers, or analysis architectures whereby

analysis code is sent to a data repository and only results are

returned, must also play a part in preserving the privacy of

network end-users.

C. Open-Source Tools & Commercial Appliances

When selecting a flow collector for deployment, regardless

of whether an open-source or commercial one is selected, it

is important to verify the following criteria:

• Performance – The performance of flow collectors is

usually expressed in terms of the number of flow records

that can be received, pre-processed and stored per second.

• Storage format – The storage format used by the flow

collector determines how the stored flow data can be

accessed.

• Export protocol features – It is essential for a flow

collector to support the same export protocol features as

the used flow exporter, such as data encodings, transport

protocols, and IEs. A flow collector that does not support

full flow stream collection (i.e., all exported elements in

the received data stream can be processed and stored)

may lead to data loss. Special attention should be paid

when non-traditional IEs are used, such as IEs related to

application awareness or enterprise-specific IEs. Guide-

lines on which flow exporter features to use in which

situation are provided in Section V.

• Processing delay – Data analysis always has to wait for

a flow collector to finish processing the flow data. The

shorter the processing delays are, the more timely data

analysis can take place within the Data Analysis stage.

• Flow record deduplication – This technique eliminates

flow record duplicates in a dataset, which can be the result

of a flow being exported at multiple observation points

in a network. Flow record duplicates lead to erroneous

accounting and suboptimal security analysis, for example.

• Integration with other systems – Since flow data is often

used as a complement to other network monitoring and

management technologies, it is important that enterprise

flow collectors provide multiple integration interfaces for

technologies as SNMP, syslog, REST API, etc.

We have compiled a list of open-source flow collectors that

have been updated at least once since 2008 in Table VI. Several

observations can be made. First, all available storage formats

discussed before are supported by at least one collector. This

can make the selection of a flow collector easier, in situations

where a particular storage format is a hard requirement.

Second, IPFIX is claimed to be widely supported, although

some IPFIX-specific features, such as structured data export,

are barely available. Third, only three flow collectors support

flow data anonymization.



18

TABLE VII
COMMERCIAL FLOW COLLECTORS
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Flow records per second 250k 40k 200k 120k 10k 100k 23k 250k 40k

Storage format (proprietary)
Row-oriented

database
Flat files
(binary)

Column-oriented
database

Row-oriented database

NetFlow v5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NetFlow v9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IPFIX ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Most open-source flow collectors do not come with any

specification of their performance in terms of the number

of flow records that can be processed per second. In cases

where it is specified, however, it is rather a performance

indication of what the developer has achieved on test systems,

rather than a guaranteed performance. This is mainly because

the performance of flow collectors strongly depends on the

selected storage format and the performance of the deployment

machine’s storage subsystem. We therefore have not included

any performance indication in Table VI. Also flow record

deduplication and integration with other systems are less

common in open-source flow collectors, and have therefore

been left out of the comparison. Finally, it should be noted

that most flow collectors in Table VI have no processing delay,

or that it is configurable. For example, nfdump uses intervals

of five minutes by default.

A list of major vendors on the market of commercial flow

collector appliances is shown in Table VII. None of these

vendors sells appliances that solely perform flow data collec-

tion; they all come with some sort of analysis and reporting

functionality instead, to provide easy-to-use and integrated

flow solutions. In this section, we focus on the collection-

related aspects of these appliances. The analysis and reporting

functionality, however, will be discussed in Section VII.

In contrast to open-source flow collectors, the performance

in terms of flow records per second that can be processed is

always specified for commercial appliances. This is because

commercial flow collectors are predominantly sold as an

appliance, a dedicated machine with a RAID-based setup

for performance and data redundancy, and flow collection

software pre-installed. Vendors are able to select the under-

lying hardware, measure the overall performance, and provide

performance guarantees, independent of the deployment setup.

All vendors listed in Table VII sell appliances that support

high traffic volumes (i.e., more than 10k flow records per

second) and data collection from multiple sources, and have

disk space for long-term data retention. Most of them use row-

based databases, such as MySQL, PostgreSQL, and Microsoft

SQL Server, although Lancope, for example, uses a column-

oriented database that is optimized for reading operations, use-

ful for data analysis in a later processing stage. An interesting

observation with respect to the storage formats used in flow

collection appliances, is that the fastest appliances rely on row-

based DBMSs, while it has been discussed in Section VI-A to

be one of the slower formats in the context of flow collection.

This can be explained by the fact that appliances mostly use

optimized DBMS setups, while DBMSs in a scientific context

are often out-of-the-box installations. In addition, appliances

heavily rely on volatile storage for pre-processing and Solid-

State Drives (SSDs) for permanent storage.

VII. DATA ANALYSIS

Data Analysis is the final stage in a flow monitoring setup,

where the results of all previous stages come together. We

distinguish between three application areas for data analy-

sis, which are widely used for classifying analysis software:

1) Flow Analysis & Reporting, 2) Threat Detection, and

3) Performance Monitoring. These areas will be discussed

in Section VII-A, VII-B, and VII-C, respectively. We do

this by explaining practical use cases, alternatives, and recent

advances for each area. After that, we provide an extensive

analysis of open-source and commercial flow data analysis

software in Section VII-D. The goal of this section is to

provide a glimpse what can be done with flow data.

