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We represent transport between different regions of a fluid domain by flow networks, constructed

from the discrete representation of the Perron-Frobenius or transfer operator associated to the

fluid advection dynamics. The procedure is useful to analyze fluid dynamics in geophysical con-

texts, as illustrated by the construction of a flow network associated to the surface circulation in

the Mediterranean sea. We use network-theory tools to analyze the flow network and gain

insights into transport processes. In particular, we quantitatively relate dispersion and mixing

characteristics, classically quantified by Lyapunov exponents, to the degree of the network nodes.

A family of network entropies is defined from the network adjacency matrix and related to the

statistics of stretching in the fluid, in particular, to the Lyapunov exponent field. Finally, we use a

network community detection algorithm, Infomap, to partition the Mediterranean network into

coherent regions, i.e., areas internally well mixed, but with little fluid interchange between them.

VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4908231]

Water and air transport are among the basic processes
shaping the climate of our planet. Heat and salinity fluxes
change sea water density and thus drive the global ther-
mohaline circulation. Atmospheric winds force the ocean
motion, and also transport moisture, heat or chemicals,
impacting the regional climate. These considerations of
geophysical fluid motion suggests viewing fluid transport
as a transportation network in which fluid advances
along different branches that eventually split and merge.
In this paper, we exploit this interpretation of fluid trans-
port as a flow network so that we can use the powerful
techniques of modern network theory to better charac-
terize transport, mixing, and dispersion, with examples
from ocean flows.

I. INTRODUCTION

The last two decades have seen important advances in

the Lagrangian description of transport and mixing in fluid

flows driven by concepts from dynamical systems theory.

Nowadays, the techniques used can be roughly classified as

follows. On the one hand, some approaches focus on the geo-

metric objects—lines and surfaces—separating fluid regions

with different properties. These geometric objects are often

identified with invariant manifolds,1–5 and more generally

they are known under the name of Lagrangian Coherent

Structures.6,7 Recent advances identify them as minimally

stretching material lines.8 On the other hand, another class of

algorithms has focussed on computing stretching-like fields

in the fluid domain, such as different types of Lyapunov

exponents or other Lagrangian descriptors.9–14 Ridges or sin-

gular lines in such fields turn out to be related, under suitable

conditions, to the Lagrangian Coherent Structures of the pre-

vious approach, and thus organize the fluid flow. Finally,

there is a line of research focussing on the moving fluid

regions themselves, the so-called set-oriented methods.15–23

The relationships among the different approaches have been

discussed in the literature.24–29 The geometric approaches

are designed to follow specific structures during particular

transport events, whereas the coarse-graining inherent to the

set-oriented methods makes them useful also to estimate sta-

tistical properties in more extended space and time intervals.

Stretching-field methods can be used to follow particular

events or, by simple averaging,30–32 also to characterize dis-

persion and stirring statistics in large areas or long times.

One of the basic tools in the set-oriented methods is the

Perron-Frobenius or transfer operator, which quantifies the

amount of fluid transported from some initial region to other

ones under time evolution. A discretized version of that op-

erator is a transport matrix indicating which part of the fluid

domain is connected with which one, and by what amount of

flow. In this matrix form, the transfer operator can be read as

an adjacency matrix that defines a transportation or flow net-

work, an analogy that has been recently recognized.33–39

Within this network interpretation, the powerful tools of net-

work or graph theory40–43 become available to extract infor-

mation about the transport processes.

Network approaches have been used for geophysical

systems in the context of climate networks44–46 in which the

connections among the different locations represent statisti-

cal relationships between climatic time series from these

locations, inferred from correlations and other statistical

methods.47–50 There is some recent work relating the connec-

tivity given by correlations to underlying fluid flow.51 In this

paper, we analyze directly the network describing the mate-

rial fluid flow among different locations, which we call flow

network or transport network. Among other characteristics,

this network is directed, weighted,52 spatially embedded,53

and time-dependent.54 We illustrate the general ideas with

an exemplary network derived from a realistic simulation of

the surface flow in the Mediterranean sea. Our focus is here

on the description with network tools of two important
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aspects of transport, namely, the quantification of dispersion

and mixing, and the identification of coherent regions which

remain relatively isolated from neighboring fluid.

Relationships are drawn with the previous approaches that

used the geometric, stretching field, and set-oriented method-

ologies described above, in particular, with Lyapunov expo-

nents and with almost-invariant sets. In most of the paper,

we use the language of “water flow” appropriate to our ocean

dynamics example, but our methodology is in fact equally

applicable to atmospheric motions, to other fluid-dynamics

settings and even to flows in the phase space of more abstract

dynamical systems.15,34,35

The paper is organized as follows. After this introduc-

tion, we describe the basic steps to construct a flow network

from fluid velocity data (Sec. II). We apply them to a sur-

face flow field modelled for the Mediterranean sea in Sec.

III. The resulting network is studied in Sec. IVA to charac-

terize dispersion and mixing in different regions. Appendix

A complements some technical aspects relevant here. In

Sec. IVB, we apply the network community detection

method Infomap (described in more detail in Appendix B)

to identify coherent regions in the sea, well mixed inter-

nally but with little exchange among them. The paper fin-

ishes with a Conclusions section.

II. FLOW NETWORK CONSTRUCTION FROM FLUID
MOTION

Since fluid flow is a process occurring in continuous

space, a discretization procedure involving a coarse-graining

of space is needed to have access to the techniques of net-

work theory. Advantages of the discrete point of view have

already been shown in geophysical contexts.17,18,20,22,55

Here, we enumerate the steps needed to construct the dis-

crete transport network starting from the continuous flow.

A. Discretization of the fluid domain: Nodes

Networks are composed of discrete building blocks:

nodes. Being fluid flow a continuous system, we need a dis-

cretized version of it to give a network representation. To do

this, we subdivide the fluid domain of interest in a large

number N of boxes, {Bi, i¼ 1,…,N} so that network node j

represents the fluid box Bj. Although it is not strictly neces-

sary, we consider here the case in which boxes have the

same area (in twodimensional flows) or volume (for three

dimensions). Then each box will contain exactly the same

amount of fluid.

B. Lagrangian simulation: Links and weights

To complete the construction of our transport network,

we need to establish the connections between nodes (i.e.,

boxes in the fluid domain). We establish a directional link

between two nodes when an exchange of fluid occurred

from one to another during a given time interval. The

weight of this link will be proportional to the amount of

fluid transported. This quantity could be obtained from a

Lagrangian point of view by following trajectories of ideal

fluid particles and keeping record of their initial and final

positions (i.e., starting and ending nodes) during the time

interval considered.

More formally, we integrate for a fixed time s the equa-

tion of motion for each particle, from initial condition x0 at

time t0 until the final position x at t0 þ s, using a velocity

field vðx; tÞ. This defines the flow map U
s
t0

xðt0 þ sÞ ¼ U
s
t0
ðx0Þ; (1)

which moves around single fluid particles. By considering

the action of the flow map on all the points contained in a

fluid region A, we define the action of U
s
t0
on whole sets:

Aðt0 þ sÞ ¼ U
s
t0
ðAðt0ÞÞ.

