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Abstract

We consider a SDE with a smooth multiplicative non-degenerate noise and a
possibly unbounded Hölder continuous drift term. We prove existence of a global
flow of diffeomorphisms by means of a special transformation of the drift of Itô-
Tanaka type. The proof requires non-standard elliptic estimates in Hölder spaces. As
an application of the stochastic flow, we obtain a Bismut-Elworthy-Li type formula
for the first derivatives of the associated diffusion semigroup.

1 Introduction

In this paper we study the existence of a global stochastic flow of diffeomorphisms for
the following stochastic differential equation in Rd

dXx
t = b (Xx

t ) dt+
k∑
i=1

σi (Xx
t ) dW i

t , t ≥ 0, Xx
0 = x, (1)

where Wt = (W 1
t , ...,W

k
t ) is a standard Brownian motion in Rk. We assume that the

diffusion coefficients σi : Rd → Rd, i = 1, . . . , k, are smooth and non-degenerate and we
allow the drift term b : Rd → Rd to be unbounded and Hölder continuous.

Following a common language, we say that equation (1) is weakly complete if there
exists a unique global strong solution for every x ∈ Rd, and that it is strongly complete
if there exists a global stochastic flow of homeomorphisms. If the coefficients b and σi
are globally Lipschitz, then one has strong completeness (see [19] and [20]).

Weak completeness is true under much weaker assumptions: for instance, when the
coefficients b and σi are locally Lipschitz continuous and have at most linear growth.
In dimension one, these assumptions also imply strong completeness (see [19] and [20])
but in dimension larger than one there are counterexamples, from [23], even in the
case of smooth bounded coefficients. These examples indicate that some form of global
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control at infinity on the increments of the coefficients is necessary. For (at least) locally
Lipschitz coefficients, there are indeed positive results of strong completeness (see [7],
[22], [24]).

Strong completeness for non-locally Lipschitz coefficients can be established replacing
the global Lipschitz condition on the coefficients with global log-Lipschitz type conditions
(see [29], [33], [9], [8]). Such log-Lipschitz conditions are stronger than the Hölder
continuity.

Many papers prove weak completeness for SDEs with non-locally Lipschitz contin-
uous coefficients assuming a non-degenerate diffusion matrix σ. First papers in this
direction were [35] and [31] in which the method of the so called Zvonkin’s transforma-
tion was introduced. More recent papers dealing with such approach are [13], [17], [32],
[34] (see also the references therein). In the case of non-degenerate additive noise and
time dependent drift b, the most advanced result (but see also the 1-dimensional results
reported in [30]) is [17]; in such paper it is shown that it is sufficient to assume that
b ∈ Lq

(
0, T ;Lploc

(
Rd
))

with d
p + 2

q < 1, p ≥ 2 and q > 2, plus a non-explosion condition,
to get weak completeness. This result has been generalized in [32] to cover also the
case in which σ is variable, time-dependent and non-degenerate. We do not know about
strong completeness under such weak assumptions.

The contribution of the present paper is to prove strong completeness for SDEs with
“locally uniformly θ-Hölder continuous” drift b, for some θ ∈ (0, 1) (see (3)), removing
boundedness of b or additional regularity assumed in previous works. Also, we allow non-
degenerate, bounded and C3

b (Rd,Rd)-diffusion coefficients (σi)i=1,...,k. We point out that
our result seems to be new even in the case of constant and non-degenerate (σi)i=1,...,k.

In spite of the fact that b is not even differentiable, under the previous assumptions,
we construct a stochastic flow of C1-diffeomorphisms (see Theorem 7) using the approach
of [10] rather than the Zvonkin’s transformation method used in the above mentioned
works on strong completeness (we compare the two methods in Section 3).

In [10] in order to study a linear stochastic transport equation with a bounded vector
field b̃(t, x) which is Hölder continuous in x, uniformly in time, we have showed that if in
(1) σ = (σi) is constant and non-degenerate and b = b̃, then there exists a stochastic flow
of C1-diffeomorphisms. This result can be extended without difficulties to the case in
which σ is not constant, bounded, non-degenerate, and time-dependent (see [34] where
this case is investigated by the Zvonkin’s transformation or Remark 9 where we show
such result following the approach of [10]).

In the present situation, since our b is unbounded, we need new global regularity
results in Hölder spaces for the solution u of the elliptic equation

λu(x)− 1
2

Tr(a(x)D2u(x))− b(x) ·Du(x) = b(x), x ∈ Rd, (2)

to be interpreted componentwise, where λ > 0 is large enough, a(x) = σ(x)σ∗(x) (σ∗(x)
denotes the adjoint matrix of σ(x)). The study of this equation will be the subject of
Section 2 of the present paper. The required estimates are not covered by recent papers
dealing with elliptic and parabolic equations with unbounded coefficients (compare with
[4], [1], [18] and the references therein). To obtain such result we prove a crucial Lemma
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4 concerning estimates on the derivatives of the associated diffusion semigroup when it
is applied to unbounded functions f ; in its proof we also use an argument from the proof
of [27, Theorem 3.3]. In Remark 10 we show a possible extension of our Theorem 7 to
the case in which b and σ are time-dependent.

We finish the paper by showing that a Bismut-Elworthy-Li formula holds for the
diffusion semigroup associated to (1) (see Theorem 11). Under the poor regularity of b
assumed here, this result is new. Bismut-Elworthy-Li formula requires a suitable form
of differentiability of the solution of (1) with respect to the initial condition x; we have
this result as a byproduct of our Theorem 7 on existence of a differentiable stochastic
flow.