For further reading, one may consider the IPFIX applica-

bility statement issued by the IETF in [79], and the survey on

network flow applications provided in [80].

A. Flow Analysis & Reporting

Given that flow export devices are commonly deployed at

strategical locations in a network where traffic from a large

number of hosts can be observed, the resulting data provides

a comprehensive set of connections summaries. Flow Analysis

& Reporting is the most basic functionality provided by

flow analysis applications and typically provides the following

functionality:

• Browsing and filtering flow data.

• Statistics overview – The most common statistics are

for top-talkers, i.e., those hosts, autonomous systems or

services that exchanged most traffic.

• Reporting and alerting – A commonly used report-

ing application is bandwidth reporting, i.e., which

user/customer exchanged how much traffic. Alerting can

be used when traffic thresholds are exceeded (e.g., when

hosts are generating a suspicious number of connections)

or hosts are communicating using unwanted applications

or protocols.
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A typical example of an application providing this function-

ality is NfSen14, a popular open-source framework, featuring a

Web-interface, built around the flow collection toolkit nfdump.

It can be used in many situations, such as finding spamming

hosts, routing problems, and misconfigured services (e.g.,

DNS). In the remainder of this subsection, we discuss how

NfSen can be used for both manual flow data inspection and

automatic reporting. For further reading, we recommend the

tutorial on NfSen provided in [81].

The usual start for analyzing flow data is by observing

the traffic graphs provided as part of the Dashboard, which

provides insight in the traffic behavior in terms of flows,

packets and bytes. Peaks in those graphs signal that the traffic

behaves different from what is considered ‘normal’. Whether

this is an indication of something malicious or purely benign,

can now be investigated by retrieving flow data statistics

for the timeframe in which the anomaly was active. This

reveals which hosts have been top-talkers. When top-talkers

have been identified based on the number of flows they

have generated, for example, it is not uncommon to identify

sources of network scans, brute-force attacks, or Distributed

DoS (DDoS) attacks, as these kind of attacks often result in

many small flows [82]. After identification, raw flow data can

be retrieved and analyzed to learn the actual nature of the

anomalous traffic.

To automate some analysis options, NfSen provides report-

ing functionality by means of alerts. Alerts can be configured

based on thresholds for nearly any traffic characteristic that

can be expressed in terms of the number of flows, packets and

bytes, and filters. This helps network managers to be aware

of problems in the network as early as possible. Taking the

scenario of hosts generating an abnormal number of flows, one

could consider configuring a threshold based on the number

of flows generated per time interval. This can inform network

administrators of (large) attacks or other misuses targeting the

monitored network and hosts.

The functionality of NfSen can be extended by means

of plugins15. These plugins can process raw flow data and

visualize the results in a Web interface. As such, NfSen

can be extended to include Threat Detection or Performance

Monitoring functionality. An example of a plugin for NfSen

that provides Flow Analysis & Reporting functionality is

SURFmap [83], a network monitoring tool based on the

Google Maps API. It adds a geographical dimension to flow

data and shows the flow data on a map.

B. Threat Detection

When flow data is used for threat detection, we can distin-

guish between roughly two types of uses. First, flow data may

be used purely for analyzing which host has communicated

with which each other host (i.e., forensics), potentially includ-

ing summaries of the number of packet and bytes involved, the

number of connections, etc. The second utilizes the definition

of a flow for analyzing certain types of threats, which allows

14http://nfsen.sourceforge.net/
15A list of plugins for NfSen is maintained at https://sourceforge.net/apps/

trac/nfsen-plugins/.
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Fig. 12. Time-series of the number of PPF of an SSH dictionary attack (based
on [86]).

for modeling threats in terms of network behavior. In the

remainder of this section, we discuss an example of both types.

The central observation points at which flow export devices

are usually deployed make flow export especially useful for

the detection of the following attacks and malwares [84]:

DDoS attacks, network scans, worm spreading, and botnet

communication. The commonality between these attacks is

that they affect metrics that can be directly derived from flow

records, such as the volume of traffic in terms of packets

and bytes, the number of active flows in a certain time

interval, suspicious port numbers commonly used by worms,

and suspicious destination hosts for traffic.

The identification of suspicious destination hosts for traffic

is usually done by means of IP reputation lists, or blacklists.

IP reputation lists are lists of IP addresses that have been

identified as sources of malicious activities. For example, they

may have sent SPAM messages, hosted malware, or taken part

in a botnet infrastructure. Flow data can be easily combined

with IP reputation lists by checking whether the source or

destination addresses of a record have been listed as offenders.