C. Construction of the network adjacency matrix

Applying the flow map to the discrete boxes, we will have

an estimation of the flow among each pair of nodes. More ex-

plicitly, given the collection of boxes {Bi, i¼ 1,…,N}, we rep-

resent the transport between them by the discrete version of

the Perron-Frobenius operator Pðt0; sÞ, obtained within the

Ulam approach, whose matrix elements are given by15–20

P t0; sð Þij ¼
m Bi \ U

�s
t0þs Bjð Þ

� �

m Bið Þ
: (2)

m(A) is a measure assigned to the set A. In our case, it is the

amount of fluid it contains, i.e., simply its area or volume.

Other measures referring, for example, to heat or salt content

could be implemented for future applications. Equation (2)

states that the flow from box Bi to box Bj is the fraction of

the contents of Bi which is mapped into Bj. We refer to the

figure in Appendix A for a plot of the different sets involved.

If a nonuniform distribution of some conserved tracer is ini-

tially released in the system such that {pi(t0), i¼ 1,…,N} is

the amount of such tracer in each box {Bi} at the initial

instant t0, the matrix Pðt0; sÞ gives the evolution of this dis-

tribution after a time s as pjðt0 þ sÞ ¼
PN

i¼1 piðt0ÞPðt0; sÞij.

Writing the {pi} as row vectors: pðt0 þ sÞ ¼ pðt0ÞPðt0; sÞ. A
probabilistic interpretation of Eq. (2) is that Pðt0; sÞij is the

probability for a particle to reach the box Bj, under the condi-

tion that it started from a uniformly random position within

box Bi. The matrix Pðt0; sÞ is row-stochastic, i.e., it has non-

negative elements and
PN

j¼1 Pðt0; sÞij ¼ 1, but not exactly

column stochastic. The quantity
PN

i¼1 Pðt0; sÞij measures the

ratio of fluid present in box Bj after a time s with respect

to its initial content at time t0. This ratio will be unity, and

the matrix doubly stochastic, if the flow vðx; tÞ is

incompressible.

As a standard way to evaluate numerically the matrix in

Eq. (2), we apply the Lagrangian map to a large number of

particles released uniformly inside each of the boxes {Bi,

i¼ 1,…,N} (see Fig. 1). The initial number of particles Ni in

each box, a proxy of the amount of fluid it contains, should

be proportional to its measure m(Bi) which, with our choice

of equal area or volume, results in seeding the same number

of particles in each box. The number of particles transported

from box Bi to box Bj gives an estimation of the flow among
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these boxes, and a numerical approximation to Eq. (2) is

then

P t0; sð Þij �
number of particles from box i to box j

Ni

: (3)

Because of the time-dependence of the velocity field,

the results of the Lagrangian simulations will depend on

both the initial time t0 and the duration of the simulation

s. Once these parameters are fixed, we can build a net-

work described by a transport matrix Pðt0; sÞ that charac-

terizes the connections among each pair of nodes from

initial time t0 to final time t0 þ s. We interpret Pðt0; sÞ as

the adjacency matrix of a weighted and directed network

so that Pðt0; sÞij is the weight of the link from node i to

node j.

The network constructed in this way characterizes the

final locations of all fluid elements a time s after their release

at time t0, but gives no information on particle locations at

intermediate times. Also, since each of the matrices

Pðt0 þ ks; sÞ, for k ¼ 0; 1; :::; n� 1, is a stochastic matrix,

one can consider the discrete-time Markov chain in which an

initial vector giving occupation probabilities pðt0Þ ¼ ðp1ðt0Þ;
:::; pNðt0ÞÞ for the different boxes is evolved in time as

pðtnÞ ¼ pðt0ÞPðt0; sÞPðt1; sÞ:::Pðtn�1; sÞ, where tk ¼ t0 þ ks.

This time evolution will not be exactly equal to the true evo-

lution pðtnÞ ¼ pðt0ÞPðt0; nsÞ, but a Markovian approximation

to it in which the memory of the particle positions is lost af-

ter a time s. The Markovian approximation may be reasona-

ble in some circumstances, and in fact it has been

successfully used in geophysical flow problems.18,22,55 In

this paper, we do not assume any Markovian hypothesis, and

we work with the full matrix Pðt0; sÞ covering our time inter-

val of interest and describing only the initial and final states

of the transport process.

Despite not using any Markov assumption, replacing the

continuous flow system by a discrete network introduces dis-

cretization errors. Even if the integration is done accurately,

the initial and final locations of the transported particles are

only specified up to a precision D, given by the linear side of

the boxes. This implies that our network approach does not

display explicitly fluid structures smaller than the box

length-scale D.

III. THE SURFACE FLOW NETWORK
OF THE MEDITERRANEAN SEA

We now apply the previous general procedures to build

and analyze the flow network associated to a realistic surface

flow in the Mediterranean sea.

The input velocity field originates from the

Mediterranean Forecasting System Model (physics reanaly-

sis component). It is a hydrodynamic model supplied by the

Nucleus for European Modelling of the Ocean (NEMO),

which solves primitive equations in spherical coordinates.

NEMO has been implemented in the Mediterranean at an

horizontal resolution of 1/16�, and 72 unevenly spaced verti-

cal levels.56 It also slightly extends into the Atlantic in order

to resolve the Strait of Gibraltar. The model uses vertical

partial cells to fit the bottom depth shape. It is forced by mo-

mentum, water and heat fluxes interactively computed by

bulk formulae using the 6 h, 1/4� horizontal-resolution opera-

tional analysis and forecast fields from the European Centre

for Medium-Range Weather Forecasts (ECMWF), while pre-

cipitation and river runoffs are provided by monthly mean

datasets. The Dardanelles inflow is parameterized as a river

and the climatological net inflow rates are considered.

Assimilated data include sea level anomaly, remotely sensed

sea surface temperature and in-situ temperature and salinity

profiles.

We used daily horizontal velocity fields generated by

the model in the whole Mediterranean basin during 10 years

of simulation (2002–2011) selecting only one layer at a nom-

inal depth of 7.9m. This layer extends in fact between 4.58

and 11.55m depth so that it has a vertical extension of

6.97m. For the integration time scales used here (values of s

always below 3 months), we can reasonably neglect motion

to other layers and consider only horizontal dynamics.11,39

A. Discretization

To switch from continuous space to discrete nodes, we

partition the above-described horizontal near-surface

Mediterranean layer into 3270 two-dimensional square

boxes. We imposed the equal-area constraint defining the

cells in a sinusoidal projection given by coordinates x and y

related to the standard longitude u and latitude / by

x ¼ u cos/; y ¼ /: (4)

In these x, y coordinates, boxes are squares of side 0.25� or

D¼ 27.78 km (see Fig. 2). The area D
2 of each box is

771.9 km2. The “amount of water in a box Bi” is then related

to its area D
2 through a simple multiplication by the layer

thickness (6.97m), returning a value of 5.38� 109 m3 per

box.

The resolution of the model-generated velocity field is

much finer than the discretization we use for network con-

struction. In this sense, the dynamics represented in the flow

network is a coarse-graining of the simulated Mediterranean

flow, keeping the effect of the small scales only in a statisti-

cal sense. The most energetic features of the Mediterranean

flow are mesoscale structures57 ranging from 10 km to a few

hundred km. With the value of D we use, our network

FIG. 1. Transport matrix construction from tracer’s advection, following

Eq. (3).
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description displays most of the mesoscale range, and

neglects submesoscales, which anyway are only marginally

resolved by the NEMO implementation.