Notations and assumption The euclidean norm in any Rk, k ≥ 1, will be denoted
by | · | and its inner product by · or 〈·, ·〉. For θ ∈ (0, 1), we define the set Cθ(Rd; Rk),
k, d ≥ 1, as set of all vector-fields f : Rd → Rk for which

[f ]θ := sup
x 6=y∈Rd,|x−y|≤1

|f(x)− f(y)|
|x− y|θ

<∞. (3)

These are the “locally uniformly θ-Hölder continuous” vector fields mentioned in the
introduction. The function f (x) = |x|θ is a classical example. We let

[f ]θ,1 := sup
x 6=y∈Rd

|f(x)− f(y)|
(|x− y|θ ∨ |x− y|)

<∞, (4)

where a∨b = max(a, b), for a, b ∈ R. By a simple argument we have [f ]θ ≤ [f ]θ,1 ≤ 2[f ]θ,
so in particular functions in Cθ(Rd; Rk) have at most linear growth. The set Cθ(Rd; Rk)
becomes a Banach space with respect to the norm

‖f‖θ =
∥∥ (1 + | · |)−1 f(·)

∥∥
0

+ [f ]θ,

where ‖ · ‖0 denotes the supremum norm over Rd. We say that f ∈ Cn+θ(Rd; Rk), n ≥ 1,
if f ∈ Cθ(Rd; Rk) and moreover, for all i = 1, . . . , n, the Fréchet derivatives Dif are
bounded and θ-Hölder continuous. Define the corresponding norm as

‖f‖n+θ = ‖f‖θ +
n∑
i=1

‖Dif‖0 + [Dnf ]θ. (5)

If Rk = R, we simply write Cn+θ(Rd) instead of Cn+θ(Rd; R), n ≥ 0. Cn+θ
b (Rd; Rk) is

the subspace of Cn+θ(Rd; Rk), consisting of all bounded functions of Cn+θ(Rd; Rk). In
particular, Cθb (Rd) is the usual Banach space of all real bounded and θ-Hölder continuous
functions on Rd (cf. [15]). Cnb (Rd; Rk) is the space of all bounded functions from Rd

into Rk having also bounded derivatives up to the order n ≥ 1 and we set Cnb (Rd; R) =
Cnb (Rd). Finally, we say that f : Rd → Rd is of class Cn,α, n ≥ 1, α ∈ (0, 1), if f
is continuous on Rd, n-times differentiable and the derivatives up to the order n are
α-Hölder continuous on each compact set of Rd.
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Throughout the paper we will assume a fixed stochastic basis with a d-dimensional
Brownian motion (Ω, (F t) ,F , P, (Wt)) to be given. Denote by Fs,t the completed σ-
algebra generated by Wu −Wr, s ≤ r ≤ u ≤ t, for each 0 ≤ s < t.

On equation (1), we will consider the following assumptions.

Hypothesis 1 There exists θ ∈ (0, 1) such that b ∈ Cθ(Rd; Rd).

Hypothesis 2 The diffusions coefficients σi : Rd → Rd, i = 1, . . . , k, are bounded
functions of class C3

b (Rd,Rd).

Hypothesis 3 Consider the d× k matrix σ(x) = (σi(x)), and its adjoint matrix σ∗(x),
x ∈ Rd; we assume that, for any x ∈ Rd, there exists the inverse of a(x) = σ(x)σ∗(x)
and

‖a−1‖0 = sup
x∈Rd

‖a−1(x)‖ <∞ (6)

(‖a−1(x)‖ denotes the Hilbert-Schmidt norm of the d× d symmetric matrix a−1(x)).

2 Regularity results for the associated elliptic problem

2.1 Estimates on the derivatives of the diffusion semigroup

Here, we consider the SDE (1), assuming that σ satisfies Hypotheses 2 and 3 and im-
posing in addition that

b ∈ C3(Rd; Rd) with all bounded derivatives up to the third order. (7)

Clearly this is stronger than Hypothesis 1 but b is not assumed to be bounded.
Let (Pt) be the corresponding diffusion semigroup, i.e., for any g : Rd → R Borel and

bounded,
Ptg(x) = E[g(Xx

t )], x ∈ Rd, t ≥ 0,

where (Xx
t ) is the unique strong solution to (1) under (7).

In our next result, we will prove estimates on the spatial derivatives of Ptf , t > 0,
assuming that f ∈ Cθ(Rd). To this purpose, we will use the so-called Bismut-Elworthy-
Li formula (see (12)) for the spatial derivatives of Ptf (cf. [6]).

Let us comment on such formula. Probabilistic formulae for the spatial derivatives
of Markov semigroups have been much studied for different classes of degenerate and
non-degenerate diffusion processes even with jumps (see [3], [21], [6], [5], [4], [12] [26],
[27], [34] and the references therein). The martingale approach of [6] mainly works for
non-degenerate semigroups (but see also [4, Chapter 3] and [34]); it has been also used
for some infinite dimensional diffusion processes (see [5] and [4]). On the other hand,
in case of degenerate diffusion semigroups, more complicate formulae for the derivatives
can be established by Malliavin Calculus (see [3], [21], [12] and [26]). Some applications
to Mathematical Finance are given in [14].

The next lemma is of independent interest since the function f in (8) is not assumed
to be bounded (compare with [4, Chapter 1] and [1, Chapter 6]).
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Lemma 4 Assume Hypotheses 2 and 3 and condition (7). There exist constants cj > 0,
Mj > 0, j = 1, 2, 3 (cj and Mj depends on θ, ‖a−1‖0, d, ‖σ‖0 and on the supremum
norms of derivatives of σ and b up to the order j), such that, for any f ∈ Cθ(Rd), t > 0,
it holds

‖DjPtf‖0 ≤Mj [f ]θ
ecj t

t(j−θ)/2
, t > 0, for j = 1, 2, 3. (8)

Proof. I Step. First note that E[supt∈[0,T ] |Xx
t |q] ≤ CT (1 + |x|q), for any T > 0, x ∈ Rd,

q ≥ 1 (see, for instance, [19, Chapter II]).
It is also known that, for any t ≥ 0, the mapping:

x 7→ Xx
t is three times Fréchet differentiable from Rd into L2(Ω) (9)

(see [4, Section 1.3] which contains a more general result). Let us write the Fréchet
derivatives:

ηt(x, h) = Dx(Xx
t )[h], ξt(x, h, k) = D2

x(Xx
t )[h, k], ψt(x, h, k, l) = D3

x(Xx
t )[h, k, l],

for any x, h, k, l ∈ Rd. These derivatives satisfy suitable stochastic variation equations
(see [19, Chapter II]). We only write down the variation equation for ηt = ηt(x, h):

dηt = Db(Xx
t )ηt +Dσ(Xx

t )ηtdWt, η0 = h.

Using standard estimates, based on the Burkholder inequality, we get that, for any p ≥ 1,
that there exist positive constants C and c (depending on p, ‖Db‖0 and ‖Dσ‖0) such
that, for any x ∈ Rd, h ∈ Rd,

E|ηt(x, h)|p ≤ C|h|pect, t ≥ 0. (10)

In a similar way, using the second and third variation equations, we obtain the estimates:

E|ξt(x, h, k)|p ≤ C2|h|p|k|peĉ2t, (11)

E|ψt(x, h, k, l)|p ≤ C3|h|p|k|p|l|p eĉ3t, t ≥ 0,

for any x, h, k, l ∈ Rd (with positive constants Ci and ĉi which depend on p and on the
supremum norms of the derivatives of b and σ up to the order i, i = 2, 3).