This technique does however not only identify threats coming

from outside the network perimeter; IP reputation lists can also

help in the detection of Advanced Persistent Threats (APTs),

for example. APTs16 are modern attacks that combine a high

degree of stealthiness, long term planning and a multiplicity

of attack vectors. They typically target governmental and

commercial entities, and aim at gaining a stronghold in the

target network, for example, for cyber-espionage. By analyzing

connections from the local network to external hosts with

a poor reputation, APTs and other suspicious activities like

botnets may be identified.

The second use of flow data for threat detection utilizes

the common definition of a flow, to identify certain types of

attacks. We discuss this by means of an example: Secure Shell

(SSH). SSH provides secure remote access to a UNIX-based

machine, and is a frequently-used target of dictionary attacks.

These attacks use lists with often-used username and password

combinations, which are tried on SSH daemons by means of

brute-force. Once a remote machine has been compromised,

the attacker gains control of it and can misuse it for all kinds

of malicious purposes.

16An APT that gained much media attention is APT1 [85].
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Start Source Destination Flags Pkts

-----------------------------------------------------

03:07:21 87.2.34.3:46682 36.128.7.9:22 ....S. 1

03:09:36 87.2.34.3:59459 36.128.7.9:22 .AP.SF 12

03:09:39 87.2.34.3:59973 36.128.7.9:22 .AP.SF 12

03:09:42 87.2.34.3:60318 36.128.7.9:22 .AP.SF 12

...

Fig. 13. Dictionary attack pattern in flow records (simplified). The IP
addresses have been anonymized.

Despite the fact that SSH traffic is encrypted, SSH dic-

tionary attacks can be easily detected using flow analysis

because of a typical attack pattern: Many credentials are tested

subsequently and SSH daemons close the connections after

a fixed number of login attempts, resulting in many TCP

connections with similar size in terms of packets. An example

of this is shown in Fig. 12, where three attack phases can

be identified: 1) scan phase, where an attacker probes for

active SSH daemons (t < 1000), 2) brute-force phase, where

the actual dictionary attack is performed (1000 ≤ t ≤ 1900),

and 3) die-off phase, where residual traffic may be exchanged

between attacker and target after a compromise (t > 1900),

for example. Important here is the observation that the scan

phase shows a low number of Packets-Per-Flow (PPF), while

the brute-force phase shows a significantly higher number of

PPF.

The pattern with respect to PPF described before can also

be identified in the corresponding flow records, as shown

in Fig. 13; the first flow record (source port 46682) clearly

indicates a scan, while the other flow records match the pattern

of login attempts. The detection of these patterns can be

performed in an automated fashion [87], as is done by the

Intrusion Detection System (IDS) SSHCure17, for example.

SSHCure is completely flow-based, and is able to identify

various flavors of the flow pattern discussed before, e.g.,

with a different number of PPF. This demonstrates two main

advantages of flow-based intrusion detection: It works in

encrypted environments, as it does not rely on packet payloads,

and its light-weight nature allows for analyzing even backbone

links with thousands of flows per second. For further reading,

we recommend the survey on flow-based intrusion detection

provided in [84].

C. Performance Monitoring

Performance monitoring aims at observing the status of

services running on the network. Typical metrics that such data

analysis applications report include Round-Trip-Time (RTT),

delay, jitter, response time, packet loss and bandwidth usage.

Performance monitoring applications post-process flow data

and show a set of metrics per target service, to verify Service-

Level Agreement (SLA) compliance and, ultimately, reveal

network events and their impact on end-user experience.

As for the other types of data analysis, the greatest strength

of monitoring performance using flow measurements comes

from the strategical vantage points from where flow mea-

surements are usually taken. As a comparison, monitoring

17http://sshcure.sourceforge.net/
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Fig. 14. Estimating Web server latency (based on [88]).

applications by means of client instrumentation requires the

installation of agents in client devices, which makes the

measurement environment not only less convenient to set up,

but also harder to be managed. However, as we will exemplify

next, flow measurements sometimes provide only a coarse

approximation of common performance metrics, since such

metrics are generally not directly measured and exported.

Flow-based performance monitoring applications can be

roughly divided into two groups. A first group of applications

tries to estimate performance metrics, such as service avail-

ability [89], RTT or one-way delay [90], by post-processing

the IEs that are commonly exported by flow exporters (see

Section V-A). The main advantage of such an approach is that

no customization is needed in either flow exporters or flow

collectors, i.e., to export and collect enterprise-specific IEs.

However, as high-level performance metrics are not part of

the most common list of IEs, the precision of the reported

metrics might not be sufficient in certain circumstances. As

an example, the estimation of one-way delays using NetFlow

records has been evaluated in [90]. The one-way delay between

two routers is estimated from the difference between the flow

start times reported by the routers for the same flow. When

applying this approach to empirical data, it quickly turns out

that the results are significantly affected by timing errors.

This is partly compensated for by introducing a calibration

phase, in which offline flow measurements are used to create

exporter-specific profiles, containing information on clock

offsets and skews, timer resolution, among others (see also

Section VIII-D).