B. Lagrangian simulation

To characterize the transport phenomena, Ni¼ 500 ideal

fluid particles were released in each box Bi, providing

enough statistics to estimate Pðt0; sÞ. We simulated the

motion of these 3270� 500¼ 1.635� 106 particles by inte-

grating the trajectories in the velocity field using a fourth-

order Runge-Kutta algorithm. The velocity at any arbitrary

point in the sea is computed with a bilinear interpolation

from the input data. We used a time step of 1 day (the same

resolution as the data). We also tested shorter intervals using

a cubic interpolation but no significant improvement was

found. The two key-parameters of the simulations are the

starting time t0 and the tracking time s.

C. Network construction

The simulation provides the initial and final positions

for each particle, allowing us to compute the transport matrix

Pðt0; sÞ from Eq. (3). A directed link is established from

node i to node j if and only if Pðt0; sÞij is non-vanishing. In
that case, its value gives the weight of such a link. Due to nu-

merical limitations, some trajectories end up prematurely by

“beaching” onto land areas outside of the partition {Bi}.

Then, the denominator Ni in Eq. (3) is taken as the number

of particles still in the sea at the end of the integration time

s. Since the beaching effect is small, affecting less than 5%

of all particles in the longest simulations presented here (and

only for near-shore boxes), we still assume in the following

that the convenient equal-area condition remains approxi-

mately valid.

Note that the Lagrangian integration is done under the

full resolution of the velocity field (1/16�). This means that

particle trajectories contain the small-scale features produced

by the model during time s. While such details are not ex-

plicitly present in the network description Pðt0; sÞ after

coarse-graining the initial and final positions to the box size

D, their effects have been incorporated in a statistical way.

IV. NETWORK PROPERTIES

We now interpret the transport matrices Pðt0; sÞ, for sev-
eral values of t0 and s, as the adjacency matrices of directed

and weighted flow networks. We can calculate for them all

the standard quantities characterizing the topology of net-

works, such as degree, clustering, and betweenness.43 But

following the aim stated in the Introduction, we will concen-

trate here in network quantities that can give insight in (hori-

zontal) dispersion and mixing processes, and in the

identification of coherent regions.

A. Dispersion and mixing

Important properties of geophysical flows depend on

their dispersion characteristics, i.e., how far away can the

fluid be transported during some time, and how diverse are

the target regions. Mixing of fluid with different characteris-

tics, another process of great geophysical relevance, will

occur at a particular place if fluid from different origins

arrives there at a particular time.

In dynamical systems approaches to flow processes, a

standard way to quantify dispersion is by means of the finite-

time Lyapunov exponent (FTLE). It is defined as12

k x0; t0; sð Þ ¼
1

2jsj
logKmax; (5)

where Kmax is the maximum eigenvalue of the CauchyGreen

strain tensor

Cðx0; t0; sÞ ¼ ðrU
s
t0
ðx0ÞÞ

TrU
s
t0
ðx0Þ; (6)

constructed from the Jacobian matrix rU
s
t0
ðx0Þ of the flow

map. MT means the transpose of the matrix M. For s > 0,

this is the forward FTLE. By running the flow map back-

wards in time ðs < 0Þ, we get the backwards FTLE field,

which quantifies the strength of mixing into a particular loca-

tion. The interpretation of (5) is that an initial circle of infini-

tesimal diameter d located at x0 at t0 will become an ellipse

of major axis eskðx0;t0;sÞd after being advected by the flow dur-

ing a time s. The minor axis will be a decreasing function of

s, contracting at an exponential rate related to a negative

Lyapunov exponent that can be computed from the second

eigenvalue of Cðx0; t0; sÞ.

FIG. 2. Discretization of the

Mediterranean sea (blue region) into

N¼ 3270 equal-area boxes fBi; i ¼ 1;
:::;Ng.
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An obvious quantity in the network interpretation suita-

ble to be related to dispersion and mixing is the degree of a

node. Since our network is directed, we should distinguish

between the in-degree KI(i), i.e., the number of links pointing

to a particular node i, and the out-degree KO(i), the number

of links pointing out of it. Figure 3 displays these quantities

at the geographical locations defined by the nodes of the

Mediterranean network for particular values of t0 and s.

High values of the degrees appear associated to the strong

and unstable currents in the southern part of the basin.57 Low

degree values are observed in regions where the circulation

is rather slow, such as the Tunisian continental shelf and the

semi-enclosed seas (e.g., Adriatic and Aegean). Generally,

the values of the in- and out-degree tend to increase with s.

With respect to the dependence on t0, degree values tend to

be slightly higher in winter than in summer.

A first problem in relating these network properties to

the actual physics of dispersion and mixing is that their val-

ues are dependent on the spatial scales chosen for discretiza-

tion (there is also a dependency on the numbers Ni of

particles used to compute the transport matrices, but it disap-

pears for large Ni). This problem is easy to solve by recalling

that every box has an associated area. Dealing first with the

out-degree case for definiteness, KO(i) is proportional to

the total area of all nodes that received some contents from

the initial node i. This quantity has a well-defined meaning

that can be related to the continuous flow dynamics with

only a minor dependence on the discretization procedure.

Since here all boxes have the same area D
2, the area corre-

sponding to the out-degree of node i is KO(i)D
2. We can use

generic ideas of chaotic dynamics to obtain heuristically a

more precise relationship between two quantifiers of disper-

sion: the degree and the Lyapunov exponent. In regions

dominated by hyperbolic structures, each of the fluid boxes

will be stretched into a long and thin filament after a suffi-

ciently long time s (see Appendix A). If we want to compute

the number of boxes reached by it, it is enough to consider

its length, since the width quickly becomes smaller than the

box size D. Let us consider an initial line of length L(t0)�D

inside the initial box Bi. A small segment of it, of length

dl(t0) at position x0 2 Bi will become elongated by a factor

given by the local FTLE: dlðt0 þ sÞ ¼ dlðt0Þe
skðx0;t0;sÞ.

Integrating over the initial positions along the line, we get an

estimation of the final length Lðt0 þ sÞ of the filament. A bet-

ter estimation Lðt0 þ sÞ of this length can be done by averag-

ing over positions transverse to the line, to take into account

different locations of the initial line in the box

L t0 þ sð Þ �
1

D

ð

Bi

dx0e
sk x0;t0;sð Þ ; (7)

FIG. 3. Degree of the nodes in the flow

network defined by Pðt0; sÞ, for

t0¼ July 1st 2011 and s¼ 15 days. (a)

The in-degree KI(i). (b) The out-degree

KO(i).
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where the longitudinal and transverse integrations have been

combined into the integration of x0 over the area Bi. The

area of the boxes covered by the filament is Aðt0 þ sÞ �
Lðt0 þ sÞD so that the out-degree of the initial box will be

KO ið Þ ¼
A t0 þ sð Þ

D
2

�
1

D
2

ð

Bi

dx0e
sk x0;t0;sð Þ � hesk x0;t0;sð ÞiBi

:

(8)

Thus, we have a useful relationship between a natural quan-

tity in the network description of fluid flows and a standard

characterization of dispersion in the dynamical systems

approach to such flows: the degree of a node associated to a

box is the average or coarse-graining of the stretching factor

esk in that box. We can check the validity of the above heu-

ristic arguments by comparing directly the values of KO(i)

obtained from our flow network and the right-hand-side of

(8). Figure 4 shows an example of FTLE field obtained at

time t0¼ July 1st 2011 and s¼ 15 days. Figure 5 shows the

clear correlation between the two quantities. Three values of

s are plotted to appreciate the general validity of the relation-

ship. We attribute the deviations with respect to the exact

identity to the fact that the filament-type arguments are only

valid for sufficiently large s and in regions dominated by

strain. Also, our arguments neglect the presence of filament

foldings that sometimes would occupy the same box, and of

associated saturation effects. In addition quantization, effects

arising from the discrete nature of KO are visible at small

degree values.