II Step. Arguing similarly to [4, Section 1.5] one can prove that, for any f ∈ Cθ(Rd),
t > 0, the map: x 7→ Ptf(x) is differentiable on Rd and, moreover, we have the following
Bismut-Elworthy-Li formula:

〈DPtf(x), h〉 = E
[
f(Xx

t ) J1(t, x, h)
]
, x, h ∈ Rd, t > 0, where (12)

J1(t, x, h) =
1
t

∫ t

0
〈σ∗(Xx

s ) a−1(Xx
s ) ηs(x, h), dWs〉.

Note that formula (12) is first proved for bounded f ∈ C2
b (Rd). Then a straightforward

approximation argument shows that (12) holds even for (a possibly unbounded) f ∈
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Cθ(Rd). However, to be precise, in [4], it is assumed that σ(x) is an invertible d × d
matrix and so the expression of J1 in [4, Section 1.5] contains σ−1(Xx

s ) instead of our
σ∗(Xx

s ) a−1(Xx
s ). We briefly explain why (12) holds following the proof of [25, Theorem

5.1]. We only discuss the crucial point of the argument which is needed to get (12) when
f ∈ C2

b (Rd). One has by the Itô formula

f(Xx
t ) = Ptf(x) +

∫ t

0
〈DPt−sf(Xx

s ), σ(Xx
s )dWs〉.

Multiplying both terms of the identity by the martingale

Kt =
∫ t

0
〈σ∗(Xx

s ) a−1(Xx
s ) ηs(x, h), dWs〉,

and taking the expectation, one arrives at

E[f(Xx
t )Kt] =

∫ t

0
E[〈DPt−sf(Xx

s ), ηs(x, h)〉]ds = t〈DPtf(x), h〉.

Thus (12) is proved.
Now the problem is to show that, for f ∈ Cθ(Rd), t > 0, the map: x 7→ 〈DPtf(x), h〉

is a bounded function (we cannot use as in [4] the boundedness of f).
By using (10), we get easily that there exist C1 > 0 depending on ‖a−1‖0, ‖Db‖0

and ‖Dσ‖0 such that

E|J1(t, x, h)|2 ≤ C1e
C1t

t
|h|2, t > 0. (13)

Now we prove the crucial estimate of the first derivative in (8). We use an argument
from the proof of [27, Theorem 3.3]. Introduce the deterministic process

Y x
t = x+

∫ t

0
b(Y x

s )ds, t ≥ 0, x ∈ Rd,

which solves ˙Y x
t = b(Y x

t ), Y x
0 = x. Using that σ is bounded and applying the Gronwall

lemma, we find, for any q ≥ 1,

E|Xx
t − Y x

t |q ≤Mtq/2 ec1t, t ≥ 0, x ∈ Rd, (14)

where M depends on ‖σ‖0 and q and c1 on ‖Db‖0 and q. Since

E
[
f(Y x

t ) J1(t, x, h)] = f(Y x
t )〈D(Pt1)(x), h〉 = 0, t > 0, h ∈ Rd, x ∈ Rd,

we have (see also (4))

|〈DPtf(x), h〉| =
∣∣∣E[(f(Xx

t )− f(Y x
t )) J1(t, x, h)

]∣∣∣
≤ 2[f ]θ E

[
(|Xx

t − Y x
t |θ ∨ |Xx

t − Y x
t |) |J1(t, x, h)|

]
6



≤ 2[f ]θ
(
E
[
|Xx

t − Y x
t |2θ ∨ |Xx

t − Y x
t |2
])1/2 (E|J1(t, x, h)|2)1/2, (15)

t > 0. Using that a ∨ b ≤ a + b, a, b ≥ 0, and the previous estimates (10) and (14), we
find

|〈DPtf(x), h〉| ≤ C ′′[f ]θ(tθ/2 + t1/2)
ec
′′t

t1/2
|h| ≤ [f ]θ

C ′ec
′t

t1/2−θ/2
|h|, t > 0, x ∈ Rd, (16)

where C ′ and c depend on ‖σ‖0, ‖a−1‖0, ‖Dσ‖0, ‖Db‖0 and θ.

Let us consider the remaining estimates in (8). We have, using the semigroup law,
Ptf = Pt/2(Pt/2f) and so (cf. [4, formula (1.5.2)]), for any x, h, k ∈ Rd, t > 0,

〈D2(Ptf)(x)k, h〉 = Dk

(
E
[
(Pt/2f)(X(·)

t/2) J1(t/2, (·), h)
])

(x)

= E
[
〈DPt/2f(Xx

t/2), ηt/2(x, k)〉 J1(t/2, x, h)
]

+ E
[
Pt/2f(Xx

t/2)DkJ
1(t/2, x, h)

]
= Γ1(t, x) + Γ2(t, x),

where Dk denotes the directional derivative along the vector k (indeed, for any fixed
t > 0 and h ∈ Rd, the mapping: x 7→ J1(t/2, x, h) is Fréchet differentiable from Rd into
L2(Ω); this follows easily, using (9), (14), (10) and (11)). We have

DkJ
1(t/2, x, h) =

2
t

∫ t/2

0
〈Dσ∗(Xx

s )[ηs(x, k)] a−1(Xx
s ) ηs(x, h), dWs〉

−2
t

∫ t/2

0
〈σ∗(Xx

s ) a−1(Xx
s )Da(Xx

s )[ηs(x, k)] a−1(Xx
s ) ηs(x, h), dWs〉

+
2
t

∫ t/2

0
〈σ∗(Xx

s ) a−1(Xx
s ) ξs(x, h, k), dWs〉.

Using the Schwarz inequality, (13) and

sup
x∈Rd

(E|〈DPt/2f(Xx
t/2), ηt/2(x, k)〉|2)1/2 ≤ [f ]θ

C ′′ec
′θt

t1/2−θ/2
|k|,

we get immediately |Γ1(t, x)| ≤ M [f ]θ ec t

t(2−θ)/2
|h||k|, t > 0, x ∈ Rd. To estimate Γ2, first

note that, by taking f = 1,

0 = 〈D2(Pt1)(x)k, h〉 = 0 + E
[
DkJ

1(t/2, x, h)
]
,

for any x, h, k ∈ Rd. We find (arguing similarly to (15))

Γ2(t, x) = E
[(
Pt/2f(Xx

t/2)− Pt/2f(Y x
t/2)
)
DkJ

1(t/2, x, h)
]
.