A completely different approach is taken by a second group

of analysis applications, which rely on extensions for flow

exporters that extract performance metrics. We illustrate that

by showing how nProbe can be used for exporting the latency

of Web servers. nProbe and other flow exporters that provide
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Fig. 15. Monitoring a Web server using flow measurements.

advanced application awareness (see Section V-G) implement

similar functionality to monitor other protocols as well, such

as DNS. By analyzing also packet payloads, nProbe is able to

identify HTTP traffic and export enterprise-specific IEs that

report the network latency from client to the flow exporter,

the network latency from the flow exporter to servers and the

total application latencies. The semantic of these metrics is

depicted in Fig. 14. The Web server latency can be obtained

by subtracting the server network latency from the total

application latency.
Fig. 15 illustrates how these IEs are useful for monitoring

the performance of Web servers. The figure shows the latency

of a server, installed at the UT, which provides a public

mirror for a popular Linux distribution. The median latency

users experienced when retrieving a file from the server is

shown for a 6-hour interval in 1-minute time bins (note

the logarithmic y-scale). As we can observe, the median

latency is slightly higher than 200 ms most of the time,

except for some particular intervals where a sharp increase

can be observed. These surges in latency happen because the

server is configured to synchronize with upstream repositories

periodically, impacting the performance for end-users. System

administrators can therefore rely on similar monitoring setups

for analyzing application performance, even if servers are not

under their control and, moreover, without instrumenting client

devices.
The two examples discussed in this section illustrate the

main pros and cons designers of flow-based performance

monitoring applications are facing. An approach solely relying

on common IEs comes with very low deployment costs,

as it is likely compatible with an existing flow monitoring

infrastructure. On the other hand, performance metrics such

as one-way delay are not directly supported by many flow

exporters and may require substantial calibration and com-

pensation efforts. In contrast, enterprise-specific IEs allow to

implement sophisticated monitoring techniques, but they rely

heavily on DPI, resulting in higher deployment and privacy

costs. We refer to [88], [89], [90] for further reading on flow-

based performance monitoring.

D. Open-Source Tools & Commercial Appliances

When selecting a flow data analysis tool for deployment,

regardless of whether an open-source or commercial one is

selected, it is important to verify the following criteria:

• Performance – The performance of data analysis appli-

cations is usually measured by means of interface re-

sponsiveness; well-performing applications provide traffic

reports on-the-fly, for an arbitrary number of data sources.

The performance also depends on the amount of data to

be processed, which depends on how historical data is

handled, e.g., how long raw and aggregated data is stored.

• Integration with systems and data sources – Rather than

solely relying on flow data, data analysis usually benefits

from integrating with other data sources, such as geolo-

cation databases, WHOIS, blacklists, BGP information,

etc. In terms of system integration, support for directory

services for user authentication are a welcome feature.

• Analysis delay – This delay should not be confused

with the processing delay of a flow collector; while the

processing delay determines when flow data is made

available for analysis, the analysis delay is based on the

computation time of the analysis software. The shorter

the computation time, the more timely the analysis.

Especially for time-critical applications, such as IDSs,

analysis delays are an important criterium.

The market of commercial flow analysis applications con-

sists of both appliance products (hardware or virtual) and

software (standalone or Software as a Service). An overview

of applications that have a primary focus on flow data analysis,

is provided in Table VIII. Several conclusions can be drawn

from this table. First, all applications provide Flow Analysis

& Reporting functionality, usually complemented with Threat

Detection or Performance Monitoring functionality. Very few

applications provide both threat detection and performance

monitoring functionality. Second, those applications doing

performance monitoring have a strong focus on application

performance, which is in line with the observation that ap-

plication awareness in flow monitoring is becoming more

important.

The number of available open-source flow data analysis

applications that have been updated at least once since 2008

is rather small. We have compiled an overview in Table IX.

Contrary to commercial applications, open-source alternatives

are usually rather limited in functionality; although they all

support flow analysis & reporting, extended functionality like

performance monitoring is rare. Moreover, threat detection

functionality is not supported by any open-source application.

Some applications, such as NfSen, do however provide plugin-

support, by means of which threat detection or performance

monitoring can be implemented.

As flow data consists of large volumes of essentially tabular,

timestamped information that is not very semantically com-

plex, existing work in data analysis for other fields may prove

to be applicable to flow data as well. We have had success

in using the open-source pandas18 data analysis framework

for Python, together with glue code for bridging the gap

between IPFIX files and pandas data-frames [93]. Pandas was

originally developed for financial analysis and visualization,

and is based on the numpy numerical computing framework

for Python, which provides efficient primitives for dealing

18http://pandas.pydata.org/
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TABLE VIII
COMMERCIAL FLOW DATA ANALYSIS APPLICATIONS

Vendor Product
Flow analysis
& reporting

Threat
detection

Performance
monitoring

Main selling point(s)

Arbor
Networks

Pravail Network Security
Intelligence (NSI)

✓ ✓
Global threat intelligence, DDoS attack detection &

mitigation

Compuware Compuware APM (✓)1 ✓
Application-aware network monitoring (Quality of

Experience)