Expression (8) suggests defining

H0
i t0; sð Þ �

1

s
logKO ið Þ; (9)

so that

heskðx0;t0;sÞiBi
¼ esH

0
i
ðt0;sÞ : (10)

From the convexity of the exponential function, we have

H0
i ðt0; sÞ � hkðx0; t0; sÞiBi

. The previous expressions are

reminiscent of the properties of the topological entropy of a

dynamical system, as giving the exponential growth in time

of the length of a material line.58 Pushing forward the anal-

ogy, we can define a sequence of R�enyi-like entropies59

associated to a particular node i

H
q
i t0; sð Þ �

1

1� qð Þjsj
log

X

N

j¼1

P t0; sð Þij
� �q ; (11)

which we call network entropies. Due to their dependence on

the finite-size of the partition, they are related to the �-entro-
pies discussed by Boffetta et al.60 Note, however, that here

the transport matrix involves only two states of the trajecto-

ries, separated by an interval of time s which remains finite,

and the dependence on the initial location, box Bi, is kept.

The entropies H0
i and H1

i should be understood as defined by

the limits q ! 0 and q ! 1, respectively. All the network

entropies measure the diversity in the amounts of fluid

received by the nodes connected to a given box, but weight-

ing them in different ways: In H0
i , all nodes are counted

equally independently of the amount of water they receive so

that it informs only about the degree as seen in Eq. (9); for

increasing values of q nodes receiving more water are

weighted with increasing strength. Although the network

entropies have been introduced here in the particular context

of flow networks, we note that they can be defined for any

weighted network, giving generalizations of the degree to

quantify the unevenness of the weight distribution towards

the nodes connected to a given one.

Applying l’Hôpital’s rule to the definition of the net-

work entropy of order q¼ 1, one gets

H1
i t0; sð Þ ¼ �

1

s

X

N

j¼1

P t0; sð Þij logP t0; sð Þij : (12)

It gives the amount of information (per unit of time) gained

by observing the position of a particle at time t0 þ s, know-

ing that it was initially (time t0) somewhere in box Bi. This

quantity is precisely the discrete finite-time entropy studied

by Froyland and Padberg-Gehle.29 Figure 6 shows its spatial

FIG. 4. An example of forward FTLE

field kðx0; t0; sÞ at t0¼ July 1st 2011

and s¼ 15 days. Color bar in day�1.
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distribution in the Mediterranean sea for particular values of

t0 and s.

The standard Pesin-like results relating the metric or

Kolmogorov-Sinai entropy to the sum of positive Lyapunov

exponents60–62 suggest that, at least for large s, the entropy

H1
i would give a good approximation to the values of

the FTLE field averaged over each box Bi : kiðt0; sÞ
� hkðx0; t0; sÞiBi

� H1
i ðt0; sÞ. Appendix A gives calculations

supporting this claim in an heuristic way. Figure 7 shows the

geographical distribution of kiðt0; sÞ, and Fig. 8 compares

both quantities for several values of s. The entropies tend to

be slightly larger than the Lyapunov exponents for s¼ 15

days, but both quantities approach each other and become

well correlated for larger s.

For definiteness, we have been discussing quantities

related to the forward time evolution: out-degree, forward

Lyapunov exponents, etc. The network entropies can also be

defined for the backward time evolution. Construction of the

backwards-dynamics network can be achieved by redoing

the launching of particles and running the Lagrangian inte-

gration for negative time, or much simpler, by recognizing29

that the backward evolution is given by the matrix

P t0 þ s;�sð Þij ¼
P t0; sð Þji

PN
k¼1 P t0; sð Þjk

: (13)

The network entropies in Eq. (11) can now be directly computed

for the backward flow network defined by Pðt0 þ s;�sÞ, and
they will be related to backwards Lyapunov fields, which give a

measure of mixing of fluid coming from different origins. As

an example, we show in Fig. 9 the relationship between the

backwards entropy H1
i ðt0 þ s;�sÞ and the coarse-grained

FIG. 5. Values of the out-degree KO(i)

of each node i vs the average value of

the stretching factor esk in that node.

t0¼ July 1st 2011. Blue symbols are

from s¼ 15 days, green from s¼ 30

days, and red from s¼ 60 days. Black

line is the main diagonal.

FIG. 6. The network entropy H1
i ðt0; sÞ,

for t0¼ July 1st 2011 and s¼ 15 days.

Color bar in day�1.
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backwards Lyapunov exponent kiðt0 þ s;�sÞ. Again both

quantities are similar for sufficiently large s and the same quali-

tative features as in Fig. 8 are observed.

Summarizing this section, we have defined a family of

entropy-like quantities completely in terms of the transport

matrix characterization of the flow network. At least two of

them, H0
i and H

1
i are related to standard dispersion and mixing

quantifiers in the description of fluid flows. The higher order

entropies H
q
i are related to the generalized Lyapunov expo-

nents60,62 characterizing successive moments of the Lyapunov

field, as discussed in Appendix A. We do not claim that these

relationships are exact for finite values of s and D. Instead, we

find numerical deviations from them (Figs. 5, 8, and 9) which

decrease for increasing s. We expect the same to happen

when decreasing D. The important point is that, once the net-

work matrix Pðt0; sÞ has been constructed, the entropies in

Eq. (11) provide a computationally very cheap way to assess

quantities of geophysical interest such as local dispersion,

stretching, and mixing. In fact, the simplest network quanti-

fiers such as the in- and out-degrees are already suitable for

that, being related to H0
i . The qualitative information dis-

played in Figs. 3(b) and 6 or 7 is very similar. Also, even if

we should have H0
i � H1

i � ki, in our examples the numerical

values of H0
i are only slightly larger than those of H1

i . We

have to mention that we have been working under the hypoth-

esis of boxes {Bi} of equal areas. Expression (11) would need

corrections in a more general case. See, for example, the case

of H1
i in Froyland and Padberg-Gehle.

29

B. Identification of coherent regions

1. Coherent regions as network communities

Most work in the dynamical systems approach to fluid

transport aims at identifying “barriers to transport” locating

FIG. 8. Values of the network entropy

H1
i ðt0; sÞ of each node i vs the average

value of the Lyapunov exponent in that

node, kiðt0; sÞ. t0¼ July 1st 2011. Blue

symbols are from s¼ 15 days, green

from s¼ 30 days, and red from s¼ 60

days. Black line is the main diagonal.