Since

|Psf(x)− Psf(y)| ≤ E|f(Xx
s )− f(Xy

s )| ≤ 2[f ]θE
[
(|Xx

s −Xy
s |θ + |Xx

s −Xy
s |)
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≤ 2[f ]θM(|x− y|θ + |x− y|)ec1s, s ≥ 0, x, y ∈ Rd,

we find, for any x ∈ Rd, t > 0,

|Γ2(t, x)| ≤ 2Mec1t/2[f ]θ E
[
(|Xx

t/2 − Y
x
t/2|

θ + |Xx
t/2 − Y

x
t/2|) |DkJ

1(t/2, x, h)|
]
.

≤ 2Mec1t/2[f ]θ
(
E
[
|Xx

t/2 − Y
x
t/2|

2θ + |Xx
t/2 − Y

x
t/2|

2
])1/2 (E|DkJ

1(t/2, x, h)|2)1/2

≤ [f ]θ
C1e

c1t

t1/2−θ/2
|k||h|,

where C1 and c1 depends on ‖σ‖0, ‖a−1‖0, ‖Dσ‖0, ‖D2σ‖0 ‖Db‖0, ‖D2b‖0 and θ. We
have so obtained estimate in (8) corresponding to j = 2.

The estimate for j = 3 follows in a similar way.

2.2 The main regularity result

With respect to the previous section, here we consider the elliptic operator

Lu(x) =
1
2
Tr(a(x)D2u(x)) + b(x) ·Du(x), x ∈ Rd,

with a(x) = σ(x)σ∗(x), assuming Hypotheses 1, 2 and 3.
The next result provides new estimates for L in Hölder spaces. These estimates

are not covered by recent papers dealing with elliptic and parabolic equations with
unbounded coefficients, due to the fact that in our case also f can be unbounded (compare
with [4], [1], [18] and the references therein).

Theorem 5 Let θ ∈ (0, 1). For any θ′ ∈ (0, θ), there exists λ0 > 0 (depending on θ, θ′, d,
[b]θ, ‖σ‖0, ‖a−1‖0, ‖Dkσ‖0, k = 1, 2, 3) such that, for λ ≥ λ0, for any f ∈ Cθ(Rd), the
equation

λu− Lu = f (17)

admits a unique classical solution u = uλ ∈ C2+θ′(Rd) for which

‖u‖2+θ ′ = ‖u(·) (1 + | · |)−1‖0 + ‖Du‖0 + ‖D2u‖0 + [D2u]θ ′ ≤ C(λ)‖f‖θ (18)

with C(λ) (independent on u and f) such that C(λ) → 0 as λ→ +∞.

Proof. Uniqueness can be proved by the following argument (cf. [16, page 606]).
Consider η(x) =

√
1 + |x|2, x ∈ Rd.

Defining u = vη, we obtain an elliptic equation for the bounded function v, i.e.,

λv(x)− 1
2
Tr(a(x)D2v(x))− (b(x) +

a(x)Dη(x)
η(x)

) ·Dv(x)

−
(1

2
Tr(a(x)D2η(x))

η(x)
+ b(x) · Dη(x)

η(x)

)
v(x) =

f(x)
η(x)

, (19)
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x ∈ Rd. Note that v has first and second bounded derivatives. For λ large enough (de-
pending on ‖σ‖0 and ‖ bη‖0), uniqueness of v follows by the classical maximum principle.

Now we divide the rest of the proof in some steps.

Step I. We assume in addition that b ∈ C3(Rd,Rd) and has all bounded derivatives
up to the third order (but it is not necessarily bounded). We prove that, for sufficiently
large λ > 0, there exists a unique solution u = uλ ∈ C2+θ(Rd) to the equation

λu− Lu = f ∈ Cθ(Rd).

Moreover there exists C (independent on u and f) such that

‖u‖2+θ ≤ C‖f‖θ. (20)

Estimates (20) are new Schauder estimates since f is not assumed to be bounded (com-
pare with [4] and [1])

We consider the function

u(x) =
∫ ∞

0
e−λtE[f(Xx

t )]dt =
∫ ∞

0
e−λtPtf(x)dt, x ∈ Rd, (21)

where (Xx
t ) is the solution of (1) and show that, for λ large enough, u is a C2+θ(Rd)-

solution to our PDE.
Using that E|Xx

t −X
y
t | ≤ CeCt|x− y|, t ≥ 0, x, y ∈ Rd, we find

|u(x)− u(y)| ≤ c[f ]θ,1 (|x− y|θ ∨ |x− y|), x, y ∈ Rd,

and also ‖u(·) (1 + | · |)−1‖0 ≤ C‖f(·) (1 + | · |)−1‖0, for λ large enough.
By Lemma 4 we get, for λ large enough,

‖Du‖0 + ‖D2u‖0 ≤ C[f ]θ.

To estimate the second derivatives of u, we proceed as in [27, Theorem 4.2]. We have,
for any x, y ∈ Rd with |x− y| ≤ 1,

|D2u(x)−D2u(y)| =
∫ |x−y|2

0
e−λt|D2Ptf(x)−D2Ptf(y)|dt

+
∫ ∞
|x−y|2

e−λt|D2Ptf(x)−D2Ptf(y)|dt

≤ c′′|x− y|θ[f ]θ + C|x− y| [f ]θ

∫ ∞
|x−y|2

e−λt
ect

t(3−θ)/2
dt ≤ c′[f ]θ|x− y|θ.

It remains to check that u is a solution. This is not difficult thanks to Lemma 4 (see,
for instance, [4, Chapter 1] or argue as in [27, Theorem 4.1]).
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Step II. Under the assumptions of Step I, for any α ∈ (0, θ), we have

‖u‖2+α ≤ C(λ)‖f‖θ, (22)

with C(λ)→ 0, as λ→ +∞. This is clear if we replace ‖u‖2+α with ‖u(·) (1 + | · |)−1‖0
+‖Du‖0 + ‖D2u‖0. Therefore, we only consider [D2u]α.