Fluke
Networks

Visual TruView ✓ ✓
Application, network and VoIP performance

monitoring

IBM QRadar, QFlow ✓ ✓
Security event correlation and NetFlow-based

network behavior analysis

InfoVista 5View NetFlow ✓ ✓
Application-aware network monitoring and

reporting

INVEA-
TECH

FlowMon Collector +
ADS

✓ ✓ ✓
Traffic monitoring, threat (anomaly) detection and

performance monitoring

Lancope
StealthWatch
FlowCollector

✓ ✓ ✓ Security and performance monitoring

ManageEngine NetFlow Analyzer ✓ ✓ Traffic visibility and anomaly detection

Plixer Flow Analytics ✓ ✓ ✓
Traffic monitoring, threat detection and

performance monitoring

Riverbed
Technology

Cascade Gateway ✓ (✓)1 ✓ Network and application performance management

SevOne
SevOne Performance
Appliance Solution

✓ ✓ Network and application performance management

SolarWinds NetFlow Traffic Analyzer ✓ Network utilization and bandwidth monitoring

1 This feature is partially supported and not the principal functionality of the application or appliance.

TABLE IX
OPEN-SOURCE FLOW DATA ANALYSIS APPLICATIONS

Name Flow analysis & reporting
Performance
monitoring

FlowViewer ✓

NfSen [73] ✓

ntop/ntopng [91] ✓

SiLK [74] ✓

Stager [92] ✓

WebView
NetFlow Reporter

✓ ✓

with large in-memory arrays of numeric data. It provides an

environment for rapid exploratory analysis of relatively small

datasets, crucial when designing and testing new algorithms

and approaches for data analysis. Together with matplotlib and

the “notebook” feature of iPython, it also provides a method

for publishing analysis code work-in-progress along with data

for collaborative and teaching tasks. Work in this areas is

ongoing.

VIII. LESSONS LEARNED – COMMON PITFALLS

In the previous sections, we have discussed how to setup

a typical flow monitoring system. Before the exported flow

data can however be used for production or measurement

purposes, the setup has to be verified and calibrated. This

section will discuss how hidden problems that impact the

resulting data can be detected and potentially overcome. We

start by describing flow exporter overload in Section VIII-A,

followed by transport overload and flow collector overload in

Section VIII-B and VIII-C, respectively. Finally, we discuss

several flow data artifacts that can be found on several flow

export devices in Section VIII-D.

A. Flow Exporter Overload

Flow caches in a flow exporter usually have a fixed size that

is either constrained by hardware, or determined at compile-

time in the case of flow exporter software. When this size

turns out to be small, flow data loss or low performance can

be the result. The latter is especially the case for software-

based solutions, as they often use linked lists to store different

flow cache entries under the same hash value, which results in

longer cache entry lookup times. Given that it is not always

possible to foresee significant changes in the monitored traffic,

flow caches may eventually turn out under-dimensioned.

Since under-dimensioned flow caches usually result in data

loss it is important to be aware of this happening, especially

when the exported flow data is used for critical applications.

For those having access to a flow exporter, be it a packet

forwarding device or dedicated probe, it is usually trivial

to obtain these data loss statistics. For example, software

exporters often write them to log files, while the flow cache

utilization and loss statistics of hardware flow exporters can

be obtained via a command-line interface (CLI), or SNMP. An

example of how to retrieve such details from Cisco switches is

provided in [64]. For those having only access to the exported

flow data, it is much harder to derive conclusions about data

loss. An example of this is also provided in [64], where it

is shown that indications of an under-dimensioned flow cache

can be retrieved from the dataset with some uncertainty.
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Fig. 16. Impact of packet sampling on the number of flow records.

Several actions can be taken to reduce flow exporter load,

without the need to replace a flow exporter. First, expiration

timeouts can be reduced. Especially the idle timeout should

be considered here, as it expires cache entries of flows that are

inactive anyway. Although reducing timeouts results in a lower

flow cache utilization, which has been shown in Section V-C,

this will result in more flow records. Care should be taken

to not overload a flow exporter’s Exporting Process or a flow

collector with this larger number of flow records.

A second action for reducing the load of flow exporters is

enabling packet sampling or decreasing the packet sampling

rate, i.e., reducing the number of packets forwarded to the

Metering Process. We have measured the impact of packet

sampling on the resulting flow data based on the dataset

presented in Section I-B. The results are shown in Fig. 16

and two conclusions can be derived from this figure. First, the

use of packet sampling does not necessarily reduce the number

of flow records, mostly because of the use of timeout-based

expiration and the nature of the traffic; when intermediate

packets in a flow are not sampled and therefore not considered

by the Metering Process, this flow can be split into multiple

flows by the applied idle timeout. This demonstrates that

packet sampling reduces the load of the Metering Process, but

not necessarily of the subsequent stages. Second, the impact

of packet sampling on the number of flow records reduces

when the sampling rate is increased (except for very high rates,

such as 1:2, in our dataset). In contrast to packet sampling,

flow sampling reduces the number of flow records, but it

will not help to reduce utilization of the flow cache, as it is

applied after the Metering Process. Enabling packet sampling

or increasing its rate however results in information loss that is

in various cases very hard to (mathematically) compensate for.