FIG. 7. Coarse-graining of the Lyapunov

field in Fig. 4 into the discretization

boxes: kiðt0; sÞ � hkðx0; t0; sÞiBi
. t0

¼ July 1st 2011 and s¼ 15. Color bar

in day�1.
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the borders of regions that do not exchange much fluid

among them. The set-oriented approach focusses on the

regions themselves rather than on the borders. Almost-

invariant fluid regions have been defined as regions of the

fluid domain remaining relatively isolated (according to a

suitably defined metrics) from the rest of the fluid.15,16 In

generic time-dependent flows, these regions will not be fixed

in space but they will be transported by the mean flow, and

the concept of coherent pairs, relating initial and final set

positions has been developed.19,20,22 Formulating this prob-

lem in the context of network theory would require building

on techniques for bipartite graphs. In our present case study,

the global flow in the Mediterranean sea, land masses play

an important role in restricting the flow so that coherent

regions that remain fixed with respect to the coasts are the

most relevant ones for many applications. In particular,

when considering environmental conservation strategies and

marine reserves,36,38,39 one looks for the connectivity among

marine zones, or provinces,39 occupying localized regions of

the sea. Thus, we focus here on finding a partition of the sea

into self-coherent, or almost-invariant regions, associated to

relatively stable circulation patterns, from the point of view

of network theory. We want these regions to be well-mixed

internally, and with little interchange with the exterior. In the

language of networks, this translates to partitioning the net-

work into subgraphs with high internal connectivity, and

small connectivity among them. This is the standard problem

of community detection in networks,43,63–66 for which many

different and powerful techniques are available. In fact, most

of the approaches used so far to partition fluid motion into

almost-invariant sets15,16,37 employ classical spectral techni-

ques for graph partition,43 which use the eigenvectors or sin-

gular vectors of the transport matrix (or other matrices

derived from it). We note that the methodologies in Refs. 15

and 16 find almost-invariant sets in the sense that loss and

gain of fluid is minimized. But the condition of strong inter-

nal mixing, which we consider important in geophysical

applications, is not imposed.

Here, we address the community detection problem with

a state-of-art network-theory approach, the Infomap algo-

rithm.67 The method is based on the probability flow of ran-

dom walks in the network moving with transition

probabilities given by the adjacency matrix Pðt0; sÞ, and on

exploiting the properties of information compression in the

description of that probability flow. Infomap finds the parti-

tion of the network minimizing the average size of the code-

word needed to describe inter- and intracommunity

transitions. A succinct description of the method is provided

in Appendix B. We believe this methodology is specially

suited to partition flow networks for the following reasons:

First, it takes into account the “direction” and “weight” of

each link, important characteristics defining our flow net-

work. The standard spectral methods and most modularity-

optimization algorithms take as input a symmetrized version

of the network. Second, Infomap does not require to fix a pri-

ory the number of communities forming the domain parti-

tion. Third, Infomap does not impose similar sizes to the

communities so that it does not suffer from the “resolution

limit”68 restricting the minimum community size detectable

by most algorithms, including spectral methods. This is im-

portant in geophysical flow networks since ocean structures

of different sizes coexist in the sea, some of them arising

from geographical accidents, bathymetry, etc.

The method has also some limitations. One of them is

the “field of view limit”69 due to the use of a single-step tran-

sition matrix Pðt0; sÞ. In general, this imposes that the

detected communities are only those with intense intracom-

munity connections (clique-like). For our application, this

FIG. 9. Values of the network entropy

H1
i at each node i, computed from the

backwards-dynamics network given by

Pðt0 þ s;�sÞ (Eq. (13)), vs the average
value of the backwards Lyapunov

exponent in that node, kiðt0 þ s;�sÞ.
t0¼ July 1st 2011. Blue symbols are

from s¼ 15 days, green from s¼ 30

days, and red from s¼ 60 days. Black

line is the main diagonal.
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feature may become convenient since Infomap will identify

as communities only regions well mixed internally by the

flow.

Since Infomap consider random walkers exploring

the network with the transition probabilities in the matrix

Pðt0; sÞ, one is tempted to confuse these walkers with the

Lagrangian particles advected by the flow. But this is not

correct. Pðt0; sÞ contains relationships between initial and

final positions of particles after a time s, but does not

describe in detail the trajectories at intermediate times.

In addition, it can not be used beyond that time since in

time-dependent velocity fields flow connectivity will

change with the initial time t0, defining the dynamic net-

work. Infomap unveils the graph structures present in the

single matrix Pðt0; sÞ by releasing random walkers that

evolve in a virtual time not directly related to the physi-

cal time.

Hydrodynamical provinces delimited by Infomap in the

Mediterranean surface flow were already studied by Rossi

et al.,39 who discussed also their implications for the design

of marine reserves. Here, we concentrate in the technical

aspects and compare with alternative methods.

2. Quality parameters

A standard way to asses the quality of a network parti-

tion is by computing a modularity parameter.43,70 But this

involves comparison with a random null model than in the

case of flow networks has no obvious meaning. Then we pre-

fer to use alternative quantifiers with a direct interpretation

in terms of fluid connectivity. Here, we define a coherence

ratio and a mixing parameter.

If coherent regions A are understood as almost-invariant

areas of fluid, this means that they are mapped by the flow

nearly into themselves after a time s

U
s
t0
ðAÞ � A : (14)

To measure how well this is achieved, one can introduce the

coherence ratio15,16

qst0 Að Þ ¼
m A \ U

�s
t0þs Að Þ

� �

m Að Þ
; (15)

where as before, m(C) is the area of set C, but it can be gen-

eralized to other measures. We have qst0ðAÞ � 1 and values

close to unity indicate that A is a truly almost-invariant set.

In our discrete set-up, we consider sets A made of our

boxes fBi; i ¼ 1; :::;Ng: A ¼ [i2IBi, where I is the set of

indices identifying the boxes Bi making A. The coherence ra-

tio is now15,16

qst0 Að Þ ¼

P

i;j2Im Bið ÞP t0; sð Þij
P

i2Im Bið Þ
: (16)

For a partition of the fluid domain into p communities or

provinces: P ¼ fA1; :::;Apg, a global quality figure of the

partition is

qst0 Pð Þ �
1

p

X

p

k¼1

qst0 Akð Þ ; (17)

where again a good partition would be indicated by a value

close to 1. When communities are of very different sizes, it

may be appropriate to weight the average in Eq. (17) with

these sizes, but we keep the present definition to allow com-

parison with previous works.

Physically, we can say, that qst0ðPÞ represents the frac-

tion of tracers that at time t0 þ s are found in the same prov-

ince where they were released at time t0. The definition

involves the initial and final positions, but gives no informa-

tion on the particle trajectories in between. Note that coher-

ence ratios measure fluid exchanges between provinces, but

do not quantify how strong the internal mixing is.

The second quantifier we use is a mixing parameter

devised to assess how strongly the flow mixes fluid inside

communities. To define the mixing parameter Ms
t0
ðAÞ inside

a set A, we first define a transport matrix conditioned to rep-

resent just the transport occurring inside A (more precisely,

transport by trajectories that start and end in A)

R t0; sjAð Þij ¼
P t0; sð Þij

P

k2IP t0; sð Þik
; i; j 2 I : (18)

As before, I is the set of indices identifying the boxes Bi

making A. The mixing parameter is a normalized version of

the sum inside A of the entropies associated to the transition

probabilities in Rðt0; sjAÞ

Ms
t0
Að Þ ¼

�
P

i;j2IR t0; sjAð Þij logR t0; sjAð Þij
QA logQA

: (19)

QA is the number of boxes in A. The maximum value,

Ms
t0
ðAÞ ¼ 1, is reached when fluid is dispersed from each

box in A to all the others uniformly ðRij ¼ 1=QA; 8i; j 2 IÞ.
A global quantification of the internal mixing in a commu-

nity partition P ¼ fA1; :::;Apg is given by

Ms
t0
Pð Þ ¼

Pp
k¼1 m Akð ÞMs

t0
Akð Þ

Pp
k¼1 m Akð Þ

: (20)

Here, we have weighted the different communities according

to their size.