Combining the interpolatory estimate: [v]α ≤ C‖v‖1−α0 ‖Dv‖α0 , v ∈ C1
b (Rd) (where

C = C(d), see [15, Section 3.2]) with estimates of Lemma 4 corresponding to j = 2, 3,
we find, for any t > 0,

[D2Ptf ]α ≤ C‖D2Ptf‖1−α0 ‖D3Ptf‖α0 ≤ C4[f ]θ
ec4t

tγ
,

with γ = 2−θ+α
2 < 1 (since α < θ). It follows

[D2u]α ≤ C4[f ]θ

∫ +∞

0

e(c4−λ)t

tγ
dt ≤ C5[f ]θ(λ− c4)γ−1.

The assertion is proved.

Step III. We require that b ∈ Cθ(Rd,Rd) as in Hypothesis 1 and prove the following
a-priori estimates: if λ is large enough and u ∈ C2+θ′(Rd), 0 < θ′ < θ, is a solution to
λu− Lu = f ∈ Cθ(Rd), then

‖u(·) (1 + | · |)−1‖0 + ‖Du‖0 + ‖D2u‖θ′ ≤ K(λ)‖f‖θ, (23)

with K(λ)→ 0, as λ→ +∞.
To prove the estimate we introduce ρ ∈ C∞0 (Rd), 0 ≤ ρ ≤ 1, ρ(x) = ρ(−x), for any

x ∈ Rd,
∫
ρ(x) dx = 1. Moreover, b ∗ ρ indicates b convoluted with ρ.

Write λu(x)− 1
2Tr(a(x)D2u(x))−(b∗ρ)(x)·Du(x) = f(x)+〈

(
b−(b∗ρ)

)
(x), Du(x)〉. It

is easy to see that b∗ρ (even if it can be unbounded) is a C∞−function with all bounded
derivatives. Moreover, there exists C = C(θ,Dρ,D2ρ,D3ρ) > 0 such that

‖Dk(b ∗ ρ)‖0 ≤ C[b]θ, k = 1, 2, 3. (24)

The function b− (b ∗ ρ) is bounded and we have

‖b− (b ∗ ρ)‖0 ≤ C[b]θ.

It follows that b− (b ∗ ρ) ∈ Cθb (Rd,Rd). Applying Step II, we find that

‖u‖2+θ′ ≤ C(λ)‖f‖θ + C(λ)
∥∥〈b− (b ∗ ρ), Du〉

∥∥
θ

(25)

with C(λ)→ 0. Using that

‖〈b− (b ∗ ρ), Du〉‖θ ≤ c[b]θ‖Du‖0 + c[b]θ‖Du‖θ ≤ c[b]θ‖u‖2+θ ′ ,
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for some constant c depending on θ, we rewrite (25):

‖u‖2+θ′ ≤ C(λ)‖f‖θ + C(λ)c[b]θ‖u‖2+θ ′ .

Choosing λ0 > 0 such that C(λ) < 1
c [b]θ

, for λ ≥ λ0, we find, with u = uλ

(1− C(λ)c[b]θ) ‖u‖2+θ ′ ≤ C(λ)‖f‖θ. (26)

Defining K(λ) = C(λ)
1−C(λ)c[b]θ

, we get the assertion.

Step IV. We show that for λ ≥ λ0 (see Step III) there exists a classical solution
u = uλ ∈ C2+θ′(Rd) to (17). This assertion will conclude the proof.

We fix λ ≥ λ0. To prove the result, we will use the continuity method. To this
purpose, using the test function ρ of Step III, we consider:

λu(x)− 1
2
Tr(a(x)D2u(x))− (1− δ)(b ∗ ρ)(x) ·Du(x)− δb(x) ·Du(x) = f(x), (27)

x ∈ Rd, where δ ∈ [0, 1] is a parameter. Let us define

Γ = {δ ∈ [0, 1] : eq. (27) has a unique solution u = uδ ∈ C2+θ′(Rd), for any f ∈ Cθ(Rd)}.

Γ is not empty since 0 ∈ Γ by Step I. Let us fix δ0 ∈ Γ and rewrite equation (27)
corresponding to an arbitrary δ ∈ [0, 1] as

λu(x)− 1
2
Tr(a(x)D2u(x))− (1− δ0)(b ∗ ρ)(x) ·Du(x)− δ0b(x) ·Du(x)

= f(x) + [δ − δ0] (b− b ∗ ρ)(x) ·Du(x).

Introduce the operator T : C2+θ′(Rd) → C2+θ′(Rd). For any v ∈ C2+θ′(Rd), T v = u is
the (unique) C2+θ′(Rd)-function which solves

λu(x)− 1
2
Tr(a(x)D2u(x))− (1− δ0)(b ∗ ρ)(x) ·Du(x)− δ0b(x) ·Du(x)

= f(x) + [δ − δ0] (b− b ∗ ρ)(x) ·Dv(x).

Using the a-priori estimates (26), we get that

‖T v − T w‖2+θ′ ≤ 2K(λ)|δ − δ0| [b]θ ‖v − w‖2+θ′ , v, w ∈ C2+θ′(Rd).

Choosing |δ− δ0| small enough, the operator T becomes a contraction on C2+θ′(Rd) and
it has a unique fixed point which is the solution to (27). Therefore for |δ − δ0| small
enough, we have that δ ∈ Γ. A compacteness argument shows that Γ = [0, 1]. The
assertion is proved.
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3 Differentiable stochastic flow

Given x ∈ Rd, consider the stochastic differential equation in Rd :

dXt = b (Xt) dt+ σ(Xt)dWt, Xs = x, t ≥ s ≥ 0. (28)

As already mentioned our key result is the existence of a differentiable stochastic flow
(x, s, t) 7→ ϕs,t(x) for equation (28). Recall the relevant definition from H. Kunita [19]:

Definition 6 A stochastic flow of diffeomorphisms (resp. of class C1,α) on the stochastic
basis (Ω, (F t) ,F , P, (Wt)) associated to equation (28) is a map (s, t, x, ω) 7→ φs,t(x) (ω),
defined for 0 ≤ s ≤ t, x ∈ Rd, ω ∈ Ω with values in Rd, such that

(a) given any s ≥ 0, x ∈ Rd, the process Xs,x = (Xs,x
t (ω) , t ≥ s, ω ∈ Ω) defined as

Xs,x
t = φs,t(x) is a continuous Fs,t-measurable solution of equation (28);

(b) P -a.s., for all 0 ≤ s ≤ t, φs,t is a diffeomorphism and the functions φs,t(x), φ−1
s,t (x),

Dφs,t(x), Dφ−1
s,t (x) are continuous in (s, t, x) (resp. of class C1,α in x uniformly

in (s, t), for 0 ≤ s ≤ t ≤ T , with T > 0);

(c) P -a.s., φs,t(x) = φu,t(φs,u(x)), for all 0 ≤ s ≤ u ≤ t, x ∈ Rd, and φs,s(x) = x.