A flow-based anomaly detection system, for example, which is

based on thresholds determined on a non-sampled dataset or

datasets captured using another sampling rate, will function

sub-optimally or stop functioning completely. It is therefore

advised to tune flow entry expiration first, before enabling or

modifying sampling parameters.

As soon as a flow exporter is experiencing capacity prob-

lems due to resource constraints, flow records may start to

be expired in a different way. That means, the active and idle

timeouts are respected as much as possible, until the utilization

of the flow cache exceeds a threshold (e.g., 90%). At that

moment, an emergency expiration kicks in which expires cache

TABLE X
EXPORT VOLUMES FOR THE UT DATASET (2.1 TB)

Sampling rate Protocol Export packets / bytes

1:1 NetFlow v5 1.4 M / 2.1 G

1:1

NetFlow v9

3.5 M / 2.5 G

1:10 1.6 M / 1.1 G

1:100 314.9 k / 222.5 M

1:1000 72.2 k / 49.5 M

1:1 IPFIX 4.3 M / 3.0 G

entries prematurely, to free up the flow cache and to allow new

entries to be inserted. This results in more flow records, and

flow data that is not expired consistently, which may impact

the subsequent Data Analysis stage. For example, an intrusion

detection system (IDS) that counts the number of flow records

for detecting a particular anomaly may not function properly

anymore by raising false alerts. It is therefore important to be

aware of these dynamics in flow export setups.

B. Transport Overload

It is not uncommon for flow exporters to export data from

links of 10 Gbps and higher over links of 1 Gbps. This is

usually the case because flow data is sent to collectors of

the exporter’s management interface (which usually has a

line speed of 1 Gbps), and because flow collectors are often

“normal” file servers that are not equipped with special, high-

speed network interfaces. Due to the data reduction achieved

by flow export, flow data exported from high-speed links can

generally be exported over smaller links without data loss.

However, in anomalous situations as described in the previous

subsection, such links will become a bottleneck in a flow

monitoring system. This is especially the case in anomalous

situations, where the data aggregation achieved by flow export

is constrained, such as under DDoS attacks. One type of DDoS

attacks are flooding attacks, which aim at overloading targets

by opening many new connections by sending a large number

of TCP SYN-packets, for example. Due to the definition of a

flow, this type of traffic results in many new flows, because

of the changing flow key in every packet [94]. Moreover,

depending on the selected number of IEs for each flow, the

data aggregation usually achieved can change into data export

that is neutral in size (i.e. the exported data has the same

size as the monitored data) or even data amplification; as

soon as the overhead of the IPFIX Message is larger than the

monitored packets on the line (e.g., during a flooding attack),

amplification takes place. This is not uncommon, as many flow

exporters use by default a set of IEs that is larger in terms of

bytes than a TCP SYN-packet, for example.

We have measured the volume of NetFlow and IPFIX

Messages in terms of packet and bytes for the UT dataset

presented in Section I-B. The results for various packet

sampling rates and export protocols are shown in Table X.

Two main observations can be made. First, the newer the

flow export protocol, the more packets and bytes are sent to

the flow collector. This can be explained by the inclusion

of (option) templates in NetFlow v9 and IPFIX, and the
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increase in timestamp size from 32 bits relative timestamps

(in NetFlow v9) to 64 bits absolute timestamps19 in IPFIX.

Second, regardless of the export protocol used, NetFlow and

IPFIX traffic is roughly 0.1% of the original traffic in a setup

without packet sampling. This is in contrast to [55], where it

is claimed that the IPFIX traffic generated by a flow exporter

is 2-5% of the traffic of the monitored link.

Both NetFlow and IPFIX carry sequence numbers in their

respective packet headers, which assist in identifying packet

loss when either unreliable transports are used (e.g., UDP)

or the transport bandwidth is permanently under-dimensioned.

Flow collectors, such as nfdump, keep track of these sequence

numbers and store the number of sequence failures in the

metadata of each file. Before deriving any conclusion from

sequence failure counters, attention should be paid to the

export protocol version. Both NetFlow v5 and IPFIX provide

sequence numbers in terms of flow records, while NetFlow v9

provides these in terms of export packets. As such, the actual

number of missing flow records can only be estimated when

NetFlow v5 or IPFIX are used.

C. Flow Collector Overload

Flow data collection usually gets least attention of all stages

in a typical flow monitoring setup, although a suboptimal setup

can result in severe – and often unnoticed – data loss. What

makes it difficult to dimension a flow collector, is that in

anomalous situations, the number of incoming flow records

can be doubled or even more than that. Considerable over-

provisioning and calibration are therefore needed to ensure

that no data is lost. In this subsection, we discuss how

flow collectors should be calibrated by means of performance

measurements.