3. Communities in the Mediterranean surface flow

The outputs of the Infomap algorithm applied to the

flow network defined by Pðt0; sÞ, for increasing values of s,

are shown in Fig. 10. Each community Ak is colored with the

value of its coherence ratio qst0ðAkÞ. We see that most coher-

ence values are rather high. The global mixing parameter has

only moderate values (see caption of Fig. 10), but it increases

with s. The main coast-constrained regions appear clearly

outlined (the Tyrrhenian, the Adriatic, and the Aegean), but

also other areas defined only by persistent circulation pat-

terns (the three-gyre system in the Adriatic and the Balearic

front). We refer to Rossi et al.39 for a thorough interpretation

of the hydrodynamic provinces in relation with surface

036404-10 Ser-Giacomi et al. Chaos 25, 036404 (2015)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  161.111.180.103 On: Thu, 23 Jun

2016 08:46:34



circulation patterns and known eco-regionalization of the

Mediterranean basin. Note that there is no obvious relation-

ship between the size of a community and its coherence.

Both large and small provinces may have indeed moderate

(<0.6) or high (>0.8) coherence ratios. The detection of

small communities confirms that Infomap is not affected by

the “resolution limit.”68

Communities merge and in average become larger with

increasing s so that their number decreases. Fig. 11(a) shows

the growth of the mean area as a function of s for the same

case t0¼ July 1st 2011 shown in Fig. 10. The standard devia-

tion of the area distribution is also displayed as error bars. It

shows a significant dispersion in the area of the communities

identified, especially for larger s, revealing properly the multi-

scale character of oceanic transport processes. For small s,

community areas seem mainly controlled by the time of inte-

gration (there is no sufficient time for the flow to manifest

highly inhomogeneous dispersion) but only marginally deter-

mined by the intrinsic properties of the flow. As commented

above, detecting communities of widely different sizes is a

great capability of Infomap, whereas other methodologies

constrain the communities to be of similar sizes. The inset

Fig. 11(b) shows how the number of communities decreases

when s increases.

FIG. 10. Infomap partition of flow net-

works in the Mediterranean sea, defined

by Pðt0; sÞ, into communities or provin-

ces for increasing values of s. Each prov-

ince is colored by its coherence ratio

value from Eq. (16), as given in the color

bar. In all panels, t0¼ July 1st 2011.

(a) s¼ 30 days; the number of commun-

ities is p¼ 56, the global coherence

qst0 ðPÞ ¼ 0:76, and the global mixing

Ms
t0
ðPÞ ¼ 0:47. (b) s¼ 60 days; p¼ 33,

qst0 ðPÞ ¼ 0:73; andMs
t0
ðPÞ ¼ 0:54. (c)

s¼90 days; p¼22, qst0 ðPÞ
¼ 0:80; andMs

t0
ðPÞ ¼ 0:59.
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4. Average descriptions

Because of the turbulent nature of oceanic motions, the

community decomposition changes with t0. Some commun-

ities (even of small size) are repeatedly observed while some

others appear and disappear when changing t0. In order to

identify persistent communities, i.e., those whose limits are

relatively stable in space and time, we explore two averaging

procedures leading to a mean—“climatological”—commu-

nity partition. In a first approach, we average a number of

matrices Pðt0; sÞ corresponding to the same starting date

(e.g., January 1st) for the ten different years of the data set

(e.g., January 1st 2002, January 1st 2003, etc., until January

1st 2011). Figure 12 shows the Infomap partition of the

FIG. 11. Panel (a) shows the mean

area (dots) of the communities

detected by the Infomap algorithm for

t0¼ July 1st 2011 as a function of s.

The straight line is a fit to the

diffusive-growth-like relationship

Area¼ 8109.6 þ 1173.8 � s. The error

bars indicate the standard deviation of

the area distribution. Note the large

dispersion in community sizes. The

upper left inset (b) shows the decay of

the number of communities with s.

FIG. 12. Infomap communities

obtained from the average networks

given by Pðt0; sÞ, with s¼ 30 days.

Each community is colored by its

coherence ratio. (a) The average is

over the 10 matrices corresponding to

t0¼ January 1st in 10 years

(2002–2011) of simulation; the number

of communities is p¼ 34, the global

coherence qst0 ðPÞ ¼ 0:78, and the

global mixing Ms
t0
ðPÞ ¼ 0:68. (b) The

average is over the 10 matrices corre-

sponding to t0¼ July 1st in the 10

years 2002–2011; p¼ 30, qst0 ðPÞ

¼ 0:77; andMs
t0
ðPÞ ¼ 0:69.
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network defined by the average matrix Pðt0; sÞ made with

the ten matrices Pðt0; sÞ using the same starting date for each

of the 10 years (2002–2011). An example of t0 in winter and

another one in summer are displayed. The figure shows the

most persistent communities for a particular month, averag-

ing out the variability occurring over ten years. We remark

than some communities have a rather small size (most of

them reflecting shallow oceanic regions such as continental

shelves), and that there is some inter-seasonal variability.

A second approach to obtain average or climatological

description of the community partition is illustrated in Fig.

13. Instead of applying only once Infomap on an averaged

transport matrix, it is here applied 10 times separately on the

10 transport matrices corresponding to the same starting date

for each of the 10 years (2002–2011). The color at a particu-

lar location of Fig. 13 indicates the frequency of occurrence

(in these 10 partitions) at that location of a border between

communities. Then, greener color indicates a more persistent

community border. The strongest lines would represent true

“barriers to transport” which remain fixed in space. Fuzzier

lines may indicate intermittent border appearance, but also a

larger wandering amplitude. Figures 13(a) and 13(b) display

FIG. 13. Persistence of community

borders over time: Color code indi-

cates the proportion of times one of the

borders between communities has

appeared at a given location. s¼ 30

days. (a) t0¼ January 1st of

(2002–2011). (b) t0¼ July 1st of

(2002–2011). (c) The average of the

two previous panels, eliminating the

seasonal information.
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the situation in the same winter and summer days as in Fig.

12. Figure 13(c) shows a combination of them, equivalent to

showing the barrier persistence sampled twice a year during

the ten years.