Starting from the work of Zvonkin, an important approach to the analysis of SDEs
with non-regular drift is based on the transformation Ψt : Rd → Rd, solution of the
vector valued equation

∂Ψt

∂t
+ LΨt = 0 on [0, T ] , ΨT (x) = x

where Ψt(x) = Ψ(t, x) and [0, T ] is a time interval where the SDE is considered. At time
T , the solution is an isomorphism by definition; one has to prove suitable regularity and
invertibility of Ψt for t ∈ [0, T ]. Then Yt := Ψt (Xt) satisfies

dYt = DΨt

(
Ψ−1
t (Yt)

)
σ
(
Ψ−1
t (Yt)

)
dWt.

The irregular drift has been removed. This approach, although successful (see [2], [13],
[17], [32], [34]), raises two delicate questions: i) one has to deal with unbounded initial
conditions; ii) one has to prove some form of invertibility.

We propose a variant, based on the same operator L but on the vector valued equation

λψ − Lψ = b

(under other assumptions one can treat also the time-dependent case through the parabolic
equation λψt − ∂ψt

∂t − Lψt = b, see [10]). We find it more tractable than the case of un-
bounded initial condition; and we translate the difficult invertibility issue in the smallness
of the gradient of the solution, obtained by means of a large λ. When the gradient of ψ
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is less than one, the function Ψ (x) = x+ψ (x) is invertible and the process Yt := Ψ (Xt)
satisfies

dYt = DΨ
(
Ψ−1 (Yt)

)
σ
(
Ψ−1 (Yt)

)
dWt + λψ

(
Ψ−1 (Yt)

)
dt.

So, at the end, the transformed equation has the same degree of difficulty as in the case
of the Zvonkin’s transformation.

Theorem 7 Assume Hypotheses 1, 2, 3 and fix any θ′′ ∈ (0, θ). Then we have the
following facts:

(i) (pathwise uniqueness) For every s ≥ 0, x ∈ Rd, the stochastic equation (28) has a
unique continuous adapted solution Xs,x =

(
Xs,x
t

(
ω
)
, t ≥ s, ω ∈ Ω

)
.

(ii) (differentiable flow) There exists a stochastic flow φ = (φs,t) of diffeomorphisms

for equation (28). The flow is also of class C1,θ
′′

.

(iii) (stability) Let (bn) ⊂ Cθ(Rd,Rd) and let (φn) be the corresponding stochastic flows.
Assume that there exists b ∈ Cθ(Rd,Rd) such that bn− b ∈ Cθb (Rd,Rd), n ≥ 1, and
‖b − bn‖Cθb → 0 as n → ∞. If φ is the flow associated to b, then, for any p ≥ 1,
T > 0,

lim
n→∞

sup
x∈Rd

sup
0≤s≤T

E[ sup
u∈[s,T ]

|φns,u(x)− φs,u(x)|p

(1 + |x|)p
] = 0. (29)

sup
n∈N

sup
x∈Rd

sup
0≤s≤T

E[ sup
u∈[s,T ]

‖Dφns,u(x)‖p] <∞, (30)

lim
n→∞

sup
x∈Rd

sup
0≤s≤T

E[ sup
u∈[s,T ]

‖Dφns,u(x)−Dφs,u(x)‖p] = 0. (31)

(‖ · ‖ denotes the Hilbert-Schmidt norm).

Proof. Step 1 (auxiliary elliptic systems). Let us choose θ′ such that 0 < θ′′ < θ′ <
θ.

For a fixed λ ≥ λ0 > 0 (see Theorem 5) we consider the unique classical solution
ψ = ψλ ∈ C2+θ′(Rd,Rd) to the elliptic system

λψλ − Lψλ = b, (32)

where
Lu(x) =

1
2
Tr(σ(x)σ∗(x)D2u(x)) + b(x) ·Du(x),

for any smooth function u : Rd → Rd (clearly (32) has to be interpreted componentwise).
Define

Ψλ(x) = x+ ψλ(x).

Similarly to [10, Lemma 8] we have
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Lemma 8 For λ large enough, such that ‖Dψλ‖0 < 1 (see Theorem 5), the following
statements hold:

(i) Ψλ has bounded first and spatial derivatives and moreover the second (Fréchet)
derivative D2

xΨλ is globally θ′-Hölder continuous.

(ii) Ψλ is a C2-diffeomorphism of Rd.

(iii) Ψ−1
λ has bounded first and second derivatives and moreover

DΨ−1
λ (y) =

∑
k≥0

(
−Dψλ(Ψ−1

λ (y))
)k
, y ∈ Rd. (33)

In the sequel we will use a value of λ for which Lemma 8 holds and simply write ψ
and Ψ for ψλ and Ψλ.

Step 2 (conjugated SDE). Define

b̃(y) = λψ(Ψ−1(y)), σ̃(y) = DΨ(Ψ−1(y))σ(Ψ−1(y))

and consider, for every s ≥ 0 and y ∈ Rd, the SDE

Yt = y +
∫ t

s
σ̃(Yu)dWu +

∫ t

s
b̃(Yu)du, t ≥ s. (34)

This equation is equivalent to equation (28), in the following sense. If Xt is a solution
to (28), then Yt = Ψ(Xt) verifies equation (34) with y = Ψ(x): it is sufficient to apply
Itô formula to Ψ(Xt) and use equation (32).

Viceversa, given a solution Yt of equation (34), let Xt = Ψ−1(Yt), then it is possible to
prove by direct application of Itô formula that Xt is a solution of (28) with x = Ψ−1(y).
This is not very important since below we will obtain this fact indirectly.

Step 3 (proof of (i) and (ii)). We have clearly b̃ and σ̃ ∈ C1+θ′ (with first order
derivatives bounded and in Cθ

′
b ) so that, in particular, they are Lipschitz continuous.

