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Abstract: The methods of multiple scales and approximate potential are used to study 

pendulums with linear damping and variable length. According to the order of the coefficient 

of friction compared with that of the slowly varying parameter of length, three different 

cases are discussed in details. Asymptotic analytical expressions of amplitude, frequency 

and solution are obtained. The method of approximate potential makes the results effective 

for large oscillations. A modified multiple scales method is used to get more accurate 

leading order approximations when the coefficient friction is not small. Comparisons are 

also made with numerical results to show the efficiency of the present method. 
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1 I n t r o d u c t i o n  a n d  P r o b l e m  

This paper is to study the following pendulum with slowly varying parameter: 

/2(v) ~ + /1 ( l ( r ) 0 )  + g l ( r ) s i n O  = O, (1) 

where 0 is the angle of deviation of the pendulum from the vertical, g is the gravitational 

acceleration, l ( r )  is the slowly varying length, r = et is the slow scale and ,u is the coefficient 

of friction. Such problem had been studied by Nayfeh rl? , Bogoliubov and Mitropolsky [27 . In 

Ref. [3 ] ,  Yuste used a generalization of the elliptic KB method E41 to obtain the amplitude of the 

oscillatory system governed by a first-order differential equation, which is so complicated that 

numerical method must be used to solve it. The expression of frequency is not given in Ref. [ 3 ] 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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because of its complexity. Further examination of Eq. ( 1 ) we found that different orders of/1 

compared with ~ will result in different expressions of frequency. In the cases of bL = 0 ( ~ ),/1 = 

o ( ~ ) and ~ = o ( At ) ,  the multiple scales method is used to deduce the asymptotic frequencies and 

solutions of Eq. ( 1 ) ,  from which we can see the effect of At and e on frequencies clearly. 

Approximate potential, which was first proposed by the third author in Ref. [ 5 ] ,  is used to make 

the asymptotic solutions work for large oscillations. The method is to express the potential for the 

oscillatory system by a polynomial of degree four such that the leading approximation is 

expressible in terms of elliptic functions. A modified procedure of multiple scales is also used to 

get more accurate leading order approximations when the coefficient of friction is not small. 

Examples are also given to verify the efficiency of the presented method. 

2 A s y m p t o t i c  S o l u t i o n  o f  P e n d u l u m  

According to the order of At compared with e ,  three cases of Eq. ( 1 ) will be discussed in 

details. Different orders of/z will deduce different expressions of frequencies and solutions of the 

oscillatory system. 

2 . 1  C a s e  o n e :  p = O ( e )  

Let/1 = ce and c be a constant. Then Eq. ( 1 ) becomes 

2 l ' ( r )  + c o e 2 c l ' ( r ) o  .,--Tg-vsin0 = 0, (2) 
0 + e l ( r )  + /2 ( r )  + l(, r )  

where0 = d O / d t , l '  = d l / d r  and r = et is the slow scale. The fast scale t +, following 

dr+ - w ( r )  with an unknown w ( r )  to be determined by the Kuzmak [6], is defined as dt 

periodicity of the solution of Eq. (2 ) .  Suppose that the solution of Eq. (2) can be developed into 

multiple scales form 

O(t,~) = 0 o ( t + , r )  + ~0~( t+ ,r )  + ~202( t+ ,r )  + "", (3) 

where 0o ,0~ ,02 ,""  must be periodic functions of t + , otherwise the expressions can not be 

asymptotic. Substituting Eq. (3) into Eq. (2) and equating powers of e gives the leading order 

equation 

0z0~ g sin0 0. (4) w z ( r )  0 - ~  + / ( r )  0 = 

Multiplying Eq. (4)  by 3 0o/0 t + and integrating it with respect to t +, we obtain the energy 

integral 

2 Ot*l + V(Oo) = E 0 ( r ) ,  (5) 

where 

V(Oo) = /--~r)(1 - cos00) (6) 

is the potential and E0( r )  is the slowly varying energy of system. We construct a fourth order 

polynomial to the approximate potential (6 ) .  It is denoted by 

1 V( O) = l c t (  r )02  + -~-b(r)04,  (7) 

where the coefficients a and b are chosen such that 
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{~0 = Vat  0 = 0 ,  0 = O r a n d O  = 0 , , 0  < 0r, 0s ~< 7t, (8 )  

Oat 0 0. 