Data loss as part of flow collector overload can be a

consequence of both kernel and application buffer overflows,

and disk I/O overload. Kernel buffers store NetFlow and IPFIX

Messages before they are received by a Collecting Process.

Application buffers are part of the flow collector itself and can

be used for any intermediate processing before the flow data

is stored. Buffers can be tuned to a certain extent; increasing

buffer sizes allows more data to be temporarily stored, but

is useless if subsequent system elements are becoming a

bottleneck. In practice, disk I/O will be a bottleneck in

such situations, so increasing buffers provides only limited

advantages.

Many flow collectors apply data compression to flow data

by default. Whether or not compression should be enabled

depends on the processing and storage capacities of the system

acting as a flow collector. As a rule of thumb, one can compare

the time needed to store a flow data chunk both in compressed

and uncompressed format. If writing compressed data is faster,

the storage subsystem is the bottleneck of the collection system

and data compression, which is CPU-intensive, should be

enabled. Otherwise, if writing uncompressed data is faster,

processing capacity is the bottleneck and data compression

19IPFIX supports timestamps at multiple granularities, ranging from sec-
onds to nanoseconds. The used flow exporter, nProbe, uses millisecond
resolution timestamps by default for IPFIX.

TABLE XI
STORAGE VOLUMES FOR THE UT DATASET (2.1 TB)

Sampling rate Protocol Storage volume Reduction factor

1:1 NetFlow v5 912.7 MB 2301x

1:1

NetFlow v9

1.0 GB 2100x

1:10 503.7 MB 4169x

1:100 103.9 MB 20212x

1:1000 20.4 MB 102941x

1:1 IPFIX 820.4 MB 2560x

should be disabled. This rule of thumb is confirmed by nftest,

part of nfdump, which performs these tests automatically and

provides one with an advice on whether or not to enable data

compression.

To get an idea of how much processing capacity is needed

to store flow data of one day, we have performed several

measurements on the UT dataset presented in Section I-B,

where we have used nfdump as the flow collector software.

The storage volumes for various export parameters are listed

in Table XI. The listed storage volumes are for compressed

datasets and are slightly less than 1 GB per day when no

packet sampling is used. To put this in contrast; the Czech

National Research and Education Network (NREN) CESNET

does not apply packet sampling either and stores roughly 125

GB of flow data per day, while SURFnet, the Dutch NREN,

stores around 16 GB per day with a packet sampling rate of

1:100.

D. Flow Data Artifacts

Analyses have shown that the advantages offered by flow

export often come at the expense of accuracy, although the

gains of using flow data normally excuse this. Since IPFIX is

still in its early days and NetFlow deployment is far more

mature [3], most literature on flow data artifacts is about

NetFlow (especially v9).

Flow data artifacts described in literature can be classified

into three categories:

• Timing, related to the way in which flow exporters

put timestamps into flow records, how these timestamps

are stored by export protocols, and how precise flow

exporters are in expiring flow records.

• Data loss, causing unrepairable damage to flow datasets.

• Minor inaccuracies that can usually be repaired or ig-

nored.

Artifacts in the first category, timing, are all related to the

way in which NetFlow accounts flow record start and end

times. NetFlow v9 in particular uses two separate clocks: an

uptime clock in milliseconds that is used to express flow record

start and end times in terms of a flow exporter’s uptime, and a

real-time clock (UNIX time) that is used to map those uptimes

to an absolute time. The real time is inserted in NetFlow

packets together with the uptime before they are transmitted

to a flow collector. It is then up to a flow collector to calculate

the absolute start and end times of flow records based on

these two types of timestamps. The advantage of using only

a single real-time clock is that there are no two clocks that
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need to remain synchronized all the times. However, several

artifacts related to timing have been reported in literature.

First, it is explained in [90] and [95] that the millisecond-

level precision of the flow exporter uptimes is sacrificed, since

only second-level timestamps of the real time can be stored

in a NetFlow v9 packet. This leads to imprecise or incorrect

start and end times of flow records. The same works describe

that both clocks are not necessarily synchronized, resulting in

a clock skew in the order of seconds per day. In addition,

two timestamps are not necessarily inserted into the NetFlow

packet at exactly the same moment either due to resource

exhaustion or explicit export rate limiting, resulting in an

additional delay [95]. Another category of timing artifacts is

the imprecise or erroneous expiration of flow records, resulting

in periodic patterns in the flow dataset and erroneously merged

flow records [64], [96].

The second category of artifacts is related to data loss. It is

described in [64] that many older yet widespread Cisco routers

and switches – Cisco’s Catalyst 6500 in particular, which has

been Cisco’s most-sold device – do not export TCP flags for

the majority of flows. Since TCP flags are useful to infer

TCP connection states, many analysis applications will have

to disable part of their functionality because of this missing

information. Another artifact related to data loss described

in [64] and [96] is related to gaps in flow data, usually

caused by an under-dimensioned flow cache, as described in

Section VIII-A. As a consequence, packets cannot always

be accounted to flow records in the flow cache, effectively

resulting in data loss.