By classical results (see [19, Chapter 2]) this implies existence and uniqueness of a
strong solution Y of equation (34) and even the existence of a C1,θ

′′
stochastic flow of

diffeomorphisms ϕs,t associated to equation (34).
The uniqueness of Y implies the pathwise uniqueness of solutions of the original

SDE (1) since two solutions X, X̃ give rise to two processes Yt = Ψ(Xt) and Ỹt = Ψ(X̃t)
solving (34), then Y = Ỹ and then necessarily X = X̃. By the Yamada-Watanabe
theorem pathwise uniqueness together with weak existence (which is a direct consequence
of the Girsanov formula) gives the existence of the (unique) solution (Xx

t )t≥s of eq. (1)
starting from x at time s. Moreover setting

φs,t = Ψ−1 ◦ ϕs,t ◦Ψ

we realize that φs,t is the flow of (1) (in the sense that Xx
t = φs,t(x), P -a.s.).
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Step 4. (proof of (iii)). Let ψn and ψ be the solutions in C2+θ′(Rd; Rd) respectively
of the elliptic problem associated to bn and to b ∈ Cθ(Rd; Rd). Notice that we can make
a choice of λ independent of n. We write

λ (ψn − ψ)− L (ψn − ψ) = (bn − b) + (bn − b) ·Dψn, n ≥ 1.

By Theorem 5 we have supn≥1 ‖ψn‖C2+θ′ ≤ C <∞. Since b− bn is a bounded function,
by the classical maximum principle (see [15]) we infer also that ψ − ψn is a bounded
function on Rd and

‖ψ − ψn‖0 ≤
C + 1
λ
‖b− bn‖0, n ≥ 1. (35)

It follows that ψ − ψn ∈ C2+θ′

b (Rd; Rd) and ‖ψ − ψn‖C2+θ′
b

→ 0 as n→∞.

Fix p ≥ 1 and consider the flows ϕns,t = Ψn ◦ φns,t ◦ (Ψn)−1 which satisfy

ϕns,t(y) = y +
∫ t

s
b̃n ◦ ϕns,u(y)du+

∫ t

s
σ̃n ◦ ϕns,u(y) · dWu, (36)

We have σ̃n → σ̃ and b̃n → b̃, as n → ∞, in C1+θ′(Rd; Rd×k) and C1+θ′(Rd; Rd),
respectively. By standard arguments, using the Gronwall lemma, the Doob inequality
and the Burkholder inequality (compare, for instance, with the proof of [19, Theorem
II.2.1]) we obtain the analog of (29) for the auxiliary flows ϕns,t and ϕs,t:

lim
n→∞

sup
x∈Rd

sup
0≤s≤T

E[ sup
u∈[s,T ]

|ϕns,u(x)− ϕs,u(x)|p

(1 + |x|)p
] = 0. (37)

We can also prove the inequality

sup
n∈N

sup
x∈Rd

sup
0≤s≤T

E[ sup
u∈[s,T ]

‖Dϕns,u(x)‖p] <∞, (38)

for Dϕns,t(y), using the fact that the stochastic equation for Dϕns,t(y) has the identity as
initial condition and random coefficients Db̃n

(
φns,u

)
and Dσ̃n

(
φns,u

)
which are uniformly

bounded functions (since ‖Db̃n‖0 +‖Dσ̃n‖0 ≤ C, uniformly in n).
To prove (30) is then enough to estimate Dφns,u using (38), the uniform boundedness

of the derivatives of Ψn and its inverse (note that the uniform boundedness of the
D(Ψn)−1 can be proved by (33)).

To prove (29) we remark that to estimate the difference ϕns,t(Ψ
n(x))−ϕs,t(Ψ(x)) we

can split it as ϕns,t(Ψ
n(x))− ϕs,t(Ψn(x)) + ϕs,t(Ψn(x))− ϕs,t(Ψ(x)). The two differences

can then be controlled by

E[ sup
s≤u≤T

|ϕns,u(Ψn(x))− ϕs,u(Ψn(x))|p] ≤ an (1 + |Ψn(x)|)p ≤ an (1 + |x|)p,

(where an = supx∈Rd sup0≤s≤T E[supu∈[s,T ]
|ϕns,u(x)−ϕs,u(x)|p

(1+|x|)p ] and limn→∞ an = 0) and by

E[ sup
s≤u≤T

|ϕs,u(Ψn(x))− ϕs,u(Ψ(x))|p] ≤ sup
z∈Rd

E[ sup
s≤u≤T

‖Dϕs,u(z)‖p]|Ψn(x)−Ψ(x)|p
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≤ C‖Ψn −Ψ‖p0,

with limn→∞ ‖Ψn −Ψ‖0 = limn→∞ ‖ψn − ψ‖0 = 0 (see (35)).
Finally, one has to check that (Ψn)−1 converges to Ψ−1 in the supremum norm. This

follows from the inequality

sup
y∈Rd

|(Ψn)−1(y)−Ψ−1(y)| ≤ sup
x∈Rd

|(Ψn)−1(Ψn(x))−Ψ−1(Ψn(x))|

≤ sup
x∈Rd

|Ψ−1(Ψn(x))−Ψ−1(Ψ(x))| ≤ ‖DΨ−1‖0 ‖Ψ−Ψn‖0,

which tends to 0, as n→∞.
Arguing as in the proof of [19, Theorem II.3.1], we get the following linear equation

for the derivative Dφs,t(x)

[DΨ(φs,t(x))]Dφs,t(x) = DΨ(x) +
∫ t

s
[D2Ψ(φs,u(x))]Dφs,u(x)σ(φs,u(x))dWu

+
∫ t

s
DΨ(φs,u(x)) [Dσ(φs,u(x))]Dφs,u(x)dWu − λ

∫ t

s
[Dψ(φs,u(x))]Dφs,u(x)du,

(39)

0 ≤ s ≤ t ≤ T , x ∈ Rd. From the fact that limn→∞ ‖ψn − ψ‖C2+θ′
b

= 0 together with

(30) and (39), we finally obtain

lim
n→∞

sup
x∈Rd

sup
0≤s≤T

E[ sup
u∈[s,T ]

‖Dφns,u(x)−Dφs,u(x)‖p] = 0, (40)

which concludes the proof.