The fitting points 0r and 0s can be chosen according to different requirements. Substituting ~' for V 

in Eq, (5) and integrating it, we can obtain 0o in terms of elliptic functions (see Ref. [ 7 ] Section 

3 .6)  

2av (9) 
00 = - b ( 1  + v) sn [K(v)  9 , v ] ,  

where 9 = t+ + 90, and K(v)  is the complete elliptic integral of the first kind associated with the 

modulus ~/-vv. The governing equation v is in the form (see Ref. [ 8 ] or Ref. [ 9 ] ) 

L2(v)v  2 O 2 b 2 [  f2 2 l ' ( s )  + ) 
(1 + v) 3 = ~ a  3 e x p , - 2  l ( s )  cds ' (10) 

where constant D can be determined by initial values of the system, and 

f~cn2( u ,  1 L ( v )  = v ) d n 2 ( u , v ) d u  = ~vv[(1 + v ) E ( v )  - (1 - v ) K ( v ) 3 .  ( l l )  

Here, E(v)  is the complete elliptic integral of the second kind associated with the modulus ~ v .  

The frequency is 

Db(l  + v) ( I r 2 1 ' ( s )  + Cds) (12) 
o~(r) = - 2 a v K ( v ) L ( v ) e X p  - o l ( s )  " 

The details also can be found in Ref. [8] or R e f . [ 9 ] .  

2 . 2  Case  two:  /t = o ( 8 )  
Without loss of generality, we assume that/z = cr 2 and c is a constant. Then Eq. ( 1 ) 

becomes 

2 / ' ( r )  h r c e 3 c l ' ( r )O  --6--sin0 = 0. (13) i9 + v + lT 5 ) 0 + z2( ) + 

Similar to Case one, we can get the leading order approximate solution of Eq. ( 9 ) .  Now the 

governing equation v becomes 

L2(v)v  2 D2b z [ f 2r(s). ~ D2b 2 1 (14) 
(1 + v) 3 - ~ a  3 e x p [ - 2  l-~-~s) us] = 4a  3 /4(r  ) ,  

and the frequency becomes 
Db(1 + v) [ [ r 2 l ' ( s ) ,  

co(r)  = - 2avK( v ) L--(-v )eXp[ - -o -[-(-~ u s ] =  

Db(1 + v) 1 (15) 
- 2 a v K ( v ) L ( v )  / 2 ( r ) "  

2 . 3  Case  t h r e e :  tr = o ( / t )  
Without loss of generality, we assume that e = c~ 2 and c is a constant. We define a new 

slow scale as~ = Art and the fast scalet  + a s d t  + / d t  = to(~) ,  then r = et = ctd. Eq . (1 )  
becomes 

1__~ O 2 2 c l ' ( v )  t z3 c l ' ( v ) o  g s inO= 0 (16) 
+ L(r )  0 +  Z2( ) 

Similar to Case one, we can get the leading order approximate solution of Eq. ( 9 ) .  The 

governing equation v becomes 

(1 + v) 3 - ~ a 3 e X p [ - 2  o ds , (17) 
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and the frequency becomes 

co(i) = - 2avK(v fL-- ( -v jexpt -  o ds . (18) 

If/z is not small (such as 0.1 ~< /z < 1 ) ,  the first-order approximation can have large errors. 

To avoid complicated calculation of higher order approximation, we can reserve the 0 (/z z) term 

/ f i ( 2 c l ' ( r ) / l ( r ) ) O  in the O(/z) term t z [ 1 / l ( r ) ] O ,  that is, 

1 2 c l ' ( r ) /  Z 3 c l ' ( r ) o  --g--sin0 + /1 ~ + ,u - - - - ~ 1  0 + + = 0. (19) l(  12(~-) l(~-) 

Then Eq. (17) becomes 

t2(v)  2 2 t ) 
(1 + v)  s - 4-Ja3 e x P k - 2  o l ( c ,u s )  ds , (20)  

and Eq. (18) becomes 

Db(l  + v) ( ~ 2 1 +  2cfd'ectzS)ds) (21) 
co(t) = - 2 a v K ( v ) L ( v ) e X p  - l(ct~s ) �9 

Such modification can make the asymptotic solution much more accurate (see Example 3) .  