Two artifacts causing minor inaccuracies in flow data are

also described in [64]. First, invalid byte counters in flow

records can be caused by certain Cisco routers in the case

of very small Ethernet frames. This happens because the

padding bytes in Ethernet frames are not correctly stripped

in those situations. Second, some flow records exported by

older Cisco routers have TCP flags set for non-TCP flows.

This is, however, not problematic for the flow data itself and

can usually be ignored.

For many application areas, such as traffic accounting,

the artifacts described in this section do not play a major

role. However, as soon as the flow data is used for research

purposes, e.g., for flow-based delay measurements [90], more

attention should be paid. Flow exporters must be calibrated

before their data is used for such purposes. Also analysis

applications have to be verified whether they will work as

expected with flow data from a certain flow exporter. Interop-

erability tests are organized from time to time to test protocol

compliance of implementations from various vendors. This

is however only on the level of protocols and not on the

level of flow records. Up to a certain degree, the variance

and imprecision of flow exporters when exporting flows is

even tolerated by the specifications. For example, for flow

cache entry expiration, as described in Section V-C, a certain

degree of freedom is left for flow exporters in case of resource

constraints.

IX. CONCLUDING REMARKS & OUTLOOK

This tutorial has shown and discussed all aspects of a full-

fledged flow monitoring setup based on NetFlow or IPFIX,

covering the complete spectrum of packet observation, flow

metering and export, data collection, and data analysis. The

generic architecture of such a setup has been explained in

Section III. It has been shown that each of these stages

affects the final flow data and consequently, its analysis.

Understanding all these stages to avoid measurement artifacts

is therefore of key importance to anyone performing flow

measurements, as demonstrated in Section VIII.

One of the most prevalent trends in flow export is certainly

the flexibility with respect to which data is exported. This is

clearly shown by IPFIX, which allows one to tailor virtually

anything to the needs of data analysis, as shown in Section V.

In contrast to what the name suggests, IPFIX can be used to

export any traffic information from L2-L7. A concrete example

of this has been discussed extensively in Section V of this

paper: application awareness.

The applicability of IPFIX can even be taken to the next

level by exploiting its flexibility and extending the set of IEs

beyond network traffic information. As long as flow exporters

know how to insert measurement data into IPFIX Messages,

existing flow monitoring infrastructure and applications can

be used, such as flow collectors, and analysis software. A

proof-of-concept has been demonstrated as part of an IETF

tutorial on IPFIX [97], where the room temperature was

exported to a flow collector using IPFIX. Existing software

could be used for monitoring the temperature over time and

configuring thresholds and alerts. Another untypical use case

is the transport of syslog or SNMP data using IPFIX, which

are features recently offered by several vendors and discussed

within the IETF, respectively.

Given the mentioned developments, we consider IPFIX

– in contrast to what the name suggests – a generic transport

protocol for structured data, rather than a pure flow export

protocol. More applications based on IPFIX that go beyond

flow export will certainly follow, a typical example being the

Internet of Things (IoT), where a plethora of sensor devices

is connected to the Internet. Since these devices produce

structured measurement data that has to be collected and

analyzed, we believe that these new application areas can

definitely utilize the principles developed and work performed

by the flow measurement community.
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APPENDIX

LIST OF ABBREVIATIONS

APT Advanced Persistent Threat

ASIC Application-Specific Integrated Circuit

BGP Border Gateway Protocol

CLI Command-Line Interface

CPU Central Processing Unit

DBMS Database Management System

DMA Direct Memory Access

DNS Domain Name System

DDoS Distributed DoS

DoS Denial-of-Service

DPI Deep Packet Inspection

DTLS Datagram TLS

FPGA Field-Programmable Gate Array

FTP File Transfer Protocol

HTTP HyperText Transfer Protocol

IANA Internet Assigned Numbers Authority

IDS Intrusion Detection System

IE Information Element

IETF Internet Engineering Task Force

IP Internet Protocol

IPFIX IP Flow Information eXport

LAN Local Area Network

MAC Medium Access Control

MIB Management Information Base

MPLS Multiprotocol Label Switching

MTU Maximum Transmission Unit

NAT Network Address Translation

NFS Network File System

NREN National Research and Education Network

NTP Network Time Protocol

PSAMP Packet Sampling

RAID Redundant Array of Independent Disks

REST REpresentational State Transfer

RTFM Realtime Traffic Flow Measurement

RTT Round Trip Time

SCTP Stream Control Transmission Protocol

SDN Software-Defined Networking

SLA Service-Level Agreement

SNMP Simple Network Management Protocol

SNTP Simple NTP

SPAN Switched Port ANalyzer

SSD Solid-State Drive

SSH Secure SHell

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

URL Uniform Resource Locator

VLAN Virtual LAN

VM Virtual Machine

VPN Virtual Private Network

WG (IETF) Working Group

WLAN Wireless LAN
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