5. Comparison with spectral partitioning

Different methods based on the spectral properties of

transport matrices have been previously used to identify and

locate almost-invariant sets in flows.15–18,37 They exploit the

fact that for a set to remain almost invariant after the effect

of the flow, it has to be related with eigenvectors of Pðt0; sÞ
with eigenvalues close to 1. Here, we compare our partition-

ing obtained by Infomap with the one from those spectral

methods. To be specific, we consider the method described

by Froyland and Dellnitz.15 The technique in this last paper

obtains a partition P minimizing in an approximate way the

global coherence qst0ðPÞ. To this end, it computes eigenvec-

tors associated to nearly vanishing eigenvalues of the

Laplacian matrix43 obtained from the symmetric part of

Pðt0; sÞ and combines them using a fuzzy c-means clustering

algorithm.15 Note that this approach eliminates any direc-

tionality information present in the transport network. Also,

the c-means clustering can define as single community

pieces of the ocean which are geographically disjoint or in

fact quite far apart, if this enhances the coherence defined in

Eq. (17). In the method, one has to specify the number of

eigenvectors being combined (we choose it to be 10) and the

number of communities in the partition. Figure 14 shows the

results using the same average matrix Pðt0; sÞ as in Fig.

12(b), and imposing a partition in 10 and in 14 communities.

The change in the number of communities leads to rear-

rangements in the Tyrrhenian, the central Mediterranean, the

Aegean, and the Levantine basin. In panel (a), some of the

communities are made of disjoint pieces. Larger number of

communities decreases the global coherence ratio (see cap-

tion of Fig. 14). If we try to increase the number of commun-

ities approaching the one given by Infomap, we find that the

clustering algorithm becomes unstable. Instabilities also

occur when the number of links in the transport network

becomes too high (as occurring, for example, when increas-

ing s beyond 1 month).

When compared with the Infomap decomposition, we

see that several of the boundaries coincide. But there are

important differences, such as the wider range of commu-

nity sizes and the sharper details revealed by Infomap.

This is because a constraint of similar sizes for the com-

munities associated to the same eigenvector needs to be

imposed in the spectral method. When clustering several

eigenvectors together, this limitation is partially bypassed

FIG. 14. Community decomposition

by the spectral method with fuzzy c-

means clustering described in Froyland

and Dellnitz.15 The matrix used is the

same average Pðt0; sÞ as in Fig. 12(b),

i.e., with t0¼ July 1st, averaged in the

ten years 2002–2011, and s¼ 30 days.

Ten eigenvalues are used. (a) The

number of communities is fixed to be

p¼ 10; the global coherence is

qst0 ðPÞ ¼ 0:85, and the global mixing

is Ms
t0
ðPÞ ¼ 0:62. In the Aegean, the

southern yellow community is the

only independent one: the portions of

the Aegean further north are clustered

by the c-means algorithm as being

part of the same province as areas in

the central Mediterranean with the

same color. (b) p¼ 14; qst0 ðPÞ ¼ 0:78;

Ms
t0
ðPÞ ¼ 0:64.
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but still not removed. The values of the coherence ratio are

of the same order or somehow larger for the spectral

method, but note that the number of spectral communities

has been kept much smaller to avoid the instabilities in the

clustering algorithm. Since merging two communities into

a single one increases the global coherence, joining some

of the Infomap communities in Fig. 12 until arriving to 10

or 14 communities as in Fig. 14 would give rather large

values of qst0ðPÞ. As expected, the global mixing parameter

is larger for the Infomap partition, but only by a small

amount, reflecting that, even if internal mixing is not

imposed in the spectral method, it is achieved to a reasona-

ble extent.

From the methodological point of view, Infomap

presents the advantage of determining itself the number of

communities in the partition, whereas this needs to be fixed

a priori (as well as the number of eigenvectors to be clus-

tered) in the spectral approach. On the other hand, the

spectral method is formulated as an algorithm to minimize

the global coherence ratio, a quantity with a clear physical

meaning. The quantity optimized by Infomap is a code-

word length given in Eq. (B1) of Appendix B, an abstract

information-theoretic object without a clear physical

meaning. The heuristic interpretation of the optimization

process leads to the “large internal-small external con-

nectivity” property for the communities, but a more rigor-

ous understanding of the Infomap procedure is clearly

needed.67,69

The results of this section indicate that the Infomap

methodology proposed here to identify coherent fluid regions

seems more appropriate than spectral methods when a wide

range of community sizes is expected, when internal mixing

is a key parameter, or to minimize user input (such as enter-

ing the number of communities). Spectral methods seem

appropriate when one is looking precisely for the sets defined

mathematically as almost-invariant, the coherence ratio

describes well the desired properties of the partition, and one

expects a limited range of sizes.

V. CONCLUSIONS

We have used the concept of flow networks to obtain a

discretized view of transport processes in geophysical con-

texts. Once the fluid motion is cast into the graph-theory

framework, powerful techniques from this field become

available to investigate the fluid transport processes. In this

paper, we have improved, using network concepts, the

characterization of geophysical dispersion and mixing pro-

cess, as well as the identification of coherent fluid regions.

One of the simplest network descriptors, the degree of a

node, gives direct information on local stretching proper-

ties, classically associated to the finite-time Lyapunov

exponents and their distributions. Thus, the out-degree at a

particular node is quantitatively related to the fluid stretch-

ing at that location in the time-forward direction and quan-

tifies fluid dispersion. The in-degree is related to

backwards stretching and thus to the mixing of fluid from

different origins.

A family of network-entropy functions has been defined,

aiming at describing higher order statistical properties of

fluid stretching (and then of dispersion and mixing) in terms

of the network adjacency matrix. One of them, H0
i is simply

the logarithm of the degree. Another one, H1
i , is the discrete

finite-time entropy studied by Froyland and Padberg-

Gehle.29 We find numerically that it provides a good estima-

tion of the coarse-grained finite-time Lyapunov exponent.

We expect higher order entropies to be related to the general-

ized Lyapunov exponents60,62 that characterize successive

moments of the Lyapunov field. Further work is needed to

assess the validity of these properties more rigorously,

beyond the heuristic and numeric arguments given in Sec.

IVA and in Appendix A.

This paper considered flow networks in the geophysical

context, but it is anticipated that the concepts are equally

valid in more general fluid dynamics context, and even apply

to more abstract flows in the phase space of dynamical sys-

tems.15,34,35 Also, the network entropies defined here can be

used to characterize the local properties of general weighted

networks beyond the degree and the node strength.

As a second application in which the network represen-

tation provides useful insights, we have investigated the

identification of coherent regions in the ocean flow,36,38,39

regions that are similar to almost invariant sets15,16 but for

which the presence of strong internal mixing is also desired.

We find in the network-theory toolbox a useful community

detection technique, Infomap, that takes into account the

directed and weighted nature of the flow network, and that

finds partitions of the geophysical flow with the required

characteristics without restricting the range of community

sizes. We have argued that these characteristics make it an

interesting alternative to spectral methods to identify the

desired coherent regions, although we also recognize that a

substantial clarification of the physical meaning of the mini-

mization process involved in Infomap is needed. This parti-

tion of the sea into coherent provinces has already been used

to evaluate larval connectivity and to inform the design of

marine protected areas.39 The present implementation of the

method deals only with regions fixed with respect to geo-

graphic boundaries. Tools from the study of bipartite net-

works would be needed to find moving coherent regions

such as vortices.20,22

We believe that the representation of fluid motion as a

transport or flow network, allowing the use of powerful tech-

niques from graph theory, will continue to provide novel

insights into the nonlinear processes occurring in our planet,

most of them related to fluid transport.
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APPENDIX A: RELATIONSHIP BETWEEN NETWORK
ENTROPIES AND STRETCHING STATISTICS

In this Appendix, we derive heuristically relationships

between the network entropies defined in Sec. IVA and

Lyapunov exponent statistics (in the two-dimensional

case). Fig. 15 illustrates the basic ideas. The assumptions

are that dynamics is mainly hyperbolic in the region of in-

terest, and that s and the size D of the fluid boxes fBi; i ¼
1; :::;Ng are such than the image of the boxes by the

flow after a time s are thin and long filaments. Boxes in

the partition have been roughly aligned with expanding

and contracting directions to make easier the heuristic

arguments.