3 E x a m p l e s  

E x a m p e l l  Consider Eq . (1 )  of Caseone withe = 0 . 0 1 , c  = 1,,u = 0 . 0 1 , l ( r )  = 

1 + r a n d g  = 9 .8 ,  that is, 

3 0 + r let)2 0 9.8 + sin0 = 0 (22) 0 + e 1 + r (1 + 1 + et ' 

2 0(0) = ~ ,  0(0)  = o. (23) 

The potential related to Eq. (6) is 

9.8 (1 - eos0o). (24) V( O~ - 1 + et 

We seek a polynomial of the form 

1 4 b ( r ) 0 4  V(O) = - ~ a ( v ) O  2 + 

to fit the potential V. The coefficients are chosen such that 
2rr 

V = V a t O  = O, 0 = - ~ a n d O  = ~ - ,  

Vo = 0 a t 0  = 0. 

Then 

1 9.681 2402 _ 1 1.358 1904. (25) 
1 , ' ( 0 )  - 2 1 + r 4 1 + r 

The comparison of potential (24) and its approximation (25) is shown in Fig. 1. The comparison 

of numerical solution with asymptotic solution of Eqs. (22) and (23) is shown in Fig. 2. The 

asymptotic solution is obtained by Eqs. (9 )  ~ ( 1 2 ) .  In this paper, numerical solutions are 

obtained by using software Mathematica. 
Example  2 Consider Eq . (1 )  of Case two with e = 0 . 0 1 , c  = 1,/z = 0 . 0 0 0 1 , l ( r )  = 

1 + r and g = 9 .8 ,  that is, 

2 t9 + e 2 1 0 + e 3 le t )20  9.8 + sin0 = 0 ,  (26) 
+ r 1 + r 1 + et (1 + 1 + r 
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2 
0 (0 )  = -~Tr, 0 ( 0 )  = 0. (27) 

The comparison of numerical solution with asymptotie solution of Eqs, (26) and (27) is shown in 

Fig .3 ,  The asymptotic solution is obtained by Eqs. ( 9 ) ,  (14) and (15) .  
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E x a m p l e  3 Consider Eq. ( 1 ) of  Case 2~ 

three with e = 0 . 0 1 , c  = 1 ,#  = 0 . 1 , 1 ( r )  = 

1 + r andg  = 9 .8 ,  that is, 
q~ 

0 + #  l + , u 2 :  1 + # 2 :  

3 1 9 .8  - 
~2:)2a - -  

+ 'u 2 sinO = O, /1 ( 1 +  1 +  t c3 

(28) 

(29) 

solution with 

2 o(0) = 3-~, 0(0) = 0. 

The comparison of numerical 

asymptotic solution obtained by Eqs. ( 9 ) ,  (17)  

and (18) is shown in Fig.4,  and the comparison 
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with the asymptotic solution obtained by Eqs. ( 9 ) ,  (20) and (21) is shown in Fig .5,  from which we 

can see that the leading order approximation obtained by the modified procedure of  multiple scales is 

more accurate than that obtained by usual procedure .  

It can be seen from Figs. 2 , 3  and 5 that all the results obtained by our presented method are 

nearly identical with those numerical results even if the oscillatory amplitudes are as large as 2~r/3 

and the parameter/z is not small. 

4 Conclusions 

1 ) The classification o f  the order of,u compared with e results in different analytical expressions 

of  the frequencies such that the effect of  ,u and e on the frequencies can be seen clearly and the 

asymptotic solutions become more accurate. 

2) The approximate potential method can make the results effective for large oscillations. 

3) The modified procedure of  multiple scales can get more accurate leading 

approximations when the coefficient of  friction is not small. 
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