We consider now two possible extensions of Theorem 7 to the case when coefficients
b and σi are time-dependent continuous functions defined on [0, T ] × Rd, i.e., we are
dealing with

dXx
t = b (t,Xx

t ) dt+
k∑
i=1

σi (t,Xx
t ) dW i

t , t ∈ [0, T ] , X0 = x. (41)

Remark 9 Let us treat the case in which also b is bounded. Following [10], an analogous
of our Theorem 7 holds for (41) if we require that b and σi are continuous and bounded
functions such that

sup
t∈[0,T ]

(‖b(t, ·)‖Cθb + ‖σi(t, ·)‖C1+θ
b

) <∞, i = 1, . . . , k,

and, moreover (as in Hypothesis 3) we assume that σ(t, x) is uniformly non-degenerate,
i.e., there exists the inverse of a(t, x) = σ(t, x)σ∗(t, x), for any t ∈ [0, T ], x ∈ Rd, and

‖a−1‖0 = sup
x∈Rd, t∈[0,T ]

‖a−1(t, x)‖ <∞. (42)
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To prove Theorem 7 under these hypotheses, one can follow the proof of the analogous
result proved in [10]. We only give a sketch of the argument.

First note that [10, Theorem 2] remains the same even with the previous non-constant
σ = (σi) (indeed it is a special case of a result in [18]). Then [10, Lemma 4] is true with
σ in (41) by the following rescaling argument. Consider λ ≥ 1 and

∂tuλ + Luλ − λuλ = f in [0,∞)× Rd,

where L is the Kolmogorov operator associated to the SDE, i.e.,

L =
1
2

Tr[a(t, x)D2u(t, x)] + b(t, x) ·Du(t, x)

(here (σ(t, x)σ∗(t, x)) = a(t, x) and D and D2 denote spatial derivatives). Define a
function v on [0,∞) × Rd such that v(λt,

√
λx) = uλ(t, x), t ≥ 0, x ∈ Rd. It is easy to

see that, for any s ≥ 0, y ∈ Rd,

∂sv(s, y) + Tr[a
( s
λ
,
y√
λ

)
D2v(s, y)] +

1√
λ
b
( s
λ
,
y√
λ

)
·Dv(s, y)− v(s, y) =

1
λ
f
( s
λ
,
y√
λ

)
.

Now the spatial Hölder seminorms of (s, y) 7→ a( sλ ,
y√
λ

) and (s, y) 7→ b( sλ ,
y√
λ

) are clearly
independent on λ ≥ 1 and on s ≥ 0. By [18, Theorem 2.4], we deduce in particular, for
any λ ≥ 1,

sup
s≥0
‖Dv(s, ·)‖0 ≤

C

λ
sup
s≥0
‖f(s, ·)‖θ,

where C is independent of λ. It follows the assertion of [10, Lemma 6] since

sup
t≥0
‖Duλ(t, ·)‖0 =

√
λ sup
s≥0
‖Dv(s, ·)‖0 ≤

C√
λ

sup
s≥0
‖f(s, ·)‖θ.

The proof of [10, Theorem 5] (which deals with the stochastic flow) remains true even
with σ in (41) by a straightforward modification.

Remark 10 An analogous of Theorem 7 holds for (41) requiring that Hypotheses 1, 2
and 3 are satisfied “uniformly in time”.

One assumes that b and σi are continuous functions defined on [0, T ] × Rd, i =
1, . . . , k. Moreover, there exists θ ∈ (0, 1) such that b(t, ·) ∈ Cθ(Rd; Rd), t ∈ [0, T ], and
supt∈[0,T ] ‖b(t, ·)‖Cθ(Rd,Rd) <∞. In addition, σi(t, ·) ∈ C3

b (Rd,Rd), t ∈ [0, T ],

sup
t∈[0,T ]

‖σi(t, ·)‖C3
b (Rd,Rd)

<∞,

i = 1, . . . , k, and one requires that condition (42) holds. Theorem 7 under these as-
sumptions may be established by adapting the (time-independent) proof given in the
present paper. However, the complete argument, even if it does not present special
difficulties, is considerably longer (for instance, one has to prove the analogous of the
Bismut-Elworthy-Li formula (12) in the time-dependent case).
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We close the section by an application of the stochastic flow. We obtain a Bismut-
Elworthy-Li type formula for the derivative of the diffusion semigroup (Pt) associated
to (1) (compare with [3] and [6]). It seems the first time that such formula is given for
diffusion semigroups associated to SDEs with coefficients which are not locally Lipschitz.

Theorem 11 Let f : Rd → R be uniformly continuous and bounded. For any x, h ∈ Rd,
we have (cf. (12))

DhPtf(x) =
1
t
E[f(φt(x))

∫ t

0
〈(σ∗a−1)(φu(x))Dhφu(x), dWu〉], t > 0, x ∈ Rd,

where 〈DPtf(x), h〉 = DhPtf(x) and Dφu(x) solves (39) with s = 0 (we set φu(x) =
φ0,u(x)).

Proof. We prove the formula when f ∈ C∞b (Rd). Indeed, then, by a straightforward
uniform approximation of f , one can obtain the formula in the general case.

Let ϑ : Rd → R be a smooth test function such that 0 ≤ ϑ(x) ≤ 1, x ∈ Rd,
ϑ(x) = ϑ(−x),

∫
Rd ϑ(x)dx = 1, supp (ϑ) ⊂ B(0, 2), ϑ(x) = 1 when x ∈ B(0, 1). For any

n ≥ 1, let ϑn(x) = ndϑ(nx). Define bn = b ∗ ϑn.
We have that bn is a C∞ and Lipschitz vector field such that b − bn ∈ Cθb (Rd; Rd)

and ‖b − bn‖Cθb tends to 0 as n → ∞. Let (φnt ) be the associated flow of smooth
diffeomorphisms which solves the SDE involving bn and let (Pnt ) be the corresponding
diffusion semigroup. The Bismut-Elworthy-Li formula for (Pnt ) is given by

DhP
n
t f(x) =

1
t
E[f(φnt (x))

∫ t

0
〈(σ∗a−1)(φnu(x))Dhφ

n
u(x), dWu〉], t > 0, x ∈ Rd, n ∈ N.

Note that DhP
n
t f(x) = E[〈Df(φnt (x)), Dhφ

n
t (x)〉]. Passing to the limit as n→∞, using

the estimates (29) and (31), we get

DhPtf(x) = E[〈Df(φt(x)), Dhφt(x)〉] =
1
t
E[f(φt(x))

∫ t

0
〈σ−1(φu(x))Dhφu(x), dWu〉],

for any t > 0, x ∈ Rd.
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