The point is to estimate the values of the matrix ele-

ments Pðt0; sÞik given in Eq. (2)

P t0; sð Þik ¼
m Bi \ U

�s
t0þs Bkð Þ

� �

m Bið Þ
: (A1)

The quantity in the numerator of Eq. (A1) is the area of the

doubly dashed thin filament in the left of Fig. 15. If we

assume that the forward FTLE kðx0; t0; sÞ is approximately

constant for x0 in this region, we have mðBi \ U
�s
t0þsðBkÞÞ �

D
2 expð�kiksÞ (see Fig. 15), where kik is this constant value.

In consequence, Pðt0; sÞik � expð�kiksÞ if Bk is one of the

boxes containing part of the image U
s
t0
ðBiÞ of Bi, and

Pðt0; sÞik ¼ 0 elsewhere.

Spatial features in typical forward FTLE fields are thin

filaments with nearly constant value k. They are elongated

along the expanding directions9,12 and have widths of the

order of l expð�ksÞ, where l is the size of the velocity field

inhomogeneities, i.e., the size of the Eulerian structures

driving the flow. Then, the uniformity condition we are

imposing is D< l, i.e., discretization boxes smaller than

Eulerian structures. In our Mediterranean example, D is

smaller than the dominant mesoscale structures in the sea,

but some of the smaller features in the velocity field can

have some impact on the validity of the uniformity

condition.

We can use our estimation of Pðt0; sÞik to compute the

sum appearing in the network entropies definition Eq. (11).

The assumption of uniform FTLE inside region Bi \
U

�s
t0þsðBkÞ allows us to freely replace functions of kik by aver-

age values in that region

X

N

k¼1

P t0; sð Þik
� �q �

X

N

k¼1

e�qkiks

�
X

N

k¼1

1

D
2e�kiks

ð

Bi\U
�s
t0þs Bkð Þ

e�qk x0;t0;sð Þsdx0

�
X

N

k¼1

1

D
2

ð

Bi\U
�s
t0þs Bkð Þ

e 1�qð Þk x0;t0;sð Þsdx0

¼
1

D
2

ð

Bi

e 1�qð Þk x0;t0;sð Þsdx0 ; (A2)

which, using definition (11), implies

eð1�qÞsHq

i
ðt0;sÞ � heð1�qÞskðx0;t0;sÞiBi

: (A3)

This is the sought relationship between network entropies

and moments of the stretching factor eks. For q¼ 0, we

reobtain Eq. (10). In the limit q ! 1, we get H1
i ðt0; sÞ

� hkðx0; t0; sÞiBi
¼ kiðt0; sÞ. The arguments above can be

repeated to get the same relationship (A3) between network

entropies in the backwards time direction and backwards

Lyapunov exponents.

All these expressions are similar to the ones presented,

for example, by Paladin and Vulpiani71 relating R�enyi entro-

pies and generalized Lyapunov exponents defined from

moments of the stretching factor eks. But here, the moments

are not by averaging along a dynamic trajectory but inside a

box Bi. In the same way, as the value of any of the network

entropies at node i characterizes the inhomogeneity in the

fluxes sent from i to other nodes, the difference between the

different entropies (different q) at a single node i character-

izes the inhomogeneity of the FTLE inside box Bi. This is a

way by which small-scale features present in the Lagrangian

trajectories get statistically represented in the network

description. Relationships such as (A3) are not exact for fi-

nite D and s, but we expect them to become more accurate

for increasing s and decreasing D.

APPENDIX B: THE INFOMAP METHOD

Infomap67 is a community-detection algorithm43,63–66

that retains both the “direction” and “weight” information of

each link in the network.

Infomap does not require to specify a priory the number

of communities to be detected. It finds structures which are

directly related to well-mixed regions under the flow repre-

sented by Pðt0; sÞ, and not to other structural properties (for

example, a well defined region with strong fluxes oriented

towards a particular direction) which will not lead to particle

localization in that region. Also, Infomap does not assume

communities with similar sizes (as, for example, spectral

partitioning16,17) nor suffers from the “resolution limit”68

which limits the minimum community size detectable by

FIG. 15. Schematics of the stretching (forward and backwards in time) of

fluid boxes of sidelength D corresponding to network nodes. UðBiÞ is a

shortcut for U
s
t0
ðBiÞ, and U

�1ðBkÞ is a shortcut for U
�s
t0þsðBkÞ. kik is the

value of the forward FTLE kðx0; t0; sÞ in the doubly dashed region

Bi \ U
�1ðBkÞ.
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most algorithms. In fact, the method decomposes the trans-

port network into subgraphs of different sizes where the flow

requires so.

In addition to these convenient properties, the minimiza-

tion algorithm is efficiently implemented in publicly avail-

able software (http://www.tp.umu.se/~rosvall/code.html).

Infomap considers an ensemble of random walkers in

the weighted and directed network defined by Pðt0; sÞ, mov-

ing with the transition probabilities in that matrix. Then, the

method considers from the information-theory point of view

the optimal coding of the ensemble of possible random

walks. To this end, the network is divided in communities

and each random walk is coded by sequences of words that

represent successive locations inside a community and jumps

between different communities. The information-theoretic

lower bound to the average length of the codeword used is

given in terms of the transition probabilities and of the spe-

cific partition in communities by the so-called map equation

L ¼ q�HðQÞ þ
X

c

a¼1

pa
'
HðPaÞ : (B1)

c is the number of communities in the particular partition

considered. The first term involves the Shanon entropy asso-

ciated to the transitions between different communities a

H Qð Þ ¼ �
X

c

a¼1

qa�

q�
log2

qa�

q�

� �

: (B2)

qa� is the probability to leave community a in one random-

walk step, and q� ¼
Pc

a¼1 qa�. Expressions for these quanti-

ties in terms of the components of the network matrix Pðt0; sÞ
are given in Rosvall and Bergstrom.67 The second term in Eq.

(B1) contains the Shanon entropies HðPaÞ associated to the

words used to codify the position inside a community a and

the word that denote the exit from that community

H Pað Þ ¼ �
X

i2a

pi

pa
'

log2
pi

pa
'

� �

�
qa�

pa
'

log2
qa�

pa
'

� �

: (B3)

The notation i 2 a indicates sum over the nodes pertaining to

community a. pi is the stationary distribution of the random

walk and pa
'
¼ qa� þ

P

i2api. Again, expressions for these

quantities can be obtained from the elements in the network

matrix Pðt0; sÞ.
67

Infomap finds the partition that minimizes the quantity

in (B1), i.e., the partition that provides a shorter description

of the ensemble of walks going in and outside the commun-

ities. In other words, it finds the partition for which the ran-

dom walks remain most of the time inside the communities

with few jumps between them. This minimization process

uses a deterministic greedy algorithm followed by a

simulated-annealing which was repeated 100 times to select

the best partition in provinces (although the results were al-

ready stable after 10 attempts).
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